
HAL Id: hal-00742605
https://minesparis-psl.hal.science/hal-00742605v1

Submitted on 16 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Quality of Relational Database Schemas in
Open-source Software

Fabien Coelho, Alexandre Aillos, Samuel Pilot, Shamil Valeev

To cite this version:
Fabien Coelho, Alexandre Aillos, Samuel Pilot, Shamil Valeev. On the Quality of Relational Database
Schemas in Open-source Software. Journal on Advances in Software, 2012, Vol 4 (N°3 & 4), 11 p.
�hal-00742605�

https://minesparis-psl.hal.science/hal-00742605v1
https://hal.archives-ouvertes.fr

On the Quality of Relational Database Schemas

in Open-source Software
Fabien Coelho, Alexandre Aillos, Samuel Pilot, and Shamil Valeev

CRI, Mathématiques et Systèmes, MINES ParisTech,

35, rue Saint Honoré, 77305 Fontainebleau cedex, France.

fabien.coelho@mines-paristech.fr, firstname.lastname@mines-paris.org

Abstract—The relational schemas of 512 open-source projects
storing their data in MySQL or PostgreSQL databases are inves-
tigated by querying the standard information schema, looking for
overall design issues. The set of SQL queries used in our research
is released as the Salix free software. As it is fully relational and
relies on standards, it may be installed in any compliant database
to help improve schemas. Our research shows that the overall
quality of the surveyed schemas is poor: a majority of projects
have at least one table without any primary key or unique
constraint to identify a tuple; data security features such as
referential integrity or transactional back-ends are hardly used;
projects that advertise supporting both databases often have
missing tables or attributes. PostgreSQL projects appear to be
of higher quality than MySQL projects, and have been updated
more recently, suggesting a more active maintenance. This is even
better for projects with PostgreSQL-only support. However, the
quality difference between both databases management systems
is mostly due to MySQL-specific issues. An overall predictor
of bad database quality is that a project chooses MySQL or
PHP, while good design is found with PostgreSQL and Java.
The few declared constraints allow to detect latent bugs, that are
worth fixing: more declarations would certainly help unveil more
bugs. Our survey also suggests that some features of MySQL and
PostgreSQL are particularly error-prone. This first survey on the
quality of relational schemas in open-source software provides a
unique insight in the data engineering practice of these projects.

Keywords-open-source software; database quality survey; au-
tomatic schema analysis; relational model; SQL.

I. INTRODUCTION

This paper is an extended version of A Field Analysis of

Relational Database Schemas in Open-source Software [1]

presented at DBKDA 2011. Compared to this initial version,

512 schemas are surveyed instead of 407, which enhances

the accuracy of the statistical validation of our analyses; the

maintenance status of the surveyed projects was collected

again as of January 2012; comments have been updated and

added to reflect the new data; more detailed tables are provided

about the results; the bibliography is much more thorough,

with over 50 new references; an appendix describes the advices

available with our schema analyzer; the paper page count,

excluding the appendix, is increased from 7 to 10 pages.

In the beginning of the computer age, software was freely

available, and money was derived from hardware only [2].

Then in the 70s it was unbundled and sold separately in

closed proprietary form. Stallman initiated the free software

movement, in 1983 with the GNU Project [3], and later the

Free Software Foundation [4], which is now quite large [5][6]

and expanding [7] (Predicts 2010) to implement his principle

of sharing software. Such free software is distributed under

a variety of licenses [8], which discuss copyright and lia-

bility. The common ground is that it must be available as

source code to allow its study, change and improvement as

opposed to compiled or obfuscated, hence the expression open

source [9][10][11], This induces many technical, economical,

legal, and philosophical issues. Open-source software (OSS)

is a subject of academic studies [12] in psychology, sociology,

economics, or software engineering, including quantitative

surveys. Developers’ motivation [13][14][15][16][17], but also

organization [18][19][20][21][22][23][24][25][26] and pro-

files [27][28][29] are investigated, as well as user communities

[30]; Existing economic frameworks [31] are used to analyze

the phenomenon, as well as the influence of public poli-

cies [32]. Research focusing on software engineering issues

can also be found. The development of the Apache web server

popular [33] is compared to non-OSS projects [34] and its

user assistance is analyzed [35]. Quantitative studies exist

about code quality in OSS [36][37][38][39][40] and its dual,

static analysis to uncover bugs [41][42]. Database surveys

are available about market shares [43], or server exposure

security issues [44]. This study is the first survey on the quality

of relational database schemas in OSS. It provides a unique

insight in the data engineering practice of these projects.

Codd’s relational model [45] is an extension of the set

theory to relations (tables) with attributes (columns) in which

tuple elements are stored (rows). Elements are identified by

keys, which can be used by tuples to reference one another be-

tween relations. The relational model is sound, as all questions

(in the model) have corresponding practical answers and vice

versa: the tuple relational calculus describes questions, and

the mathematically equivalent relational algebra provides their

answers. It is efficiently implemented by many commercial

and open-source software such as Oracle, DB2 or SQLite.

The Structured Query Language (SQL [46]) is available with

most relational database systems, although the detailed syntax

often differs in subtle and incompatible ways. The standard-

ization effort also includes the information schema [47], which

provides metadata about the schemas of databases through

relations.

The underlying assumption of our study is that applications

store precious transactional user data, thus should be kept con-

sistent, non redundant, and easy to understand. We think that

1

2 INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE, 2011 VOL. 4, NO 3&4

database features such as key declarations, referential integrity

and transaction support help achieve these goals. In order to

evaluate the use of database features in open-source software,

and to detect possible design or implementation errors, we

have developed a tool to analyze automatically the database

structure of an application by querying its information schema

and generating a report, and we have applied it to 512 open-

source projects. The notion of the quality of a database schema

design is quite elusive, as shown in Burkett’s overview [48],

with a lot of focus on qualitative assessments. Key criteria such

as understandability, simplicity, expressiveness, maintainabil-

ity or evolvability are hard to transform into basic objective

metrics. A review process has been proposed to evaluate the

quality of relational schemas [49], at the price of mostly man-

ual investigations by field experts. Some quality focus on the

conceptual schema and compare alternative models [50][51]

by recognizing patterns. Following MacCabe’s metric to mea-

sure automatically program complexities [52][53][54], several

metrics address data models [55][56] or database schemata

either in the relational [57][58] or object relational [59]

models, including experimental validations [60]. These metrics

rely on information not necessarily available from the database

concrete schemas. Moreover, such approach help compare

two schemas that model the same application domain, but

are less useful when used about unrelated schemas. We have

rather followed the dual and pragmatic approach [61], which

is not to try to do an absolute and definite measure of the

schema, but rather to uncover issues based on static analyses.

Thus, the measure is relative to the analyses performed and

results change when more are added. Static analysis on user

application codes (not simply the schema) could also be used

to help uncover hidden constraints in a schema (for instance,

a join between two tables suggests a possible foreign key) and

to use them to improve data quality [62], but this is beyond

our simple approach.

The remainder of this paper is organized as follows: Sec-

tion II presents the methodology used in this study. We de-

scribe our tool, our rating strategy and the statistical validation

used on the assertions derived from our analyses; Section III

lists the projects by category and technology, and discusses

similarities and differences depending on whether they run on

MySQL or PostgreSQL; Section IV describes the results of

our survey, with quite a poor overall quality of projects, as

very few database schemas do not raise error-rated advices;

Section V gives our conclusive thoughts.

II. METHODOLOGY

Our Salix automatic analyzer [63], is based on the informa-

tion schema provided by standard databases. It is open-source,

and its schema itself is included in this survey. In this Section,

we discuss the queries, then describe the available advices,

before presenting the statistical validation used.

A. Information schema queries

Our analyses are performed automatically by SQL queries

on the databases metadata using the standard information

schema. This relational schema stores information about the

databases structure, including catalogs, schemas, tables, at-

tributes, types, constraints, roles, permissions, etc. The set

of SQL queries used for this study are released as the

Salix free software. It is based on pg-advisor [64], a

PostgreSQL-specific proof of concept prototype developed in

2004. Some checks are inspired by Currier [65], Baron [66]

and Berkus [67] or similar to Boehm [68]. Note that the

aim is quite different from tools which focus on advising

database administrators, for instance about index creation [69].

