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Abstract

The influence ofy precipitate distribution on tensile and low
cycle fatigue (LCF) behaviors of a powder metalju(gM) disk
superalloy was investigated at 450°C. Fgyrarticle distributions
were obtained through various cooling paths anddging
treatments in coarse grain size superalloy N18. fileehanical
tests show that the main influence of the intragian
microstructure concerns the 0.2% vyield stress (¥8Yand the
ultimate tensile stress. Wide variations of thed@Y5 affect the
mean stress under non symmetrical loading but (v little
effect on fatigue life, the lower the 0.2%YS, tbeder the fatigue
life. The fatigue life of N18 at 450°C is indepentieof the
intragranular microstructure as long as the meesssteffect is
correctly taken into account. As expected with toarse grain
size N18, no crack initiation at pores or inclusiaves observed.

A precipitation model was coupled with a criticakolved shear
stress calculation providing 0.2%YS value for aegivheat
treatment sequence. Finally, this computation ploce was
implemented in a numerical modeling of the LCF lifea disk
taking into account the heat treatment applied téowrought
preform.

Introduction

The service life of aeroengine high-pressure diskshighly

dependent on their low cycle fatigue (LCF) resistaat low and
intermediate temperatures. Polycrystallingy nickel-based
wrought superalloys are commonly used for theHagt-pressure
compressor (HPC) stages and for the low and highspre
turbine (LPT and HPT) disks.

Little data exists for alloys like N18 regardingtmicrostructural
influence on LCF properties as compared with thomecerning
the effect of the microstructure on their tensiteceep behavior.
This is partly due to the high cost and complexifyLCF tests,
and the commercial value of this kind of data preek their
dissemination. These LCF tests could have long tduraand
numerous tests are needed to properly accountdta scatter.
Finally, a higher number of testing parametersi¢asl or strain
control, minimum/maximum load (or strain) ratiogduency...)
makes the comparison of fatigue data more diffichkn for
tensile or creep results.

Effect of the grain size was widely studied andmiost cases, the
larger the grain size, the shorter the fatigue[lifd.0]. But only a
limited number of studies were devoted to the irfice of the/y
microstructure on the LCF behavior of these materi&or
instance, the longest lives were obtained for that hreatment
leading to the most homogeneous deformation andldivest
maximum stress during a fatigue cycle for alloy &858 [11]. The
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corresponding microstructure is characterized by toarsest
secondary precipitate size and no tertiayyparticles (982°C/72h
aging) but also by the finest grain size. Changesthe y
precipitate size and distribution frequently octagether with
grain size variations that makes difficult the gsa& of the
microstructural effects. A computational study ¢t around this
issue and provide qualitative trends. Such ancambr applied to
the IN100 alloy with virtual microstructures showdldat the
maximum fatigue crack initiation life at 650°C wasached with
the smallest secondany fraction and size associated with the
largest tertiary’ fraction and size (within the investigated ranges
[12].

However, the effects of the strengthenigrecipitate size and
distribution on LCF resistance were unfortunatefero masked
due to crack nucleation events at defects resulfiogn the

processing route such as carbonitrides for cast wrmlight

superalloys [5] or pores and ceramic inclusions pawder

metallurgy (PM) superalloys [13]. This trend is abh

systematically observed in fine grain size matsri&dor coarser
grain size superalloys (typically when the grairess larger than
the ceramic inclusions), depending on the LCF diom, cracks
initiate preferentially at a crystallographic fad®, 4, 7, 12].

Furthermore, the crack initiation mechanism depearatsonly on

grain size but also on LCF test conditions sucthagemperature
[2], the strain amplitude [14, 15] or the straitiod16].

The aim of the present study is therefore to amathe influence
of y precipitate distribution on the tensile and LG¥haviors of a
disk superalloy. To promote crack nucleation atrise slip bands
(leading to crystallographic facets), this work wasried out on a
coarse grain size material.

