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Abstract. Automatic data transfer generation is a critical step for guided
or automatic code generation for accelerators using distributed mem-
ories. Although good results have been achieved for loop nests, more
complex control �ows such as switches or while loops are generally not
handled. This paper shows how to leverage the convex array regions
abstraction to generate data transfers. The scope of this study ranges
from inter-procedural analysis in simple loop nests with function calls,
to inter-iteration data reuse optimization and arbitrary control �ow in
loop bodies. Generated transfers are approximated when an exact solu-
tion cannot be found. Array regions are also used to extend redundant
load store elimination to array variables. The approach has been success-
fully applied to GPUs and domain-speci�c hardware accelerators.

Keywords: data transfers, convex array regions, redundant transfer
elimination, GPU

1 Introduction

The last decade has been showcased by the frequency wall limitation and the
beginning of a computing era based on parallel computing. One of the solutions
that emerges is based on the use of hardware accelerators, for instance Graph-
ical Processing Units (GPUs). These are massively parallel pieces of hardware,
usually plugged in a host computer using the PCI-Express bus, that can provide
important performance improvements for data-parallel program.

The main drawback of these accelerators lies in their programming model.
There are two major points: �rst the programmer has to exhibit in some way the
huge amount of parallelism required to ful�ll the accelerator capacity; second,
since the accelerator is plugged in the system and embeds its own memory, the
programmer has to explicitly manage Direct Memory Access (DMA) transfers
between the main host memory and the accelerator memory.

The �rst point has been addressed in di�erent ways using dedicated lan-
guages/libraries like Thrust 1, with directives over plain C or Fortran [13,26,19],
or through automatic code parallelization [5,6,25]. The second point has been

1 http://thrust.github.com/

http://thrust.github.com/


addressed using simpli�ed input from the programmer [13,27,19], or automati-
cally [4,24,1,26] using compilers.

This paper exposes how the array regions abstraction [11] can be used by
a compiler to automatically compute memory transfers in presence of complex
code patterns. Three examples are used throughout the paper to illustrate the
approach: Listing 1.1 requires interprocedural array accesses analysis, and List-
ing 1.2 contains a while loop, for which the memory access pattern requires an
approximated analysis.

This paper is organized as follows: array region analyses are �rst presented in
Section 2; then Section 3 introduces the basis of statement isolation, a compiler
pass that transforms a statement into a statement executed in a separate memory
space. A redundant transfer elimination algorithm based on array regions is then
introduced in Section 4 to optimize the generated data transfers. Finally, some
applications are detailed in Section 5.

1 // R(src) = {src[φ1] | i ≤ φ1 ≤ i+ k − 1}
// W(dst) = {dst[φ1] | φ1 = i}

3 // R(m) = {m[φ1] | 0 ≤ φ1 ≤ k − 1}
int kernel(int i, int n, int k, int src[n], int dst[n-k], int

m[k]) {

5 int v=0;

for( int j = 0; j < k; ++j )

7 v += src[ i + j ] * m[ j ];

dst[i]=v;

9 }

void fir( int n, int k, int src[n], int dst[n-k], int m[k]) {

11 for( int i = 0; i < n - k+ 1; ++i )

// R(src) = {src[φ1] | i ≤ φ1 ≤ i+ k − 1, 0 ≤ i ≤ n− k}
13 // R(m) = {m[φ1] | 0 ≤ φ1 ≤ k − 1}

// W(dst) = {dst[φ1] | φ1 = i}
15 kernel(i, n, k, src , dst , m);

}

Listing 1.1: Array regions on a code with a function call.

// R(randv) = {randv[φ1] |
N−3

4
≤ φ1 ≤ N

3
}

2 // W(a) = {a[φ1] |
N−3

4
≤ φ1 ≤ 5∗N+9

12
}

void foo(int N, int a[N], int randv[N]) {

4 int x=N/4,y=0;

while(x<=N/3) {

6 a[x+y] = x+y;

if (randv[x-y]) x = x+2; else x++,y++;

8 }

}

Listing 1.2: Array regions on a code with a while loop.