Salix creates specific tables for each advice by querying

the information schema, and then aggregates the results in

summary tables in a dedicated schema. It is fully relational in

its conception [70]; there is no programming other than SQL

queries, but a small shell driver which creates the advices,

shows or reports them in some detail to the interested user, and

finally drops them out of the database. Because of performance

issues when querying heavily metadata relations, the tool relies

on tables which are materialized views, although using views

directly would have been a preferred option if possible. The

development of Salix uncovered multiple issues with both

implementations of the information schema.

B. Advice classification and project grading

The 47 issues reported by our SQL queries from the stan-

dard information schema are named advices, as the user is free

to ignore them. Although the performed checks are basic and

syntactic, we think that they reflect the quality of the schemas.

For instance, style advices help with understandability, and

consistency advices help with maintainability. A detailed list

of advices currently implemented in our tool is available [71].

Each advice has a category (19 design, 13 style, 6 consistency,

4 version, 5 system), a severity (7 errors, 21 warnings, 14

notices, 5 informations), and a level (1 raised per database,

10 per schema, 27 per relation, 7 per attribute, 2 per role).

The severity classification is arbitrary and must be evaluated

critically by the recipient: most of them should be dealt with,

but in some cases they may be justifiable. For instance, having

a mix of MySQL back-end engines is considered inconsistent

and tagged as an error, although it may be necessary to do

so because some features (e.g. full-text indexes) are only

available with some back-ends. Moreover, detected errors do

not imply that the application is not fully functional from a

user perspective.

The 19 design advices focus on detecting design errors from

the information available in the metadata. Obviously, semantic

error, say an attribute is in the wrong relation, cannot be

guessed without understanding the application and thus are out

of reach of our automatic analysis. We rather focus on primary

and foreign key declarations, or warn if they are missing. The

rate of non-null attributes is also checked, with the underlying

assumption from our experience that most data are mandatory

in a relation. We also check the number of attributes so as to

detect a possible insufficient conception effort.

The 13 style advices focus on relation and attribute names.

Whether a name is significant in the context cannot be

checked, so we simply look at their length. Short names

are discouraged as they would rather be used as aliases in

COELHO, AILLOS, PILOT & VALEEV – ON THE QUALITY OF RELATIONAL DATABASE SCHEMAS IN OPEN-SOURCE SOFTWARE 3

queries, with the exception of id and pk which are accepted

as attributes. We also check that the same name does not

represent differently typed data, to avoid confusing the user.

The 6 consistency advices checks for type and schema

consistency in a project, such as type mismatches between

a foreign key and the referenced key. As databases may also

implements some of these checks, it is possible that some cases

cannot be triggered.

The 4 version advices focus on database-specific checks,

such as capabilities and transaction support, as well as ho-

mogeneous choices of back-end engines in a project. This

category could also check the actual version of a database

used looking for known bugs or obsolescence. Only MySQL-

specific version advices are currently implemented.

Finally, the 5 system advices, some of which PostgreSQL-

specific, check for weak passwords, and key and index issues.

These advices aim at helping the schema developer to

improve its relational design. We also use them in our survey

to grade projects with a mark from 0 to 10, computed by

removing points each time an advice is raised, taking more

points if the severity is high, and flooring the result to avoid

negative grades. The grading process is normalized using the

number of possible occurrences, so that larger projects do not

receive lower marks just because of the likelihood of having

more issues for their size. Also, points are not removed twice

for the same issue: for instance, if a project does not have a

single foreign key, the same issue will not be raised again on

every tables. Advices not relevant to our open-source database

schema survey, e.g., weak password checks, were deactivated.

C. Survey statistical validation

The data collected suggest the influence of some parameters

on others. These results deal with general facts about the

projects (say foreign keys are more often used with Post-

greSQL) or about their grading (say MySQL projects get lower

marks). In order to determine significant influences, we ap-

plied Pearson’s chi-square tests [72] to compute probabilistic

degrees of certainty. Beware that these statistical validations

hold for our data set only. It is possible that some unwanted

bias in the project selection process makes statements that are

in reality false appear true, and vice versa. We followed a

one project one vote principle in our analyses, so that these

validations do not take into account the projects sizes or

popularity. Also, our software, as all software, may include

bugs with unexpected consequences. Each checked assertion

is labeled with an expression indicating the degree of certainty

of the influence of one parameter on an other:

very sure The probability is 1% or less to get a result as or

more remote from the average. Thus we conclude that there

is an influence, with a very high degree of certainty.

rather sure The probability of getting such a result is

between 1% and 5% (the usual statistical threshold). Thus

there is an influence, with a high degree of certainty.

marginally sure The probability is between 5% and 25%:

such a result may have been obtained even if there is no

influence. The statement must be taken with a pinch of salt.

not sure The probability is over 25%, or there is not enough

available data to compute it. The test cannot assert that there

is a significant influence. Obviously, no such assertion was

included in this survey.

The rational for choosing Pearson’s chi-square test is that it

does not make any assumption about the distribution of values.

However, it is crude, and possibly interesting and somehow

true results may not be validated. Moreover, the test requires

a minimal population, which is not easily reached on our

small data set especially when criteria are crossed. Finally, it

needs to define distinct populations: for grades or sizes, these

populations are cut at the median value in order to perform

the test on balanced partitions.

We also computed a correlation matrix to look for possible

inter-parameter influence. The result suggested that the param-

eters are pretty independent beyond the obvious links (say the

use of a non-transactional back-end is correlated with isolated

tables), and did no help uncover significant new facts.

III. PROJECTS

We discuss the projects considered in this study, grouped

by categories, technologies, sizes and release dates. We first

present how projects were selected, and then an overview.

A. Project selection

We have downloaded 512 open-source projects starting in

the first semester of 2008, adding to our comparison about

every project that uses either MySQL [73] or PostgreSQL [74]

that we could find and install with reasonable time and effort.

The database schemas included in this study are derived from

a dump of the database after installation, or from the creation

statements when found in the sources. These projects were

discovered from various sources: lists and comparisons of

software on Wikipedia (Software lists about: photo galleries,

content management systems, Internet forums, reference man-

agement, issue tracking systems, wikis, social networking,

church management, student information systems, accounting,

weblog, Internet relay chat, health-care, genealogy, etc.) and

other sites; package dependencies from Linux distributions

such as Debian [75] or Ubuntu [76] requiring databases;

security advisories mentioning SQL [77]; searches on Source-

Forge [78] which use SQL databases.

Some projects were fixed manually because of various

issues, such as: the handling of double-dash comments by

MySQL, attribute names (e.g., out) rejected by MySQL, bad

foreign key declarations or other incompatibilities detected

when the projects were forced to use the InnoDB back-end

instead of MyISAM, or even some PostgreSQL table defini-

tions including a MySQL specific syntax that were clearly

never tested. A particular pitfall of PostgreSQL is that by

default syntax errors in statements from an SQL script are

ignored and the interpreter simply jumps to the next statement.

When installing a project, the flow of warnings often hides

these errors. Turning off this feature requires modifying the

script, as no command option disables it. More than a dozen

PostgreSQL projects contained this kind of issues, which

resulted in missing tables or ignored constraint declarations.

4 INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE, 2011 VOL. 4, NO 3&4

Project Total MySQL PgSQL Both Tables Atts/table
category nb % nb % nb % nb % avg med avg med