Material

This work was performed on PM superalloy N18 [1This

superalloy is used for the production of the diskshe last HPC
stages and of the HPT of the M88 Snecma engin&. fi2igs were
processed and provided by Snecma in the extrudeédsaforged
state. Table | provides the composition of the Na&h used for
this study.

Table I. Composition of the N18 superalloy in wt%

Ni Co Cr Mo Al Ti Hf
Bal. | 15.40| 1125 6.50 442 435 0.48
B C Zr
0.016| 0.016 0.028

The y fraction of this alloy is about 55-60%, itg solvus
temperature is around 1195°C and its density iscBiy After
forging, the typical microstructure of the N18 alloonsists of a
very fine grain size (2-3 um) due to a high fractaf primaryy



phase (25 to 30 % of coarggarticles are not solutionized during
the subsolvus extrusion and forging processes).

Production of N18 powder by argon atomization itedsy leads

to the presence of ceramic inclusions in the forgads. N18

powders are sieved at 53 pm (-270 mesh) to usesfiperalloy

powders and to minimize the number and size of d&@mic

particles. As these inclusions are brittle andpaegerred sites for
crack initiation when their size is greater thae gnain size, they
are deleterious for LCF resistance. Their impagtedels on their
brittleness, shape, location and size.

In subsolvus heat treated N18 where coarse priylapgarticles
prevent grain growth, grain sizes remain within tlaege of
10-15pm. During LCF tests, cracks mostly initiate fronraraic
inclusions larger than the grains. In supersolvest ireated N18
with coarse grains (40-§0m), the size of the inclusions is smaller
or of the same order as the grain size, and moshefcracks
initiate from a crystallographic plane. It is thiere easier to
investigate the effect of the intragranular micrnosture on LCF
behavior in coarse grain material than in fine mgrailloy where
crack initiation from inclusions would mask thidesft. Moreover
crack initiation on inclusion leads to a wide dispen in the
fatigue life results. Indeed, the inclusions amd@nly distributed
in the material, so it is impossible to predicbife inclusion is at
the critical point, if so, the life is shortenechi¥ problem should
not occur in the coarse grain microstructure, @slikely to find a
coarse grain favorably oriented for crack initiatioear the critical
point.

Microstructures

Cylindrical rods (@12 mm x 58 mm) were extractedelmctrical-
discharge machining from as-forged disks and wenent
individually heat treated. The grain size was eated by
comparison of optical micrographs to a series aflgd images.

Secondaryy precipitate size was determined by image analysis

(IA) of pictures acquired by scanning electron mémopy (SEM-
FEG Zeiss DSM982 GEMINI) on an etched specimen. iffege
analysis was carried out on 300 to 600 precipitated the
secondary/ precipitate size in Table Il is taken as the medge
of these particles considering an almost cubicapshThe tertiary
Y precipitate size is an estimate of the mean diam@pherical
particles) deduced from both “SEM+IA” and manual
measurements on transmission electron microscopMjTdark
field images.

The four supersolvus microstructures investigateithis study are
characterized by an identical coarse grain sizaltieg from a
supersolvus heat treatment for two hours at 1200%Gs heat
treatment eliminates all the primaxy particles enabling grain
growth up to about 50 pm. The microstructural \aies §/
precipitate distribution) were obtained throughi®as cooling
paths and/or aging treatments.

The “reference” microstructure is obtained throeghupersolvus
heat treatment (1200°C/2h) ended by air cooling)(AGllowed

by a double aging treatment for 24 hours at 70Qh@én for 4

hours at 800°C. This heat treatment leads to a déio particle

size distribution (Figure 1a): secondayy precipitates with a
cubical shape and a mean edge of about 165 nm ghetical

tertiaryy precipitates with a mean diameter close to 25 nm.

The “novy),” (no tertiary y precipitates) microstructure results
also from a supersolvus heat treatment (1200°G#alded by air
cooling. But to eliminate the tertiaryy population which
precipitates during the last stage of the air eaplian aging
treatment of one hour at 900°C was then applieslight increase

of the secondary size is measured (Table Il) and coalesced
tertiary y precipitates are sparsely observed in between the
secondary particles (Figure 1b). As N18 superaloprone to
topologically closed packed (TCP) phases (idemtiisc and p
phases [18]), fine intergranular precipitates weo&ced at very
few grain boundaries. It is assumed that this samatbunt of TCP
phase particles has no significant influence on rirechanical
behavior.