2 Introducing Convex Array Regions

Convex array regions were �rst introduced by Triolet [23] with the initial pur-
pose of summarizing the memory accesses performed on array element sets by
function calls. The concept was later generalized and formally de�ned for any
program statement by Creusillet [11,12] and implemented in the Paralléliseur
Interprocedural de Programmes Scienti�ques (PIPS) compiler framework.

Informally, the read (resp. write) regions for a statement s are the set
of all scalar variables and array elements that are read (resp. written) during
the execution of s. This set generally depends on the values of some program
variables at the entry point of statement s: the read regions are said to be a
function of the memory store σ preceding the statement execution, and they are
collectively denoted R(s, σ) (resp. W(s, σ) for the write regions).

For instance the read regions for the statement on line 6 in Figure 1.1 are
these:

R(s, σ) = {{v}, {i}, {j}, {src(φ1) | φ1 = σ(i) + σ(j)}, {m(φ1) | φ1 = σ(j)}}

where φx is used to describe the constraints on the xth dimension of an array,
and where σ(i) denotes the value of the program variable i in the memory
store σ. From this point, i is used instead of σ(i) when there is no ambiguity.

The regions given above correspond to a very simple statement; however,
they can be computed for every level of compound statements. For instance, the
read regions of the for loop on line 6 in the code in Figure 1.1 are these:

R(s, σ) = {{v}, {i}, {src(φ1) | i ≤ φ1 ≤ i+ k − 1}, {m(φ1) | 0 ≤ φ1 ≤ k − 1}}

However, computing exact sets is not always possible, either because the com-
piler lacks information about the values of variables or the program control �ow,
or because the regions cannot be exactly represented by a convex polyhedron. In
these cases, over-approximated convex sets (denoted R and W) are computed.
In the following example, the approximation is due to the fact that the exact set
contains holes, and cannot be represented by a convex polyhedron:

W(Jfor(int i=0; i<n; i++)if (i != 3)a[i]=0;K, σ) = {{n} , {a[φ0] | 0 ≤ φ0 < n}}

whereas in the next example, the approximation is due to the fact that the
condition and its negation are nonlinear expressions that cannot be represented
exactly in our framework:

R(Jif(a[i]>3)b[i]=1; else c[i]=1K, σ) =

{{i} , {a[φ0] |φ0 = i} , {b[φ0] |φ0 = i} , {c[φ0] |φ0 = i}}

Under-approximations (denoted R and W) are required when computing region
di�erences (see [10] for more details on approximations when using the convex
polyhedron lattice).

read and write regions summarize the e�ects of statements and functions
upon array elements, but they do not take into account the �ow of array element



values. For that purpose, in and out regions have been introduced in [11] to take
array kills into account, that is to say, rede�nitions of individual array elements:

� in regions contain the array elements whose values are imported by the
considered statement, which means the elements that are read before being
possibly rede�ned by another instruction of the statement.

� out regions contain the array elements de�ned by the considered statement,
which are used afterwards in the program continuation. They are the live or
exported array elements.

As for read and write regions, in and out regions may be over- or under-
approximated.

There is a strong analogy between the array regions of a statement and
the memory used in this statement, at least from an external point of view,
which means excluding its privately declared variables. Intuitively, the memory
footprint of a statement can be obtained by counting the points in its associated
array regions. In the same way, the read (or in) and write (or out) regions
can be used to compute the memory transfers required to execute this statement
in a new memory space built from the original space. This analogy is analyzed
and leveraged in this paper and especially in Section 3.

3 Communications Code Generation

This section introduces a new generic code transformation, called statement iso-

lation. It turns a statement s into a new statement Isol(s) that shares no memory
area with the remainder of the code, and is surrounded by the required memory
transfers between the two memory spaces. In other words, if s is evaluated in
a memory store σ, Isol(s) does not reference any element of σ. The generated
memory transfers to and from the new memory space ensure the consistency and
validity of the values used in the extended memory space during the execution
of Isol(s) and once back to the original execution path.