CMS 83 16.2 71 18.4 1 3.3 11 11.5 36.6 23 6.6 6.7
System 48 9.4 26 6.7 1 3.3 21 21.9 25.2 9 10.9 7.1
Project 28 5.5 15 3.9 5 16.7 8 8.3 25.4 19 6.9 7.0
Blog 27 5.3 22 5.7 0 0.0 5 5.2 26.8 21 6.9 6.8
Market 22 4.3 21 5.4 0 0.0 1 1.0 53.0 28 7.6 7.2
Forum 19 3.7 17 4.4 0 0.0 2 2.1 23.1 19 8.3 8.6
Accounting 18 3.5 11 2.8 6 20.0 1 1.0 87.8 45 8.8 8.8
Game 16 3.1 16 4.1 0 0.0 0 0.0 26.4 22 6.6 6.9
Mail 16 3.1 8 2.1 1 3.3 7 7.3 10.1 6 5.4 5.0
IRC 13 2.5 6 1.6 1 3.3 6 6.3 14.3 15 6.8 5.8
Homepage 12 2.3 11 2.8 0 0.0 1 1.0 5.1 4 7.0 7.0
Healthcare 11 2.1 6 1.6 2 6.7 3 3.1 89.5 71 11.5 9.5
Phone 11 2.1 5 1.3 2 6.7 4 4.2 18.2 9 14.6 9.0
Address 10 2.0 10 2.6 0 0.0 0 0.0 7.7 7 7.7 7.9
Genealogy 10 2.0 8 2.1 1 3.3 1 1.0 16.4 12 8.4 8.6
Photo 10 2.0 9 2.3 0 0.0 1 1.0 20.2 16 7.1 7.3
Community 9 1.8 7 1.8 0 0.0 2 2.1 17.3 12 8.1 8.0
Music 9 1.8 8 2.1 1 3.3 0 0.0 16.7 8 5.0 6.0
P2P 9 1.8 8 2.1 0 0.0 1 1.0 11.9 7 7.0 8.0
Reference 9 1.8 8 2.1 0 0.0 1 1.0 15.8 16 11.7 8.0
Wiki 9 1.8 7 1.8 1 3.3 1 1.0 15.7 9 5.6 5.7
Calendar 8 1.6 7 1.8 1 3.3 0 0.0 11.1 8 6.1 6.8
Advert 7 1.4 7 1.8 0 0.0 0 0.0 4.0 2 9.0 8.4
Search 6 1.2 6 1.6 0 0.0 0 0.0 18.0 20 6.0 6.0
Student 6 1.2 6 1.6 0 0.0 0 0.0 35.5 28 6.5 6.7
Teaching 6 1.2 3 0.8 1 3.3 2 2.1 13.5 5 4.9 5.3
Conference 5 1.0 4 1.0 1 3.3 0 0.0 73.8 32 6.8 6.2
FAQ 5 1.0 3 0.8 0 0.0 2 2.1 25.0 30 6.6 5.3
Library 5 1.0 4 1.0 1 3.3 0 0.0 63.8 72 7.2 7.3
Survey 5 1.0 3 0.8 0 0.0 2 2.1 25.0 18 6.4 6.4

TABLE I
MAIN CATEGORIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

Project Total MySQL PgSQL Both Tables Atts/table
technology nb % nb % nb % nb % avg med avg med

PHP 399 77.9 335 86.8 8 26.7 56 58.3 29.3 16 7.4 7.2
C 38 7.4 12 3.1 5 16.7 21 21.9 21.3 9 11.5 8.3
Java 22 4.3 8 2.1 6 20.0 8 8.3 67.5 23 9.3 8.2
Perl 21 4.1 10 2.6 5 16.7 6 6.3 44.0 29 6.7 6.7
SQL 8 1.6 6 1.6 1 3.3 1 1.0 27.3 11 4.9 5.0
C++ 7 1.4 5 1.3 1 3.3 1 1.0 11.4 6 15.3 6.0
Python 7 1.4 4 1.0 2 6.7 1 1.0 42.9 17 6.5 6.2
Ruby 7 1.4 4 1.0 2 6.7 1 1.0 49.5 16 7.4 6.7

TABLE II
MAIN TECHNOLOGIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

B. Overview of projects

We have studied the relational schemas of 512 (see appendix

for the full list) open-source projects based on databases: 482

of these run with MySQL, 126 with PostgreSQL, including 96

on both. A project supporting PostgreSQL is very likely to sup-

port also MySQL (76%), although the reverse is not true (only

19%) (very sure), outlining the relative popularity of these

tools. Only 30 projects are PostgreSQL specific. Although

there is no deliberate bias in the selection process described in

the previous section, where we aimed at completeness, some

implicit bias remain nevertheless: for instance, as we can speak

mostly English and French, we found mostly international

projects advertised in these tongues; Table I shows main

project categories, from the personal mundane (game, home-

page) to the professional serious (health-care, accounting,

system). Table II shows the same for project technologies.

Projects in rare categories or using rare technologies do not

appear in these cut-off tables. The result is heavily slanted to-

wards PHP web applications (77%), which seems to reflect the

current trend of open-source programming as far as the number

of projects is concerned, without indication of popularity or

quality. The ratio of PHP projects increases from PostgreSQL

only support (26%) to both database support (58%) (very sure)

to MySQL only support (86%) (very sure): PHP users tend to

choose specifically MySQL, possibly because of traditional

LAMP (Linux, Apache, MySQL, PHP) setups advertised with

PHP programming. For instance, a search on the Amazon

website in January 2012 returns 18 times more results with

PHP MySQL compared to PHP PostgreSQL.

The survey covers 18993 tables (MySQL 13494, Post-

COELHO, AILLOS, PILOT & VALEEV – ON THE QUALITY OF RELATIONAL DATABASE SCHEMAS IN OPEN-SOURCE SOFTWARE 5

Advice Lvl. Cat. Sev.
MySQL PostgreSQL

Proj % Adv % Proj % Adv %

Schema without any FK sch. design error 425 88 425 88 70 55 70 55
Tables without PK nor Unique table design error 262 54 1521 11 76 60 1010 18
FK type mismatch table consist. error 2 0 17 0 10 7 153 2
Backend engine inconsistency sch. version error 30 6 30 6 0 0 0 0
FK length mismatch table consist. error 4 0 6 0 2 1 10 0
Integer PK but no other key table design warn 437 90 7470 55 106 84 2509 45
Homonymous heterogeneous attributes att. style warn 296 61 2294 2 76 60 573 1
Unsafe backend engine used in schema sch. version warn 433 89 433 89 0 0 0 0
Attribute count per table over 40 table design warn 98 20 220 1 25 19 91 1
Isolated Tables table design warn 30 6 979 7 40 31 1300 23
Tables without PK but with Unique table design warn 117 24 405 3 15 11 40 0
Unique nullable attributes att. design warn 73 15 261 0 23 18 172 0
Nullable attribute rate over 80% sch. design warn 34 7 34 7 25 19 25 19
Redundant indexes table system warn 0 0 0 0 23 18 196 3
Attribute name length too short att. style warn 27 5 91 0 16 12 51 0
Large PK referenced by a FK table design warn 10 2 118 0 19 15 216 3
Table name length too short table style warn 16 3 23 0 7 5 17 0
Composite Foreign Key table design warn 5 1 19 0 8 6 26 0
FK not referencing a PK table design warn 2 0 16 0 7 5 23 0
Redundant FK table system warn 1 0 1 0 2 1 6 0
Non-integer Primary Key table design note 268 55 2261 16 81 64 1729 31
MySQL is used base version note 482 100 482 100 0 0 0 0
Attribute count per table over 20 table design note 230 47 684 5 60 47 421 7
Tables with Composite PK table design note 196 40 1781 13 63 50 703 12
Attribute name length quite short att. style note 201 41 748 0 49 38 244 0
Attribute named after its table att. style note 139 28 3114 2 42 33 5033 9
Table without index table system note 0 0 0 0 60 47 719 13
Nullable attribute rate in 50-80% sch. design note 76 15 76 15 33 26 33 26
Table name length quite short table style note 70 14 102 0 28 22 52 0
Table with a single attribute table design note 74 15 419 3 26 20 91 1
Mixed attribute name styles table style note 115 23 1007 7 1 0 37 0
Mixed table name styles sch. style note 51 10 261 54 8 6 22 17
Attribute name length short att. style info 326 67 2911 2 81 64 1047 2
Unsafe backend engine used on table table version info 433 89 10423 77 0 0 0 0
Nullable attribute rate in 20-50% sch. design info 137 28 137 28 41 32 41 32
Table name length short table style info 136 28 258 1 38 30 81 1

TABLE III
LIST OF RAISED ADVICES AND DETAILED COUNTS ABOUT THE 512 PROJECTS

greSQL 5499) containing 166906 attributes (MySQL 114561,

PostgreSQL 52345). The project sizes average at 31.2 tables,

median 16 (from 1 to 607), with 2 to 10979 attributes.