The “fine y)," (fine secondaryy precipitates) microstructure is
obtained after a supersolvus heat treatment (12@@jGollowed
by water quenching (WQ) and the same double ageajrhent as
for the “reference” microstructure. The higher doglrate leads
to a smaller mean size of the secondaprecipitates¥ 115 nm)
and the double aging treatment produces the sartiaryey
diameter £ 25 nm) as compared with the “reference”
microstructure (Figure 1c).

The fourth microstructure is designated as “coafge (coarse
secondaryy precipitates) and results from the following heat
treatment procedure:
- 1200°C/2h followed by a slow cooling rate of 404
down to 1000°C then continued by a slow cooling rat
1°C/min down to 900°C and then air cooled,
- 700°C/24h/AC.

Table Il. Heat treatments applied to N18 alloy aslilting experimental and calculated microstruatdata

Experimental measurements Calculatjon
Microstructure Solution . Vi Yu Vi
designation heat treatment Aging treatment mean edge mean diameter] mean edge
(nm) (hm) (nm)
“ " o 700°C/24h/AC +
reference 1200°C/2h/AC 800°C/4h/AC 164 25 201
“no V" 1200°C/2h/AC 900°C/1h/AC 174 - 206
g " o 700°C/24h/AC +
fine v 1200°C/2h/WQ 800°C/4h/AC 113 25 124
“ " 1200°C/2h/4°C-mit cooling—> 1000°C o
coarsey, then 1°C-mift cooling> 900°C/AC 700°C/24h/AC 1000-4000 - 1450
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Figure 1. Microstructures of supersolvus N18 aftatous heat treatment sequences.
Lower magnifications are used for the “coaygé microstructure (SEM-secondary electron mode-elcspecimens).
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This heat treatment procedure generates a verys&oar
precipitation (Figure 1d). The first slow coolinghduces
nucleation of a limited number of precipitates whizan growth
during the long cooling duration. The second slovoling is
carried out to prevent furthgr particle nucleation and to promote
the growth of the present precipitates. The agiegtinent was
applied to ensure that no tertigfyprecipitation occurs. The SEM
images show that the coargeprecipitates tend to grow along
preferential directions and to split. As expectiis phenomenon
is accompanied by the formation of serrated gradunbaries
[19]. No image analysis was undertaken on such a&syne
microstructure but the edge of these coarse secpnga
precipitate was manually measured to be between
1-4 micrometers. No or very few tertiary precipitates are
observed within the widgchannels (Figure 1d).

These four microstructures were designed to achiewg distinct
tensile behaviors and to study the influence oftéte populations

of y precipitates on LCF resistance. Finally, the mi&ation
parameters of the first three microstructures ahatber N18
microstructures were used as data to recalibrate vafidate a
precipitation model previously developed for thésalvus N18
(presence of primary' precipitates) [20, 21]. This model allows
the calculation of the volume fraction and the meee of each
population ofy precipitates [22]. Only the calculated mean edges
of the secondary precipitates are included in Table 1. They are
shown to be in good agreement with the experimental
measurements except for the “coargémicrostructure for which
the microstructural data were not accurately detezchand the
model is consequently not suitable.

Mechanical characterization
Test matrix
Mechanical tests were conducted at 450°C in airsomoth
specimens with 14 mm length x 4.4 mm diameter gage
dimensions. The five mechanical tests performed déach

microstructure are presented in Table Ill.