This transformation assumes no aliasing between the di�erent variables ref-
erenced by s, so that array regions of two di�erent variables cannot overlap. It is
applicable to any statement for which the array region can be computed, either
exactly or approximately.

The transformation is formally described in [15]. To illustrate how the convex
array regions are leveraged, the while loop in Figure 1.2 is used as an example.
The exact and over-approximated array regions for this statement are as follows:

R = {{x} , {y}} R(randv) = {randv[φ1] |
N − 3

4
≤ φ1 ≤

N

3
}

W = {{x} , {y}} W(a) = {a[φ1] |
N − 3

4
≤ φ1 ≤

5 ∗N + 9

12
}

The basic idea is to turn each region into a newly allocated variable, large enough
to hold the region, then to generate data transfers from the original variables to
the new ones, and �nally to perform the required copy from the new variables



to the original ones. This results in the code shown in Figure 1.3, where isolated
variables have been put in uppercase. Statements (3) and (5) correspond to
the exact regions on scalar variables. Statements (2) and (4) correspond to the
over-approximated regions on array variables. Statement (1) is used to ensure
data consistency, as explained later.

Notice how memcpy system calls are used here to simulate data transfers, and,
in particular, how the sizes of the transfers are constrained with respect to the
array regions.

void foo(int N, int a[N], int randv[N]) {

2 int x=0,y=0;

int A[N/6], RANDV[(N-9)/12], X, Y;

4 memcpy(A, a+(N-3)/4, N/6* sizeof(int)); //(1)

memcpy(RANDV , randv+(N-3)/4, (N-9) /12* sizeof(int)); //(2)

6 memcpy (&X, &x, sizeof(x)); memcpy (&Y, &y, sizeof(y)); //(3)

while(X<=N/3) {

8 A[X+Y-(N-3) /4] = X+Y;

if (RANDV[X+Y-(N-3) /4]) X = X+2; else X++,Y++;

10 }

memcpy(a+(N-3)/4, A, N/6* sizeof(int)); //(4)

12 memcpy (&x, &X, sizeof(x)); memcpy (&y, &Y, sizeof(y)); //(5)

}

Listing 1.3: Isolation of an irregular while loop using array region analysis.

The bene�ts of using new variables to simulate the extended memory space
and of relying on a regular function to simulate the DMA are twofold:

1. The generated code can be executed on a general-purpose processor. It makes
it possible to verify and validate the result without the need of an accelerator
or a simulator.

2. The generated code is independent of the hardware target: specializing its
implementation for a given accelerator requires only a speci�c implementa-
tion of the memory transfer instructions (here memcpy).

Converting convex array regions into data transfers From this point on,
the availability of data transfer operators that can transfer rectangular subparts
of n-dimensional arrays to or from the accelerator is assumed. For instance,

1 size_t memcpy2d(void* dest , void* src ,

size_t dim1 , size_t offset1 , size_t count1 ,

3 size_t dim2 , size_t offset2 , size_t count2);

copies from src to dest the rectangular zone between (offset1, offset2) and
(offset1 + count1, offset2 + count2). dim1 and dim2 are the sizes of the
memory areas pointed to by src and dest on the host memory, and are used to
compute the addresses of the memory elements to transfer.



We show how convex array regions are used to generate calls to these oper-
ators. Let src be a n-dimensional variable, and {src[φ1] . . . [φn] | ψ(φ1, . . . , φn)}
be a convex region of this variable.

As native DMA instructions are very seldom capable of transferring anything
other than a rectangular memory area, the rectangular hull, denoted ⌈·⌉, is �rst
computed so that the region is expressed in the form

{src[φ1] . . . [φn] |α1 ≤ φ1 < β1, . . . , αn ≤ φn < βn}

This transformation can lead to a loss of accuracy and the region approximation
can thus shift from exact to may. This shift is performed when the original region
is not equal to its rectangular envelope.