MySQL projects average at 28 tables, median 15 (from 1

to 466), with 238 attributes (from 2 to 9725), while Post-

greSQL projects average 44 tables, median 18 (from 1 to

607), with 415 attributes (from 5 to 10979 attributes). The

largest MySQL project is OSCARMCMASTER, and the largest

PostgreSQL project is ADEMPIERE. Detailed table counts raise

from projects with MySQL only support (average 26.4, me-

dian 15), to both databases (average 34.0, median 17) or

PostgreSQL only (average 75.5, median 30.5). MySQL-only

projects are smaller than other projects (marginally sure):

more ambitious projects seem to use feature-full but maybe

less easy to administrate PostgreSQL. However obvious this

assertion would seem, the statistical validation is weak because

of the small number of projects with PostgreSQL. MySQL

projects that use the InnoDB back-end are much larger that

their MyISAM counterpart (very sure) and are comparable

to projects based on PostgreSQL, with 53 tables on average.

The number of attributes per table is comparable although

smaller for MySQL (average 8.5 – median 7.0) with respect

to PostgreSQL (average 9.5 – median 6.0).

The per-category tables and attributes-per-table counts

shows that accounting, health-care and market projects seem

more ambitious than other categories (marginally sure). The

per-technology analysis counts suggests that Perl, Python and

Java projects are larger than those based on other technologies

(marginally sure).

These projects are mostly recent, at least according to

their status at an arbitrary common reference date chosen as

March 31, 2009: 310 (60%) were updated in the last year,

including 179 (34%) in the last six months, and the others are

either obsolete or stable. The rate of recently updated projects

raises from MySQL-only projects (55%) to projects with

both support (73%) (very sure) or with PostgreSQL support

at (76%) (very sure), but there is no significant difference

on the recent maintenance figures between projects that are

PostgreSQL-only and projects with both databases support.

New data about the status of projects were collected on

January 9, 2012. We could not find 69 projects in this new

survey (61 MySQL-only, 1 PostgreSQL-only and 7 with

both support). Moreover, 153 projects are stale, that is not

6 INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE, 2011 VOL. 4, NO 3&4

updated between the 2009 and 2012 data (128 MySQL-only,

6 PostgreSQL-only and 19 with both support). Nearly half

of the MySQL projects are stale or lost, while it is only one

quarter of the PostgreSQL projects. MySQL-only projects are

more often lost or stale than others in 2012 (very sure), and

it is still true for MySQL projects compared to PostgreSQL-

only projects (rather sure). More generally, on these new data,

MySQL-only projects are less maintained than others (very

sure), and it is still true compared to projects with both support

(very sure) and compared to projects with PostgreSQL-only

support (rather sure). There are about six months (180 days)

between the median update date of MySQL-only projects and

PostgreSQL-only projects. Even if we ignore lost and stale

projects to focus on projects that were indeed updated in

the 2012 data, PostgreSQL-only projects were more recently

updated than others (rather sure). Yet again, there is no

significant update status difference between projects with

PostgreSQL support and projects that support both databases

on the 2012 data. To conclude, the maintenance of PostgreSQL

projects seems more intense: projects that include PostgreSQL

support were updated more recently both in 2009 and in 2012.

IV. SURVEY RESULTS

We now analyze the open-source projects of our survey

by commenting actual results on MySQL and PostgreSQL,

before comparing them. Table III summarizes the advices

raised for MySQL and PostgreSQL applications. The first four

columns give the advice title, level, category and severity. Then

four columns for each database list the results. The first two

columns hold the number of projects (i.e. schema) tagged and

the overall rate. The last two columns give the actual number

of advices and rate, which varies depending on the level. A

per-project aggregate is also available online [71].

A. Primary keys

A majority of MySQL projects (262 – 54%) have at

least one table without neither a primary key nor a unique

constraint, and this is even worse with PostgreSQL projects

(76 – 60%). The certainty of the observation (rather sure) on

MySQL-only vs PostgreSQL-only is low because of the small

number of projects using the later. As 11% of all MySQL

tables and 18% of all PostgreSQL tables do not have any

key, the view of relations as sets is hindered as tuples are not

identified, and data may be replicated without noticing.

A further analysis gives some more insight. For MySQL,

41% of tables without key do have some KEY option for

indexes, but without the UNIQUE or PRIMARY keyword that

makes it a key. Having KEY not always declaring a key

was clearly a bad design choice. A little 5% of tables

without key have an auto increment attribute, which suggest

uniqueness in practice, but is not enforced. Also, the missing

key declaration often seems to be composite. Some tables

without key declarations are intended as one tuple only, say

to check for the version of the schema or configuration of

the application. Similarly, 28% of PostgreSQL tables without

key have an index declared. Moreover, 22% have a SERIAL

(auto incremented) attribute: Many designers seem to assume

wrongly that SERIAL implies a key. A comment found in

the SQLGREY project source suggests that some keys are not

declared because of MySQL key size limits.

A simple integer primary key is provided on 61% of

tables, with a significantly decreasing rate from MySQL-only

(65%) to both database support (62%) (rather sure) down to

PostgreSQL-only support (39%) (very sure). If these primary

keys were non-semantic numbers to identify tuples, one would

expect at least one other key declared on each table to identify

the underlying semantic key. However it is not the case: most

(85%) of these tables do not have any other key. When a

non simple primary key is available, it is either based on

another type or a composite key. The composite keys are

hardly referenced, but as the foreign keys are rarely declared

one cannot be sure, as shown in the next section.

B. Referential integrity

Foreign keys are important for ensuring data consistency

in relational databases. They are supported by PostgreSQL,

and by MySQL but with some back-end engines only. In

particular, the default MyISAM back-end does not support

foreign keys, and this feature was deemed noxious in previous

documentations: Version 3.23 includes a Reasons NOT to Use

Foreign Keys constraints Section arguing that they are only

useful to display diagrams, hard to implement and terrible for

performance. Foreign key constraints are introduced with the

InnoDB engine starting with MySQL 3.23.44 in January 2001.

Although the constraints are ignored by the default MyISAM

engine, the syntax is parsed, and triggers the creation of

indexes. Version 5.1 documentation has a Foreign Keys Section

praising the feature, as it offers benefits, although it slows

down the application. Caveats describe the inconsistencies that

may result from not using transactions and referential integrity.

From a pedagogical perspective, this is a progress.

Foreign key constraints have long been a missing or avoided

feature in MySQL and this seems to have retained momentum

in many projects, as it is not supported by the default engine:

few MySQL projects (57 – 11% of all projects, but 72% of

those with InnoDB) use foreign key constraints. The foreign

key usage rate is slightly higher (20%) when considering

projects supporting both databases (marginally sure).

Among MySQL projects, 403 (83%) use only the default

MyISAM back-end engine, thus do not have any foreign key

checks enabled. In the remainder, 49 (10%) use only InnoDB,

and 30 (6%) use a combination of both. More projects (21 –

21%) rely on InnoDB among those supporting both MySQL

and PostgreSQL (marginally sure). A third of InnoDB projects

(30 – 37%) are not consistent in their engine choice: 34% of

tables use MyISAM among the 79 InnoDB projects. A legiti-

mate reason for using MyISAM tables in an InnoDB project is

that full-text indexes are only available with the former engine.

However, this only applies to 11 tables in 6 projects, all other

1441 MyISAM tables in InnoDB projects are not justified by

this. A project may decide to store transient data in an unsafe

engine (e.g., memory) for performance reason. However, this

case is rare, as it represents only 15 tables in 8 projects. About

26% of tables use MyISAM as a default implicit choice in

COELHO, AILLOS, PILOT & VALEEV – ON THE QUALITY OF RELATIONAL DATABASE SCHEMAS IN OPEN-SOURCE SOFTWARE 7

InnoDB projects, similar to 28% when considering all MySQL

projects. Some engine inconsistencies seems due to forgotten

declarations falling back to the default MyISAM engine.

We have forced the InnoDB back-end engine for all MySQL

projects: 22 additional projects declare 92 new foreign key

constraints previously ignored. These new foreign keys are

very partial, targeting only some tables. They allow to uncover

about two dozen issues, either because the foreign key declara-

tion were failing (say from type errors detected by MySQL) or

thanks to analyses from our tool. Additional checks based on

foreign keys cannot be raised on schemas that do not declare

any of them. Thus isolated tables warnings must be compared

to the number of projects that do use referential constraints: 30

– 52% of these seem to have forgotten at least some foreign

keys, and it is actually the case by checking some of these

projects manually.

The foreign key usage is better with PostgreSQL projects,

although it is still a minority (56 projects – 44%). This rate

is close to the foreign key usage of MySQL projects when

considering InnoDB projects only. It gives a better opportunity

for additional advices to be checked. The foreign key usage

rate raises significantly to 74% when considering PostgreSQL-

only projects vs dual support projects (very sure).