Table Ill. Mechanical test parameters

Test designation Test conditions

Tensile strain rate of Ifs *

Re = 0,A&/2 = 0.35%

strain rate of 135 (triangular waveform)
Re = 0,A&/2 = 0.45%

strain rate of 10s (triangular waveform)
Re = 0.6,A¢/2 = 0.2%*

15 Hz (sinusoidal waveform)

Repeated LCF

temperature. 450°C is a representative temperé&uthe web of
the disk. Moreover, this temperature offers the aatikge to
minimize the risk of crack initiation from inclusio For SMO43
alloy (now N19 alloy), Guédoet al. [23] have indeed observed,
that at 650°C, even with a coarse grain size, dligife crack may
initiate from inclusions, whereas at 450°C thisckranitiation
mode is much less frequent.

The monotonic tensile test provides elastic modulls,
hardening modulus, 0.2% yield stress (0.2%YS) ationate
tensile stress (UTS). The two repeated LCF testh Wt = 0,
were designed to plot the mean stress curve (measssat the
stabilized cycle as a function of imposed maximunais). The
expected fatigue lives were respectively of theeorof 16 and
10" cycles forAe/2 = 0.35% and\e/2 = 0.45%. The fully reversed
incremental LCF test was performed to plot the icylshrdening
curve. For this test, a strain amplitude level 8% was first
applied during at least 300 cycles to reach theilstad cycle and
then a strain amplitude level of 0.7% was appliedil uthe
specimen rupture. For the first tested specimeno (Yfy,”
microstructure), a third strain level of 0.9% weed but led to a
small number of cycles to rupture (< 100) so thiscpdure was
not applied to the following tests. For each mitnegture, the
fatigue life is defined as the number of cyclesrupture at the
higher strain level. For these tests, the ruptuwreuoed before
1000 cycles, i.e. in the short fatigue life reginkénally, the
repeated LCF test witheR= 0.6 was designed to reach a long
fatigue life of the order of fOcycles. It leads to a high mean
stress, more representative of the loading of & lpgessure
turbine disk.

Thus, despite a small number of experiments, tisé r@atrix
covers a wide fatigue life range, from?21t 10 cycles, and
allows studying some key features of the fatigueahb@r, such as
the mean stress relaxation and the cyclic hardening

Experimental results

Monotonic tensile testsAnalysis of the tensile curves (Figure 2)
indicates that the elastic and the hardening modrédi hardly
dependent on the' precipitate distribution. On the contrary,
microstructural changes induce large variation hf 0.2%YS.
The dissolution of the tertiary precipitates leads to a 70 MPa
0.2%YS decrease (in comparison with the “reference”
microstructure). A fine secondany precipitation offers a 320
MPa advantage when compared with the coarse segontia
precipitation that highlights the strong influerafethe secondary

Y precipitate size on the 0.2%YS (Table IV).

Table IV. Data of the tensile tests at 450°C

Fully reversed Re = -1, strain increments Mi truct E 0.2%YS UTsS Elongation
incremental LCF | strain rate of 10s *(triangular waveform) icrostructure (GPa) (MPa) (MPa) (%)
* During this test, only the first cycle was contldt under strain control, “fine y)" 1135 1483 16.1
the other cycles were under stress control betw®en stress levels m ”
X . . reference 1048 1410 14.3
ding t t ling bet 0.6%X%d +
corresponding to a strain cycling between () 0 Yy 195+7 975 1420 19.1
The strain ratio Ris defined agmi/emaxand the strain amplitude “coarsey” 812 1280 35.8

Ae/2 is defined asé€fy - €min)/2. In the same way, the stress
amplitudeAo/2 is equal todax - Omin)/2 at the stabilized cycle.

A high pressure turbine disk experiences tempezatiyetween

300 and 650°C during service life. The temperatfré50°C is
reached only in the rim, and the disk bore undesglmsver
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Some plastic instabilities can be observed on smmsile curves
(Figure 2), especially in the case of the ‘“refeegnc
microstructure. These events are a drawback otloice of the
test temperature, which corresponds to the dommaihich strain
aging phenomena may occur. These events occurght dtiain
level (> 1%) and globally did not affect the resuttf the LCF



tests. The ultimate tensile stress (UTS) showsstme trend as
the 0.2%YS except for the “reference” microstruetfmr which
the UTS value can be related to the unexpected Utiimate
elongation.