The call to the transfer function can then be generated with offsetk = αk

and countk = βn − αk for each k in [1 . . . n].
For a statement s, the memory transfers from σ are generated using its read

regions (R(s, σ)): any array element read by s must have an up-to-date value
in the extended memory space with respect to σ. Symmetrically, the memory
transfers back to σ must include all updated values, represented by the written
regions (W(s, σ′)), where σ′ is the memory state once s is executed from σ. 2

However, if the written region is over-approximated, part of the values it
contains may not have been updated by the execution of Isol(s). Therefore, to
guarantee the consistency of the values transferred back to σ, they must �rst
be correctly initialized during the transfer from σ. These observations lead to
the following equations for the convex array regions transferred from and to σ,
respectively denoted Load(s, σ) and Store(s, σ):

Store(s, σ) =⌈W(s, σ)⌉

Load(s, σ) =⌈R(s, σ) ∪ (Store(s, σ)−W(s, σ))⌉

Load(s, σ) and Store(s, σ) are rectangular regions by de�nition and can be con-
verted into memory transfers, as detailed previously. The new variables with
ad-hoc dimensions are declared and a substitution taking into account the shifts
is performed on s to generate Isol(s).

Managing Variable Substitutions For each variable v to be transferred ac-
cording to Load(s, σ), a new variable V is declared, which must contain enough
space to hold the loaded region. For instance if v holds short integers and

Load(s, σ) = {v[φ1][φ2] |α1 ≤ φ1 < β1, α2 ≤ φ2 < β2}

then V will be declared as short int V[β1 − α1][β2 − α2]. The translation of
an intraprocedural reference to v into a reference to V is straightforward as
∀i, j, V[i][j] = v[i+ α1][j + α2].

2 Most of the time, variables used in the region description are not modi�ed by the
isolated statement and we can safely use W(s, σ). Otherwise, e.g. a[i++]=1, methods
detailed in [11] must be applied to express the region in the right memory store.



The combination of this variable substitution with convex array regions is
what makes the isolate statement a powerful tool: all the complexity is hidden
by the region abstraction.

For interprocedural translation, a new version of the called function is created
using the following scheme: for each transferred variable passed as an actual
parameter, and for each of its dimensions, an extra parameter is added to the
call and to the new function, holding the value of the corresponding o�set. These
extra parameters are then used to perform the translation in the called function.

The output of the whole process applied to the outermost loop of the Finite
Impulse Response (FIR) is illustrated in Figure 1.4, where a new KERNEL function
with two extra parameters is now called instead of the original kernel function.
These parameters hold the o�sets between the original array variables src and
m and the isolated ones SRC and M.

1 void fir( int n, int k, int src[n], int dst[n-k], int m[k]) {

int N=n - k+ 1;

3 for( int i = 0; i < N; ++i ) {

int DST[1],SRC[k],M[k];

5 memcpy(SRC , src+i, k*sizeof(int));

memcpy(M, m+0, k*sizeof(int));

7 KERNEL(i, n, k, SRC , DST , M, i/*SRC*/, i/*DST*/, 0/*M*/);

memcpy(dst , DST+0, 1* sizeof(int));

9 }

}

Listing 1.4: Interprocedural isolation of the outermost loop of a Finite Impulse
Response.

The body of the new KERNEL function is given in Figure 1.5. The extra o�set
parameters are used to perform the translation on the array parameters. The
same scheme applies for multidimensional arrays, with one o�set per dimension.

void KERNEL(int i, int n, int k, int SRC[k], int DST[1],

2 int M[k], int SRC_offset , int DST_offset , int M_offset) {

int v=0;

4 for( int j = 0; j < k; ++j )

v += SRC[i+j-SRC_offset ]*M[j-M_offset ];

6 DST[i-SRC_offset ]=v;

}

Listing 1.5: Isolated version of the kernel function of a Finite Impulse Response.



4 Redundant Transfer Elimination

The statement isolation pass considers a statement independently of its con-
text. However, it is sometimes possible to limit the volume of transferred data
when considering the context, either through the elimination of redundant data
transfers between isoalted statements, or through overlapping of transfers with
computations.