On the very few projects with partial foreign key declara-

tions, several of these declaration reveal latent bugs, including

type mismatch, typically CHAR targeting a VARCHAR or vice

versa, or different integers, and type length mismatch, usually

non matching VARCHAR sizes. We found 23 such bugs out

of the small 1979 declared MySQL attribute constraints, and

163 among the 4424 PostgreSQL constraints. The rate is

greater for PostgreSQL, possibly helped by the use of SERIAL

which may be considered as a primary key by developers

without being declared as such. There are also 153 important

warnings related to foreign keys raised for MySQL, and 265

for PostgreSQL. If this error ratio is extrapolated to the number

of tables, hundreds of additional latent bugs could be detected

using the missing referential constraints.

C. Miscellaneous issues

More issues were found about style, attribute constraints

and by comparing projects with dual database support.

There is 13669 noticeable style issues raised from our

analyses (7640 for MySQL, 6029 for PostgreSQL), relating

to table or attribute names, including a number of one-letter

attribute names or two-letters table names. The id attribute

name is used in the SLASH project with up to 6 different types,

mixing various integers and fixed or variable length text types.

In PHPETITION, a date attribute has types DATE, DATETIME or

VARCHAR. 81% of MySQL projects and 78% of PostgreSQL

have such style issues.

Many projects do not bother with NOT NULL attribute

declarations: 110 MySQL projects (22%) and 58 PostgreSQL

projects (46%) have over half of their attributes null-able. This

does not reflect the overall use of constraints: for MySQL,

the average number of key-related constraints per table is

1.07 (from BOARDPLUS 0.00 to JWHOISSERVER 3.57), while for

PostgreSQL it is 1.24 (from ANDROMEDA 0.00 to ADEMPIERE

4.25). Project ANDROMEDA is astonishing: there is not a single

constraint declared (no primary key, no foreign key, no unique,

no not null) on the 180 tables, although there are a number of

non-unique indexes and of sequences.

It is interesting to compare the schemas of the 96 projects

available with both databases. This dual support must not

be taken at face value: PostgreSQL support is often an

afterthought and is not necessarily functional, including project

such as ELGG, TAGADASH, QUICKTEAM or TIKIWIKI where some

PostgreSQL table declarations use an incompatible MySQL

syntax; 38 (39%) projects have missing tables or attributes

between the MySQL and PostgreSQL versions: 398 tables and

191 individual attributes are missing or misspelled one side or

another. Among the missing tables, 73 look like some kind

of sequence, and thus might be possibly legitimate, although

why the auto increment feature was not satisfactory is unclear.

At the minimum, the functionalities are not the same between

the MySQL and PostgreSQL versions of these projects.

D. Overall quality

We have computed a synthetic project quality evaluation

ranging from 10 (good) to 0 (bad) by removing points based

on advice severity (error, warning, notice), level (schema,

table, attribute) and project size. The MySQL projects quality

average is 4.4± 1.4 (from 9.5 JWHOISSERVER to 0.0 MANTIS),

significantly lower than PostgreSQL 5.4 ± 1.8 (from 9.4

COMICS to 0.0 NURPAWIKI) (very sure). This does not come

as a surprise: most MySQL projects choose the default data-

unsafe MyISAM engine, hence incur a penalty. Also, the

multiplicity of MySQL back-ends allows the user to mix them

unintentionally, what is not possible with PostgreSQL. When

all MySQL-specific advices are removed, the quality measure

is about the same for both databases. However, as PostgreSQL

schemas provide more information about referential integrity

constraints, they are also penalized as more advices can

be raised based on the provided additional information. For

projects which support both databases, the grade’s correlation

is significant and positive (0.55), which is logical as the same

style warnings are triggered on both sides.

Table IV shows the projects per quality decile. The

PostgreSQL-only project quality is more spread than MySQL

projects (very sure). Table V compares the quality of projects

according to size, with small up to 9, medium up to 29, and

large otherwise. The quality is quite evenly distributed among

sizes, which suggests that our effort to devise a size-neutral

grading succeeded. Table VI compares quality based on the

project categories. The number of projects in each category is

too small to draw deep conclusions. Table VII addresses the

technology used in the project: Java and Python lead while C,

PHP and Ruby are near bottom. PHP projects take less care of

their relational design (rather sure), but this may be explained

by the fact that MySQL is used more often in these projects,

and that an unsafe engine is selected more often (very sure).

Yet again, the very small count of projects with some of the

technologies do not allow to draw deep conclusion about them.

Finally, Table VIII and Table IX show that quality evaluation

does not change much depending whether projects are updated

more often.

8 INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE, 2011 VOL. 4, NO 3&4

 0

 25

 50

 75

 100

 125

 150

 175

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

MySQL quality

 0

 25

 50

 75

 100

 125

 150

 175

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

MySQL quality

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

PostgreSQL quality

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

PostgreSQL quality
TABLE IV

QUALITY PER DECILE

MySQL projects
Size nb % avg σ min med max

small 181 38 4.7 ± 1.4 0.0 4.5 9.5
medium 164 34 4.2 ± 1.3 0.0 4.3 8.7
large 137 28 4.3 ± 1.4 0.0 4.4 8.2

PostgreSQL projects
Size nb % avg σ min med max

small 44 35 5.3 ± 2.0 0.0 5.3 9.4
medium 37 29 5.5 ± 1.5 2.0 5.3 9.3
large 45 36 5.3 ± 2.0 0.0 5.7 8.1

TABLE V
QUALITY PER SIZE

MySQL projects
Category nb % avg σ min med max

irc 12 2 5.1 ± 1.3 2.0 5.4 7.0
mail 15 3 4.4 ± 1.7 1.7 4.7 8.4
project 23 5 4.3 ± 1.4 0.0 4.6 6.2
system 47 10 4.5 ± 1.4 0.0 4.5 9.5
game 16 3 4.4 ± 2.0 0.9 4.5 9.1
blog 27 6 4.4 ± 0.9 2.5 4.5 7.2
forum 19 4 4.3 ± 0.9 2.4 4.4 5.7
cms 82 17 4.2 ± 1.1 0.0 4.3 8.3
homepage 12 2 4.1 ± 0.9 3.0 4.1 5.9
market 22 5 4.0 ± 1.4 1.8 4.0 8.2
accounting 12 2 4.4 ± 1.9 1.9 3.6 7.5

PostgreSQL projects
Category nb % avg σ min med max

teaching 3 2 7.9 ± 2.2 5.3 8.9 9.4
blog 5 4 6.6 ± 1.1 5.3 6.4 8.2
accounting 7 6 5.9 ± 2.0 2.0 6.4 7.8
cms 12 10 6.1 ± 1.3 4.0 5.9 8.1
irc 7 6 5.4 ± 1.7 2.0 5.6 7.4
phone 6 5 5.2 ± 1.5 3.1 5.3 7.4
project 13 10 5.4 ± 1.6 2.2 5.2 9.3
system 22 17 5.0 ± 2.1 1.6 5.1 9.0
mail 8 6 4.9 ± 1.6 3.0 4.8 7.5
healthcare 5 4 3.2 ± 2.7 0.0 3.3 6.6

TABLE VI
QUALITY PER PROJECT MAIN CATEGORIES

MySQL projects
Techno. nb % avg σ min med max

python 5 1 5.9 ± 2.0 3.7 6.2 8.2
sql 7 1 4.0 ± 2.5 0.0 5.3 5.9
java 16 3 4.8 ± 2.8 0.0 5.2 9.5
c++ 6 1 4.8 ± 1.2 3.3 4.5 7.0
c 33 7 4.6 ± 1.4 2.0 4.4 8.4
php 391 81 4.4 ± 1.2 0.0 4.4 9.1
perl 16 3 3.9 ± 2.1 0.0 4.3 8.7
ruby 5 1 4.5 ± 0.9 3.7 4.2 5.6

PostgreSQL projects
Techno. nb % avg σ min med max

python 3 2 7.0 ± 0.6 6.6 6.8 7.7
java 14 11 6.1 ± 2.4 0.0 6.8 9.3
c++ 2 2 6.7 ± 1.0 6.0 6.7 7.4
perl 11 9 6.0 ± 1.9 2.0 6.1 8.9
sql 2 2 5.8 ± 5.1 2.2 5.8 9.4
php 64 51 5.2 ± 1.6 0.0 5.4 8.2
ruby 3 2 5.1 ± 1.2 4.0 5.0 6.3
c 26 21 4.8 ± 1.9 1.6 5.0 9.0