1400 7
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;_«? ]
S 800 T
@ ]
o 600
400 --f-marm e i — fine "{”
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200 - no Yy
4 : : : : coarse Y,
00 05 10 15 20 25 30 35 40

Strain (%)

Figure 2. Tensile curves at 450°C
for supersolvus N18 with various microstructures.

Fatigue behaviorAnalysis of the cyclic test results allowed the
quantification of the cyclic hardening and of thean stress at the
stabilized cycle for various strain levels. The leydardening
amplitude and the mean stress relaxation are indeedkey
parameters for the calculation of the fatigue life.

The cyclic hardening curves were drawn from diffiéréatigue
tests (Figure 3). The plastic strain amplitude eepnts
(Eptastic max~ Eplastic min/2 at the stabilized cycle. The fully reversed
LCF tests conducted with several strain incrememtsvide
several points at relatively high plastic strain.sfong cyclic
hardening is systematically observed. Its amplitude
(Ocyciic - Omonotonig IS quite similar whatever the microstructure
(about 240 MPa for a plastic strain of 0.1%). Thene in a first
approximation, the cyclic hardening can be consider
independent of the intragranular microstructure.

1400 o
. Ba s ©
1200
= //-—D"“
£1000
=
£
g 800
@
ﬁ 6001 Monotonic tests Cyclic tests
‘E 400 | fine YI‘I ----l fine 'YY||
g J|—— reference — & reference
8 200 no Yy o noyy
& o] coarse v, O coarse ¥}
0.00 0.05 0.10  0.15 020 0.25 0.30

Plastic strain or plastic strain amplitude (%)

Figure 3. Cyclic hardening curves at 450°C for sspleus N18
with various microstructures. Solid lines are thenwtonic tensile
curves, dots and dotted lines are cyclic hardetésgresults.

When plotting mean stress curve (mean stress asttiglized

cycle vs. the maximum strain) as in the Militaryridaook [24],
the curve can be divided in three parts. As longhasmaximum
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stress during the stabilized cycle is below thé&®X3 (low strain
amplitude), the material behavior is consideredhia following
analysis to be purely elastic and the mean stsegivén by:
o =EAg/2 ()]
with E the elastic modulus ankt/2 the strain amplitude. When
the maximum stress is above the 0.2%YS during tabilzed
cycle, the mean stress is given by:
O = 02%YS-EAe/2 2
as the material is considered to behave as perfptaktic. For
higher strain amplitudes, the mean stress becomikes n

The “elastic segment” of the curve is common to all
microstructures, as their moduli are very closeweler, the
lessening segment, corresponding mostly to eldistiealapted
cycles, is different for each microstructure due destinct
0.2%YS. Figure 4 shows that experimental resulés iargood
agreement with these mean stress curves, evideticaighey
distribution strongly affects the mean stress redclat the
stabilized cycle in the same way as the 0.2%YS.

600 T s e
] ‘ fine vy
1 ; reference
s ‘ noyn
> 1 ‘ 3 coarse Y
= 400 | NINT o r
@ ] : : 1 i
O 300 -t Y A S S SN N B |
% 200 +----------7 77777777777777777777777777777777777777777777777777777777
() ] '
= ] 3
100 7 e e S A 2 N U
0 ] : : : ANEAN :
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Maximum strain (%)

Figure 4. Mean stress relaxation curves at 450fGudpersolvus
N18 with various microstructures. Equations 1 arate2depicted
as straight lines and experimental results of regoebCF tests
with Re = 0 as dots.

Fatigue life.As shown in Figure 5, the lower the mean stréss, t
longer the fatigue life. Indeed, for a repeated LBt with a
loading of R = 0, A¢/2 = 0.35% or R = 0.6,A¢/2 = 0.2%, the
stabilized cycle is elastically adapted, thus tihess amplitude is
equal to the imposed strain amplitude multiplied thg elastic
modulus Qo/2 = BAg/2), and the maximum stress is equal to the
addition of the mean stress and the stress amplitud
(gmax =g +A(_7/2). A lower maximum stress therefore indicates

a lower mean stress.