This section informally describes an original contribution to the former us-
ing a step-by-step propagation of the memory transfers across the Control Flow
Graph (CFG) of the host program. It has been more formally described with
proofs in [14]. The main idea is to move load operations upward in the Hierarchi-
cal Control Flow Graph (HCFG) so that they are executed as soon as possible,
while store operations are symmetrically moved so that they are executed as late
as possible. Redundant load-store elimination is performed in the meantime.

In the following, we only consider optimization of mutliple isolated section
during a sequential execution.

4.1 Interprocedural propagation

When a load is performed at the entry point of a function, it may be interesting
to move it at the call sites. However, this is valid only if the memory state before
the call site is the same as the memory state at the function entry point, that is,
if there is no write e�ect during the e�ective parameter evaluation. In that case,
the load statement can be moved before the call sites, after backward translation
from formal parameters to e�ective parameters.

Similarly, if the same store statement is found at each exit point of a function,
it may be possible to move it past its call sites. Validity criteria include that the
store statement depends only on formal parameters and that these parameters
are not written by the function. If this the case, the store statement can be
removed from the function call and added after each call site after backward
translation of the formal parameters.

4.2 Combining load and store elimination

In the meanwhile, the intraprocedural and interprocedural propagation of DMA
may trigger other optimization opportunities. Loads and stores may for instance
interact across loop iterations, when the loop body is surrounded by a load and
a store; or when a kernel is called in a function to produce data immediately
consumed by a kernel hosted in another function, and the DMA have been moved
in the calling function.

The optimization then consists in removing load and store operations when
they meet. This relies on the following property: considering that the statement
denoted by �memcpy(a,b,10*sizeof(in))� is a DMA and its reciprocal is denoted
by �memcpy(b,a,10*sizeof(in))�, then in the sequence memcpy(a,b,10*sizeof(in

));memcpy(b,a,10*sizeof(in)), the second call can be removed since it would
not change the values already stored in a.



Figure 1.6, illustrates the result of the algorithm. It demonstrates the inter-
procedural elimination of data communications represented by the memload and
memstore functions. These function calls are �rst moved outside of the loop,
then outside of the bar function; �nally, redundant loads are eliminated.

void bar(int i, int j[2], int k[2]) {

2 while (i-->=0) {

memload(k, j, sizeof(int)*2);

4 k[0]++;

memstore(j, k, sizeof(int)*2);

6 }

}

8 void foo(int j[2], int k[2]) {

bar(0, j, k);

10 bar(1, j, k);

}

⇓

1 void bar(int i, int j[2], int k[2]) {

while (i-->=0) k[0]++;

3 }

void foo(int j[2], int k[2]) {

5 memload(k, j, sizeof(int)*2); // load moved before call

bar(0, j, k);

7 memstore(j, k, sizeof(int)*2);// redundant load eliminated

bar(1, j, k);

9 memstore(j, k, sizeof(int)*2);// store moved after call

}

Listing 1.6: Illustration of the redundant load store elimination algorithm.

4.3 Optimizing a Tiled Loop Nest

Alias et al. have published an interesting study about �ne grained optimization of
communications in the context of Field Programmable Gate Array (FPGA) [1,2,3].
The fact that they target FPGAs changes some considerations on the memory
size: FPGAs usually embed a very small memory compared to the many gi-
gabytes available in a GPU board. The proposal from Alias et al. focuses on
optimizing loads from Double Data Rate (DDR) in the context of a tiled loop
nest, where the tiling is done such that tiles execute sequentially on the acceler-
ator while the computation inside each tile can be parallelized.

While their work is based on the Quasi-A�ne Selection Tree (QUAST) ab-
straction, this section shows how their algorithm can be used with the less ex-
pensive convex array region abstraction.