TABLE VII
QUALITY PER PROJECT MAIN TECHNOLOGIES

MySQL projects
Date nb % avg σ min med max

recent 162 34 4.3 ± 1.3 0.0 4.4 8.6
older 320 66 4.4 ± 1.4 0.0 4.4 9.5

PostgreSQL projects
Date nb % avg σ min med max

recent 59 47 5.3 ± 1.6 0.0 5.3 9.3
older 67 53 5.4 ± 2.0 0.0 5.6 9.4

TABLE VIII
QUALITY PER PROJECT UPDATE IN MARCH 2009

MySQL projects
Date nb % avg σ min med max

recent 112 23 4.3 ± 1.3 0.0 4.5 7.8
older 155 32 4.4 ± 1.5 0.0 4.5 9.5
stale 147 30 4.5 ± 1.4 0.9 4.4 9.1
lost 68 14 4.2 ± 1.0 0.0 4.2 6.3

PostgreSQL projects
Date nb % avg σ min med max

recent 41 33 5.7 ± 1.4 0.0 5.6 7.7
older 52 41 5.2 ± 1.9 0.0 5.3 9.3
stale 25 20 5.1 ± 2.2 0.7 5.3 9.4
lost 8 6 5.5 ± 2.3 2.0 5.5 9.0

TABLE IX
QUALITY PER PROJECT UPDATE IN JANUARY 2012

COELHO, AILLOS, PILOT & VALEEV – ON THE QUALITY OF RELATIONAL DATABASE SCHEMAS IN OPEN-SOURCE SOFTWARE 9

V. CONCLUSION

This is the first survey on the quality of relational schemas

in open-source software. The overall quality results are worse

than envisioned at the beginning of the study. Although we

did not expect a lot of perfect projects, having so few key

declarations and referential integrity constraints came as a

surprise. We must acknowledge that our assumption that data

are precious, and that the database should help preserve its

consistency by enforcing integrity constraints and implement-

ing transactions, is not shared by most open-source projects,

especially when based on MySQL and PHP. This is illustrated

by bug report 15441 [79] about missing keys on tables in

MEDIAWIKI, the software behind Wikipedia: it had no effect on

the software after more than three years, although it triggered

some discussions at the beginning of 2012.

We can only speculate about the actual reasons that explain

the poor quality of the surveyed schemas in open-source

projects. One way to investigate further these issues would be

to collect data about and from the people who designed the

relational schemas of these projects. For instance, if MySQL or

PHP users are found less savvy about software development,

that could account for a lower quality and maintenance of

the corresponding projects. Some interesting questions could

be investigated: What are their educational and professional

background? Did they receive any formal education about

computer programming in general? About relational database

design in particular? Do they consider database design as an

important issue? How are they perceiving the actual quality of

their schemas, and the quality of their software? When did they

started database design? For MySQL, what database engines

do they use? Did the initial policy of discouraging foreign key

usage influence them? We attempted to conduct such a survey

by contacting some people by e-mail and encouraging them to

fill a web form online. The return ratio of this survey attempt

was null. This establishes the fact that schema designers in

open-source software do not wish to answer such questions,

with a very high degree of accuracy.

Another relevant question is whether our results would be

different if we studied closed-source projects developed by

payed professionals, possibly using non open-source database

technologies from Oracle or Microsoft. However, accessing

such data at a level compatible with statistical validation seems

very difficult. If we were to believe some of our experience,

the results could end up being quite similar, especially when

considering PHP/MySQL projects.

It is interesting to note that the first author contributed

both to the best PostgreSQL project (COMICS), and to one of

the worst MySQL project (SLXBBL), which is Salix executed

on its own schema. This deserves an explanation: COMICS

is a small database used for teaching SQL. The normalized

schema emphasizes clarity and cleanliness with a pedagogic

goal in mind. Even so, the two raised warnings deserve to

be fixed, although one would require an additional attribute.

SLXBBL tables generate a lot of errors, because they are

views materialized for performance issues. Also, they rely on

MyISAM because some SQL create table statements must be

compatible with both MySQL and PostgreSQL to ease the tool

portability. Nevertheless, the comparison of schemas allowed

to find one bug: an attribute had a different name, possibly

because of a bad copy-paste.

Acknowledgement

We are indebted to Pierre Jouvelot for helping with the title

and proof reading. We also thank the anonymous reviewers

for their helpful remarks that we tried to address for the better

of the paper.

REFERENCES

[1] F. Coelho, A. Aillos, S. Pilot, and S. Valeev, “A Field Analysis of Rela-
tional Database Schemas in Open-source Software,” in DBKDA: 3rd Int.

Conf. on Advances in Databases, Knowledge, and Data Applications,
IARIA, Ed., no. ISBN:978-1-61208-002-4, St Marteen, The Netherlands
Antilles, Jan. 2011, pp. 9–15.

[2] J. M. Gonzales-Barahona, P. Heras Quiros, and T. Bollinger, “A brief
history of free software and open source,” IEEE Software, pp. 32–33,
Jan. 1999.

[3] R. Stallman, “GNU Project announcement,” http://www.gnu.org/gnu/
initial-announcement.html (2012-01-06), Sep. 1983.

[4] ——, “FSF: Free Software Foundation,” Oct. 1985, www.fsf.org, (2012-

01-06).
[5] A. Deshpande and D. Riehle, “The Total Growth of Open Source,” in

4th Conf. on Open Source Systems (OSS). Springer Verlag, 2008, pp.
197–209.

[6] L. F. Wurster, “As Number of Business Processes Using Open-Source
Software Increases, Companies Must Adopt and Enforce an OSS Policy,”
Gartner Inc, Sep. 2008, iD Number: G00160997.

[7] D. C. Plummer, B. Gammage, K. Harris-Ferrante, and J. Lopez, “Pre-
dicts 2010: Revised Expectations for IT Demand, Supply and Oversight,”
Gartner, Inc, Dec. 2009, iD Number: G00173560.

[8] “Open Source Licences,” http://opensource.org (2012-01-06), Feb. 1998.
[9] K. Crowston, H. Annabi, and J. Howison, “Defining open source

software project success,” in 24th Int. Conf. on Information Systems

(ICIS), 2003, pp. 327–340.
[10] S. Görling, “A critical approach to open source software,” http://flosshub.

org/196 (2012-01-06), 2003.
[11] C. Gacek, T. Lawrie, and B. Arief, “The many meanings of open source,”

IEEE Software, vol. 21, pp. 34–40, 2004.
[12] E. von Hippel, B. Mako Hill, and K. Lakhani, “Free and opensource

software research community,” http://opensource.mit.edu, now offline,
Nov. 2001.

[13] A. Hars, “Working for free? motivations for participating in open-source
projects,” Int. J. of Electronic Commerce, vol. 6, pp. 25–39, 2002, also
IEEE 34th Hawaii Int. Conf. on System Sciences 2001.

[14] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-
opers in open source projects: An internet-based survey of contributors
to the linux kernel,” Research Policy, vol. 32, pp. 1159–1177, 2003.

[15] I. horn Hann, J. Roberts, S. Slaughter, and R. Fielding, “An empirical
analysis of economic returns to open source participation (unpublished
working paper),” 2004.

[16] A. Bonaccorsi and C. Rossi, “Altruistic individuals, selfish firms? the
structure of motivation in open source software,” Santa Anna School of
Advanced Studies. Institute for Informatics and Telematics, Tech. Rep.,
Jan. 2004, Fist Monday, http://firstmonday.org/ (2012-01-06).

[17] K. J. Stewart and S. Gosain, “The impacts of ideology on effectiveness
in open source software development teams (working paper),” MIS

Quarterly, vol. 30, pp. 291–314, 2005.
[18] J. E. Cook, “Open source development: An arthurian legend. making

sense of the bazaar,” in Proceedings of the 1st Workshop on Open Source

Software, 2001.
[19] M. S. Elliott and W. Scacchi, “Mobilization of software developers: The

free software movement,” 2006.
[20] ——, “Free software: A case study of software development in a virtual

organizational culture,” in a Virtual Organizational Culture, Working
Paper, Institute for Software Research, Tech. Rep., 2003.