Smith, Watson and Topper (SWT) [25] proposed a rade
fatigue, using an effective stress describe¢ras=[Eg,  As/2

with O and Ae/2 determined at the stabilized cycle. This
effective stress is plotted as a function of thenbar of cycles to
rupture in Figure 6. Mean stress effect is takeo account in this
representation ag =g +Ag/2, So:

A).



For all the microstructures, lifetime follows thense fatigue law.
The fatigue law is therefore independent of theagranular
microstructure. However, the effect of the microsture on the
mean stress plays a role in the fatigue life, effeénis a minor
one. This is particularly noticeable on fatigue Ifbr the tests at
Re = 0.6,A¢/2 = 0.2%: for the same test conditions, samplel wi
the different intragranular microstructures exhitifferent mean
stresses. As mean stress has an influence on féatived stress,
this difference leads to a fatigue life ten timasder (Figure 5b).

Ae/2 = 0.35% Ao = EAe ~ 1350 MPa

@

» ]
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80071 & coarse ¥}, not broken
500 . ‘5
10 Life (cycles) 10
Ae/2 = 0.2% Ao = EAe = 750 MPa

fine vj |
reference [t
no 7y, :
coarse Yj |:

Life (cycles)

Figure 5. Mean stress effect on 450°C fatiguedffeupersolvus
N18 with various microstructures for two repeatétHtest
conditions: (a) R = 0 andAe/2 = 0.35%
and (b) R = 0.6 andAe/2 = 0.2%.

The mean stress effect on the fatigue life canlé®evidenced by
plotting the strain amplitude as a function of faggue life for
different strain ratio and a given microstructureigure 7
compares these curves for three strain ratios Her reference
microstructure. Here the curves foe R 0 and R = 0.6 are
derived from the curve for&R= -1, taking into account the effect
of the mean stress through the effective stress.eflective stress
is defined using the behavior model identified oitdn for alloy
N18 [22]. The curves are superimposed for the haftain
amplitude, for which the mean stress is close tw,zbut are
different for small strain amplitudes correspondtngelastically
adapted loading.
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Figure 6. Fatigue life at 450°C
for supersolvus N18 with various microstructures.
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Figure 7. Fatigue life at 450°C for the “referenceitrostructure
of alloy N18 with various strain ratios.

For all the tested LCF conditions, the large grsize (50pm)
effectively enables to evidence effects yofdistribution on the
fatigue behavior of the superalloy N18. One magsultt is that
although they precipitate size and distribution have a strong
influence on 0.2%YS and on the mean stress retaxaturing
cyclic tests, these microstructural parameters havg limited
influence on the fatigue life of alloy N18 in thevestigated range
of fatigue life (typically 168to 1¢ cycles).

Crack initiation. As expected, analyses of the fracture surfaces
indicate that cracks never nucleate at pores @nuerinclusions
but mainly at large crystallographic facets. Théemtation of
these facets is close to 45° with respect to theifg axis. The
fractography of the specimen with reference mictms$tire
submitted to a repeated LCF test (R0, Ae/2 = 0.35%) shows an
example of crack initiation on such a large fa&egire 8).



Figure 8. Fracture surface and initiation crack sitthe
“reference” microstructure N18 specimen testedc@re
(LCF test with R = 0 ancg .= 0.7%) (SEM images).

Modeling of they precipitate effect on the plastic threshold

The influence of the size and volume fraction qfagulation of
precipitates on the yield stress can be modeledidering the
movement of dislocations inside and in the viciny the
precipitates.

In face-centered cubic alloys, dense planes ard}{ahd dense
directions ar€110). In the disordered matrix stresses are relaxed
by perfect dislocations of Burgers vectar2(110 (alattice
parameter ofy) gliding on {111} planes. But irL1, orderedy
precipitates, a perfect dislocation has a Burgector ofa(110)
because a dislocation of Burgers vectoa/@f110 would modify
the order and induce an antiphase boundary (APBgréfore, to
shear a precipitate, dislocations of the matrixpaieed. If the two
dislocations are both together in the same pretgitthey are
strongly coupled. On the contrary, if the leadinglatation can
pass entirely through a precipitate without thditrg one enters
it, they are weakly coupled.