The classical scheme proposed to isolate kernels would exhibit full commu-
nications as shown in Figure 1.7. An inter-iteration analysis allows avoiding
redundant communications and produces the code shown in Figure 1.8. The



for( int i = 0; i < N; ++i ) {

2 memcpy(M,m,k*sizeof(int));

memcpy (&SRC[i],&src[i],k*sizeof(int));

4 kernel(i, n, k, SRC , DST , M);

memcpy (&dst[i],&DST[i],1* sizeof(int));

6 }

Listing 1.7: Code for FIR function from �gure 1.1 with naive communication
scheme.

for( int i = 0; i < N; ++i ) {

2 if(i==0) {

memcpy(SRC ,src ,k*sizeof(int));

4 memcpy(M,m,k*sizeof(int));

} else {

6 memcpy (&SRC[i+k-1],&src[i+k-1],1* sizeof(int));

}

8 kernel(i, n, k, SRC , DST , m);

memcpy (&dst[i],&DST[i],1* sizeof(int));

10 }

Listing 1.8: Code for FIR function with communication after the inter-iterations
redundant elimination.

inter-iteration analysis is performed on a do loop, but with the array regions.
The code part to isolate is not bound by static control constraints.

The theorem proposed for exact sets in [1] is the following: 3

Theorem 1.

Load(T ) = R(T )−
(

R(t < T )
⋃

W(t < T )
)

(1)

Store(T ) = W(T )−W(t > T ) (2)

where T represents a tile, t < T represents the tiles scheduled for execution
before the tile T , and t > T represents the tiles scheduled for execution after T .
The denotation W(t > T ) corresponds to

⋃

t>T W(t).
In Theorem 1, a di�erence exists for each loop between the �rst iteration,

the last one, and the rest of the iteration set. Indeed, the �rst iteration cannot
bene�t from reuse from previously transferred data and has to transfer all needed
data, while the last one has to schedule a transfer for all produced data. In other
words, R(t < T ) and W(t < T ) are empty for the �rst iteration while W(t > T )
is empty for the last iteration.

For instance, in the code presented in Figure 1.7, three cases are considered:
i = 0, 0 < i < N − 1 and i = N − 1.

3 Regions are supposed exact here; the equation can be adapted to under- and over-
approximations.



Using the array region abstraction available in PIPS, a re�nement can be car-
ried out to compute each case, starting with the full region, adding the necessary
constraints and performing a di�erence.

For example, the region computed by PIPS to represent the set of elements
read for array src, is, for each tile (here corresponding to iteration i)

R(i) = {src[φ1] | i ≤ φ1 ≤ i+ k − 1, 0 ≤ i < N}

For each iteration i of the loop except the �rst one (here i > 0), the region of
src that is read minus the elements read in all previous iterations i′ < i has to
be processed; that is,

⋃

i′ R(i′ < i).
R(i′ < i) is built from R(i) by renaming i as i′ and adding the constraint

0 ≤ i′ < i to the polyhedron:

R(i′ < i) = {src[φ1] | i
′ ≤ φ1 ≤ i′ + k − 1, 0 ≤ i′ < i, 1 ≤ i < N}

i′ is then eliminated to obtain
⋃

i′ R(i′ < i):

⋃

i′

R(i′ < i) = {src[φ1] | 0 ≤ φ1 ≤ i+ k − 2, 1 ≤ i < N}

The result of the subtraction R(i > 0)−
⋃

i′ R(i′ < i) leads to following region:4

Load(i > 0) = {src[φ1] | φ1 = i+ k − 1, 1 ≤ i < N}

This region is then exploited for generating the loads for all iterations but the
�rst one. The resulting code after optimization is presented in Figure 1.8. While
the naive version loads i× k × 2 elements, the optimized version exhibits loads
only for i+ 2× k elements.

5 Applications

The transformations introduced in this article have been used as basic blocks
in compilers targeting several di�erent hardware, showing their versatility. They
are partially listed here with references to more detailed paper about each work.

� the redundant load store elimination described in Section 4 has been used
in [14] for vector instruction sets to optimize loads and stores between vector
registers and the main memory. In that case data transfers were not gener-
ated by statement isolation but through vector instruction packing, leading
to the code in Listing 1.9 for a vectorized scalar product. Redundant load
store elimination leads to the optimized version in Listing 1.9.