[21] M. S. Elliott, “Free software developers as an occupational community:
Resolving conflicts and fostering,” in Collaboration, Proc. ACM Int.

Conf. Supporting Group Work, 2003, pp. 21–30.
[22] K. Healy and A. Schussman, “The ecology of open-source software

development,” Dept of Sociology, Univ. of Arizona, Tech. Rep., 2003.

http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/initial-announcement.html
www.fsf.org
http://opensource.org
http://flosshub.org/196
http://flosshub.org/196
http://opensource.mit.edu
http://firstmonday.org/

10 INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE, 2011 VOL. 4, NO 3&4

[23] K. Crowston and H. Annabi, “Effective work practices for software
engineering: Free/libre open source software development,” in in Proc.

of WISER. ACM Press, 2004, pp. 18–26.

[24] W. Seidel and C. Niedermeier, “Open source software: Leveraging
software quality in the industrial context,” OSSIE, 2003.

[25] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani,
“Understanding Free/Open Source Software Development Processes,”
Software Process: Improvement and Practice, vol. 11, no. 2, pp. 95–
105, May 2006.

[26] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An
empirical study of global software development: Distance and speed,” in
In 23nd Int. Conf. on Software Engineering. IEEE Computer Society,
2001, pp. 81–90.

[27] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “A quantitative
profile of a community of open source linux developers,” University of
North Carolina at Chapel Hill, Tech. Rep., 1999.

[28] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open
source software: Survey and study, floss, part 4: Survey of developers,”
Int. Institute of Infonomics, University of Maastricht, The Netherlands,
Tech. Rep., Jun. 2002.

[29] D. M. Nichols and M. B. Twidale, “The usability of open source
software,” First Monday, vol. 8, 2003.

[30] Eclipse Foundation, “The open source developer report, 2010 eclipse
community survey,” Tech. Rep., Jun. 2010.

[31] J. Lerner and J. Tirole, “The economics of technology sharing: open
source and beyond. working paper 10956. retrieved jun 7, 2005 http:
//www.nber.org/papers/w10956,” J. of Economic Perspectives, vol. 19,
pp. 99–120, 2004.

[32] K. M. Schmidt and M. Schnitzer, “Public subsidies for open source?
some economic policy,” 2002, cEPR Discussion Paper 3793.

[33] Netcraft Ltd, “Web Server Survey,” http://news.netcraft.com/ (2012-01-

06), 2012, running since 1995.

[34] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions

on Software Engineering and Methodology, vol. 11, pp. 309–346, 2002.

[35] K. R. Lakhani, “How open source software works: ”free” user-to-user
assistance,” Research Policy, pp. 923–943, 2000.

[36] B. Mishra, A. Prasad, and S. Raghunathan, “Quality and Profits Under
Open Source Versus Closed Source,” in ICIS, no. 32, 2002.

[37] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality
analysis in open-source software development,” Information Systems J.,

2nd Special Issue on Open-Source, vol. 12, no. 1, pp. 43–60, Feb. 2002,
blackwell Science.

[38] E. Capra, C. Francalanci, and F. Merlo, “En Empirical Study on the
Relationship among Software Design Quality, Development Effort and
Governance in Open Source Projects,” IEEE Software Engineering,
vol. 34, no. 6, pp. 765–782, nov-dec 2008.

[39] R. Gobeille, “The FOSSology Project,” in Working Conf. on Mining

Software Repositories, no. 5, Leipzig, Germany, May 2008.

[40] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and I. Turnu, “On
the distribution of bugs in the eclipse system,” IEEE Transactions on

Software Engineering, vol. 99, no. PrePrints, 2011.

[41] Coverty, “Coverty scan open source report,” Coverty, White Paper, 2009.

[42] Veracode, Inc, “State of security report,” White paper, Mar. 2010.

[43] C. Graham, D. Sommer, and B. Sood, “Market Share: Relational
Database Management Systems by Operating System, Worldwide,
2006,” Gartner, Inc, Jun. 2007, iD Number: G00149469.

[44] D. Litchfield, “The Database Exposure Survey 2007,” NGSSoftware
Insight Security Research (NISR), Nov. 2007.

[45] E. F. Codd, “A relational model for large shared databanks,” Communi-

cations of the ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[46] ISO/IEC, “Information technology - database languages - SQL,” 2003,
standard 9075.

[47] ISO/IEC, Ed., 9075-11:2003: Information and Definition Schemas

(SQL/Schemata). ISO/IEC, 2003.

[48] W. C. Burkett, “Database Schema Design Quality Principles,” http:
//www.intergate.com/∼wcb/DbSchemaQuality.pdf, (2012-01-08), Dec.
1997.

[49] O. Herden, “Measuring Quality of Database Schemas by Reviewing –
Concept, Criteria and Tool,” in 5th Int. ECOOP Workshop on Quanti-

tative Approaches in Object-Oriented Software Engineering (QAOOSE

2001), Budapest, Hungary, Jun. 2001.

[50] J. Lemaitre and J.-L. Hainaut, “Transformation-based Framework for
the Evaluation and Improvement of Database Schemas,” in Int. Conf.

on Advanced Information Systems Engineering (CAiSE), Hammamet,
Tunisia, Jun. 2010.

[51] ——, “Quality Evaluation and Improvement Framework for Database
Schemas Using Defect Taxonomies,” in Int. Conf. on Advanced Infor-

mation Systems Engineering (CAiSE), London, United Kingdom, Jun.
2011.

[52] T. J. MacCabe, “A Complexity Measure,” IEEE Software Engineering,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[53] M. H. Halstead, Elements of Software Science. New York, USA:
Elsevier, 1977, no. ISBN:0444002057.

[54] H. F. Li and W. K. Cheung, “An empirical study of software metrics,”
IEEE Transactions on Software Engineering, 1987.

[55] M. Piattini, M. Genero, C. Calero, and G. Alarcos, “Data model metrics,”
in In Handbook of Software Engineering and Knowledge Engineering:

Emerging Technologies, World Scientific, 2002.
[56] M. Genero, “A survey of Metrics for UML Class Diagrams,” J. of Object

Technology, vol. 4, pp. 59–92, Nov. 2005.
[57] H. M. Sneed and O. Foshag, “Measuring legacy database structures,” in

European Software Measurement Conf. (FESMA’98), Hooft and Peeters,
Eds., 1998.

[58] M. Piattini, C. Calero, and M. Genero, “Table Oriented Metrics for
Relational Databases,” Software Quality J., vol. 9, no. 2, pp. 79–97,
2001.

[59] A. L. Baroni, C. Calero, F. Ruiz, and F. Brito e Abreu, “Formalizing
object-relational structural metrics,” in Conf. of APSI, Lisbon, no. 5,
Nov. 2004.

[60] C. Calero, M. Piattini, and M. Genero, “Empirical validation of refer-
encial integrity metrics,” Information and Software Technology, vol. 43,
no. 15, pp. 949–957, Dec. 2001.

[61] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World,”
Communication of the ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[62] A. Cleve, J. Lemaitre, J.-L. Hainaut, C. Mouchet, and J. Henrard, “The
role of implicit schema constructs in data quality,” in Workshop on

Management of Uncertain Data (MUD), Auckland, New Zealand, Aug.
2008, pp. 33–40.

[63] A. Aillos, S. Pilot, S. Valeev, and F. Coelho, “Salix Babylonica: advices
about database relational schemas,” Software from http://coelho.net/
salix/ (2012-01-06), Aug. 2008, version 1.0.0 on 2012-01-27.

[64] F. Coelho, “PG-Advisor: proof of concept SQL script,” Mailed to
pgsql-hackers, Mar. 2004.

[65] J. Currier, “SchemaSpy: Graphical database schema metadata browser,”
Source Forge, Aug. 2005, (2012-01-06).

[66] B. Schwartz and D. Nichter, “Maatkit,” Google Code, 2007, see
duplicate-key-checker and schema-advisor. Part of the Percona Toolkit
as of 2012-01-06 (http://www.percona.com/software/percona-toolkit/).

[67] J. Berkus, “Ten ways to wreck your database,” O’Reilly Webcast, Jul.
2009, (2012-01-06).