Approaches considering the resolved shear stressssary to
move a dislocation through a glide plane contairpnecipitates
were first described:
- by Orowan, for dislocations bypassing the precipga
- by Huther and Reppich [26], for strongly coupled
dislocations shearing the precipitates,
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- and by Brown and Ham [27], for weakly coupled
dislocations shearing the precipitates.

In these models, a dislocation is considered #sxibfe line with

a line tensionT, moving in its glide plane and the precipitates are
spherical obstacles regularly disposed, descrilyefitbe surface
fraction of the precipitatesR their mean radius anfiyps the
antiphase boundary energy. The critical resolveshsistress is
the stress necessary to make the dislocation pmirentirely
through the glide plane.

Huther and Reppich calculategr the critical resolved shear
stress (CRSS) in the case of strong pair-coupliiting of the
precipitates as [26]:

V2 V2 ¥2
T = 0.415% (% —1} [0.94[1+ Cq sz “)
L

andzg the CRSS in the case of weak pair-coupling cuttithe
precipitates would be [28]:

®)

rAPB

— ' APB rAPBRf
) [A( T

with A; and A, fitting coefficients &, = -A, = 0.75), Cq an
empirical constantGg = 1 [29]) andys, is defined agg = V42
as in [29].w is a parameter accounting for the elastic repulsion
the dislocation within the precipitatev(= 3.34 [29]).T, is the
dislocation line tensionT( = Gbh%2 with G the shear modulus
(G = 80 GPa [29]) and the Burgers vectomh(= a/N2 = 0.254 nm
asa = 0.3598 nm [18])). For the antiphase boundary gnea
typical value of/xpg = 0.23 J-if was chosen [30].

Ts

Jw +Af J(1+C&f7&)

For instance, for a population of precipitates vatimean radius
R =70 nm and a volume fraction of 0.5( is equal to 344 MPa
andzq to 582 MPa. Asyr <1g, the precipitates are sheared by
strongly coupled dislocations and they induce atahreshold
stress of the material af= tuyix + THR Wherer iy is the shear
stress of the solid solution matrix without any gipéates. In
alloy N18, there are two populations of precipiat&@hey are
considered to have no interactions and their douions to
CRSS are simply added. Usually tertigtyare considered to be
sheared by weakly coupled dislocations and secgngaby
strongly coupled ones [31]. However, especiallytfa tertiaryy
precipitates, it would be better to systematicaljculater,zr and
79 to select the right mechanism. Thus,

(6).

CRSS =7 =T,pix * Trror () + THRor (v

The chosen value forix is 85 MPa and is in good agreement
with the value estimated by Espié for the nickeddsh single
crystal superalloy AM1 at 25 and 650°C (73 MPa]32]

The yield stress or plastic threshold stress isutated from the
CRSS by considering that the first grains whichl é plastified

are the most favorably oriented ones (i.e. withhiglest Schmid
factor (0.5)). The yield stress is consequently tiwees the CRSS.
A hardening of 240 MPa was observed between 0 a@éb 0
strain. Thus,

0.29%YS = 2x CRSS + 240MPa 7)(



Comparison between the model (calculations with the
experimental microstructure parameters or with tmedel
microstructure parameters resulting from [22]) dhd 0.2%YS
measured on the tensile curve shows an excellergeagnt
(Table 1V). This calculation was not performed the “coarse
yi" microstructure due to the lack of reliable expental
measurements on this microstructure. The irregghapes of the
coarsey precipitates (figure 1d) make both the IA resaitsl the
CRSS calculations too inaccurate.

The coupling of the precipitation model and the GR&lculation
provides a good estimate of the 0.2%YS value frogivan heat
treatment sequence.