[68] A. M. Boehm, M. Wetzka, A. Sickmann, and D. Seipel, “A Tool for
Analyzing and Tuning Relational Database Applications: SQL Query
Analyzer and Schema EnHancer (SQUASH),” in Workshop über Grund-

lagen von Datenbanken, Jun. 2006, pp. 45–49.
[69] G. Singh, “PostgreSQL Adviser,” Software at http://git.postgresql.org/

gitweb/pg adviser.git (2012-01-06), Jul. 2007.
[70] E. F. Codd, “Is Your DBMS Really Relational? Does Your DBMS Run

By The Rules?” ComputerWorld, Oct. 1985.
[71] F. Coelho, “Database quality survey projects and results,” Jan. 2012,

detailed list of projects surveyed in On the Quality of Relational

Database Schemas in Open Source Software, report A/478/CRI.
[Online]. Available: http://www.coelho.net/salix/projects.html

[72] K. Pearson, “On the Criterion that a Given System of Deviations from
the Probable in the Case of a Correlated System of Variables is such
that it Can Reasonably Be Supposed to have Arisen from Random
Sampling,” Philosophical magazine, vol. 5, no. 50, pp. 157–175, Jul-
Dec 1900, Taylor & Francis Ed, London.

[73] MySQL AB, “MySQL – Relational Database Management System,”
http://mysql.com/ (2012-01-06), May 1995.

[74] PostgreSQL Global Development Group, “PostgreSQL – Object-
Relational Database Management System,” http://postgresql.org/ (2012-

01-06), Aug. 1996, based on the Postgres, which started in 1986.
[75] “Debian,” http://debian.org/ (2012-01-06), Aug. 1993.
[76] Canonical Ltd, “Ubuntu,” http://ubuntu.com/ (2012-01-06), Oct. 2004.
[77] SecurityFocus, “Security advisories,” http://securityfocus.com/ (2012-

01-06), Jan. 1999.
[78] “Source Forge,” http://sourceforge.net/ (2012-01-06), 1999.
[79] F. Coelho, “MediaWiki bug 15441,” https://bugzilla.wikimedia.org/

show bug.cgi?id=15441 (2012-01-06), Sep. 2008.

http://www.nber.org/papers/w10956
http://www.nber.org/papers/w10956
http://news.netcraft.com/
http://www.intergate.com/~wcb/DbSchemaQuality.pdf
http://www.intergate.com/~wcb/DbSchemaQuality.pdf
http://coelho.net/salix/
http://coelho.net/salix/
http://www.percona.com/software/percona-toolkit/
http://git.postgresql.org/gitweb/pg_adviser.git
http://git.postgresql.org/gitweb/pg_adviser.git
http://www.coelho.net/salix/projects.html
http://mysql.com/
http://postgresql.org/
http://debian.org/
http://ubuntu.com/
http://securityfocus.com/
http://sourceforge.net/
https://bugzilla.wikimedia.org/show_bug.cgi?id=15441
https://bugzilla.wikimedia.org/show_bug.cgi?id=15441

COELHO, AILLOS, PILOT & VALEEV – ON THE QUALITY OF RELATIONAL DATABASE SCHEMAS IN OPEN-SOURCE SOFTWARE 11

APPENDIX

LIST OF ADVICES

1) Schema without any FK schema design error
Why use a relational database if data are not related at all?
Well, that might happen...

2) No attribute in table table design error
There must be something in a table.

3) Tables without PK nor Unique table design error
All tuples must be uniquely defined to be consistant with the
set theory. There is no unique subset of attribute which can be
promoted as a PK.

4) Nullable attribute rate over 80% schema design warning
Warning: Most of the time, attributes should be NOT NULL.
Too high a rate of nullable attribute may reveal that some fields
are lacking a NOT NULL.

5) Attribute count per table over 40 table design warning
Having so many attributes in the same table may reveal the
need for additional relations.

6) Composite Foreign Key table design warning
As for primary keys, simple foreign keys are usually better
design, and make updates easier.

7) FK not referencing a PK table design warning
A Foreign Key should rather reference a Primary Key.

8) Integer PK but no other key table design warning
A simple integer primary key suggests that some other key
must exist in the table.

9) Isolated Tables table design warning
In a database design, tables are usually linked together.

10) Large PK referenced by a FK table design warning
Having large primary keys referenced by a foreign key may
reveal data duplication, as the primary key is likely to contain
relevant information.

11) Tables without PK but with Unique table design warning
All tables should have a primary key to be consistant with
the set theory. A unique constraint may be promoted as the
primary key.

12) Attribute has a pseudo ’NULL’ text default
attribute design warning

Possibly the NULL value was intended instead of the ’NULL’
text.

13) Unique nullable attributes attribute design warning
A unique nullable attribute may be a bad design if NULL does
not have a particular semantic.

14) Nullable attribute rate in 50-80% schema design notice
Notice: Most of the time, attributes should be NOT NULL. Too
high a rate of nullable attribute may reveal that some fields are
lacking a NOT NULL.

15) Attribute count per table over 20 table design notice
Having many attributes in the same table may suggest the need
for additional relations.

16) Non-integer Primary Key table design notice
Having integer primary keys without specific application se-
mantics make updates easier.

17) Table with a single attribute table design notice
Possibly some more attributes are needed to have a semantic.

18) Tables with Composite PK table design notice
A simple primary key, without specific semantics, is usually a
better design, and references through foreign keys are simpler.

19) Nullable attribute rate in 20-50%
schema design information

Information: Most of the time, attributes should be NOT
NULL. Too high a rate of nullable attribute may reveal that
some fields are lacking a NOT NULL.

20) FK length mismatch table consistency error
A Foreign Key should have matching referencing and refer-
enced type sizes.

21) FK type mismatch table consistency error
A Foreign Key should have matching referencing and refer-

enced types.
22) Destination table and FK in different schemas

table consistency warning
A constraint and its destination table are usually in the same
schema.

23) Source table and constraint in different schemas
table consistency warning

A constraint and its source table should be in the same schema.
24) Table and index in different schemas

table consistency warning
An index and its table should be in the same schema.

25) Tables linked but in different schemas table consistency
notice
Linked tables are usually in the same schema.

26) Backend engine inconsistency schema version error
Different backends are used in the same database. It may be
legitimate to do so if a particular feature of one backend is
needed, for instance full text indexes.

27) Unsafe backend engine used in schema
schema version warning

An unsafe backend (e.g. MyISAM) used at least once lacks
referential integrity, transaction support, and is not crash safe.

28) MySQL is used database version notice
MySQL lacks important features of the SQL standard, includ-
ing missing set operators.

29) Unsafe backend engine used on table
table version information

An unsafe backend (e.g. MyISAM) lacks referential integrity,
transaction support, and is not crash safe.

30) Schema name length too short schema style warning
A schema name with less than 3 characters is really too short.

31) Table name length too short table style warning
A table name with less than 2 characters is really too short.

32) Attribute name length too short attribute style warning
An attribute name with 1 character is really too short.

33) Homonymous heterogeneous attributes
attribute style warning

Better avoid using the same attribute name with different types
on different tables in the same application, as it may confuse
the developer.

34) Mixed table name styles schema style notice
Better use homogeneous table names.

35) Schema name length quite short schema style notice
A schema name with 4 characters is quite short.

36) Mixed attribute name styles table style notice
Better use homogeneous attribute names.

37) Table name length quite short table style notice
A table name with 3 characters is quite short.

38) Attribute name length quite short attribute style notice
An attribute name of 2 characters is quite short (but ”id” and
”pk”).

39) Attribute named after its table attribute style notice
An attribute contains the name of its table, which is redundant.

40) Schema name length short schema style information
A schema name with 5 characters is short.

41) Table name length short table style information
A table name with 4 characters is short.

42) Attribute name length short attribute style information
An attribute name with 3 characters is short.

43) SuperUser with weak password user system error
SuperUser with empty or username password.

44) Redundant FK table system warning
Redundant Foreign Keys are costly to maintain.

45) Redundant indexes table system warning
Redundant indexes are costly to maintain.

46) User with weak password user system warning
User with empty or username password.

47) Table without index table system notice
Not a single index on a table.

	Introduction
	Methodology
	Information schema queries
	Advice classification and project grading
	Survey statistical validation

	Projects
	Project selection
	Overview of projects

	Survey results
	Primary keys
	Referential integrity
	Miscellaneous issues
	Overall quality

	Conclusion
	References
	Appendix: List of Advices