Modeling of the influence of heat treatment
on the fatigue life of a disk

The present study is part of a project aiming ahmating the
influence of heat treatment on the fatigue behasimd life of a
disk. The whole numerical procedure is implemenbedthe
framework of the finite element code ZSeT/ZeBuLdBb the
computation of the thermal evolution inside thetphrring the
heat treatment, the resulting microstructure are ftigue life
analysis are performed with the same software.|lTettate this
procedure, an example of multi-step computatiorprissented
hereafter.

Firstly, the evolution of the temperature withirdiak preform is
simulated during a given heat treatment sequence. aA
application, such calculations were performed falisk preform
cooled from 1200°C in a fluid characterized by athansfer
coefficient of 1600 W-K-m? at 1200°C linearly decreasing to
800 W-K*.m? at 25°C (Figure 9a). For instance, at point A, the
computation gives a temperature of 975°C after omeute of
cooling from 1200°C.

Then, the precipitation model [20, 21] is applieddetermine the
evolution of the microstructural parameters (sizel asolume

fraction of the different populations gf during the cooling and
the aging treatment. As for real engine parts, thek is

“machined” from the preform. The CRSS and the tesyliplastic

threshold are derived (equations 6 and 7) frormifezostructural
parameters obtained for the given heat treatmeigu(€& 9b) at
each Gauss point of the disk mesh (Figure 9c).

A typical mechanical loading sustained by the digking service
life is simulated to account for the stress reilistions due to
cyclic plasticity. For this inelastic analysis aesfic elasto-
viscoplastic constitutive model is applied for whithe plastic
threshold depends on the microstructural paramd8k The
strain and stress amplitudes and the mean strabe atabilized
cycle are finally used to compute the fatigue Bfe450°C. For
this analysis, the SWT fatigue criterion is extethde multiaxial
loading [22]. This calculation was carried out on540 mm
diameter disk subjected to fatigue cycles by vayyhme rotational
speed between 50 and 27500 rpm. The duration offridmegular
cycle is 90 seconds. In the present case, the ceehfatigue life
is 37000 cycles and the critical point is located the
bore (Figure 9d).
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Figure 9. Maps of the different steps of disk ciltian from the
heat treatment to fatigue life at 450°C
(half cross-section, the rotation axis on the left)



Table IV. 450°C experimental and calculated 0.2&tdystresses from experimental and precipitatiodeho

microstructure parameters for supersolvus N18 watiious microstructures

Microstructure “reference” “‘no yu” “fine y,"
Exp. Model _ Exp. Model . Exp. Model _
(250°C/min) (250°C/min) (700°C/min)
Y fraction 0.46 0.485 0.47 0.50 0.40 0.47
Yy mean radius (nm) 102 125 108 128 70 77
Y fraction 0.01 0.016 0 0 0.04 0.027
Y mean radius (nm) 125 17 0 0 12.5 9
CRSS (eq 6) (MPa) 401 389 364 355 448 448
0.2%YS (eq 7) (MPa) 1042 1018 968 950 1136 1136
Experimental 0.2%YS (MPa 1048 975 1135

For a supersolvus heat treatment with a slowerimgdin a fluid
characterized by a heat transfer coefficient of 20K m? at
1200°C linearly decreasing to 100 WA?2 at 25°C), the
calculated temperature at point A is 1175°C aftee ainute of
cooling from 1200°C (location as in Figure 9a). Thame
computation procedure predicts a fatigue life 0d@3 cycles and
a critical point located in the web. These differen are mainly
due to the effect of mean stress, which is highéhé case of the
fast cooling condition.

This numerical modeling could be also an efficieodl for heat
treatment optimization to improve other microstuetdependent
mechanical properties such as creep resistance.

Conclusions

The influence of/ precipitate size and distribution was examined

at 450°C on the tensile and LCF behaviors for povmdetallurgy
disk superalloy N18. Foury precipitate distributions were
obtained through various cooling paths and/or agmnegtments
with a coarse grain size comparable for all hesdtinents. It can
be concluded from this investigation that:

- they precipitation has no or little influence on the
elastic and hardening moduli as well as on theicycl
hardening.

- The intragranular microstructure mainly affects?0¥S
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