� The communication generation for an image-processing accelerator, TER-
APIX [8], described in [14] relies on the statement isolation from Section 3.

4 As the write regions are empty for src, this corresponds to the loads.



for(i0 = 0; i0 <= 199; i0 += 4) {

2 SIMD_LOAD_V4SF(vec20 , &c[i0]);

SIMD_LOAD_V4SF(vec10 , &b[i0]);

4 SIMD_MULPS(vec00 , vec10 , vec20);

SIMD_STORE_V4SF(vec00 , &pdata0 [0]);

6 SIMD_LOAD_V4SF(vec30 , &RED0 [0]);

SIMD_ADDPS(vec30 , vec30 , vec00);

8 SIMD_STORE_V4SF(vec30 , &RED0 [0]);

}

1 SIMD_LOAD_V4SF(vec30 , &RED0 [0]);

for(i0 = 0; i0 <= 199; i0 += 4) {

3 SIMD_LOAD_V4SF(vec20 , &c[i0]);

SIMD_LOAD_V4SF(vec10 , &b[i0]);

5 SIMD_MULPS(vec00 , vec10 , vec20);

SIMD_STORE_V4SF(vec00 , &pdata0 [0]);

7 SIMD_ADDPS(vec30 , vec30 , vec00);

SIMD_STORE_V4SF(vec30 , &RED0 [0]);

9 }

Listing 1.9: Body of a vectorized scalar product, before and after redundant load
store elimination.

� The SCALOPES project associated an asymmetric MP-SoC with cores dedi-
cated to task scheduling, to a semi-automatic parallelization work�ow. State-
ment isolation has been used to generate inter-tasks communications [24].

� SMECY is an innovative compilation tool-chain for embedded multi-core
architectures. This on-going project [22] is another use case that exhibits
how convex array regions are well suited to communication and mapping
problems. In that case, statement isolation generates data transfers between
di�erent �elds of a structure, showcasing that it does not support only arrays,
but also imbrication of structure of arrays.

� The code generation for GPUs in Par4All [21] relies on statement isolation

to e�ciently manage communications. It relies on generic data transfers and
kernel calls that can use a CUDA or OpenCL backend. A typical output is
showcased in Listing 1.10.

1 P4A_copy_to_accel_2d(sizeof pt[0][0] , 90, 99, 90, 99 ,0 ,0 ,

pt ,*p4a_pt0);

P4A_copy_to_accel_1d(sizeof t[0], 20, 20, 0, t, *p4a_t0 );

3 p4a_launcher_run (*p4a_pt0 , range , step , *p4a_t0 , xmin , ymin);

P4A_copy_from_accel_2d( sizeof pt[0][0] , 90, 99, 90, 99, 0,

0, pt , *p4a_pt0);

Listing 1.10: Typical Par4All-generated DMA.



All these architectures use a load-work-store paradigm, so the code transfor-
mations described in this paper can be used to generate or optimized generic
data transfers, although they are rather di�erent targets.

6 Related Works

The issue of generating memory transfers between a host processor and an at-
tached accelerator has been studied at multiple occasions in the past.

Convex array regions were already used in the PIPS framework [9] for High
Performance Fortran (HPF) code generation. We leverage this approach by de-
coupling analysis, transfer generation and transfer optimization.

In the same context, the Omega project [20] relied on the manipulation of
sets of a�ne constraints over integer variables. Non-a�ne conditions and func-
tion calls were handled by uninterpreted function symbols, a technique described
in [28] that does not provide the summarizing capability of interprocedural con-
vex array regions.

Beyond HPF, in the �eld of embedded computing, other approaches based
on memory layout detection and interaction with the memory access patterns
have been proposed [16]. The code generation for transfer instructions depending
on available communication models has been studied through the polyhedral
model [17].

Recently, polyhedral techniques have been applied to generate data commu-
nications between a CPU and a GPU, as detailed in [6,18]. The bene�t of using
convex array regions over these approaches is their ability to retain some im-
portant information concerning data accesses even in non-a�ne situations, by
gracefully degrading their accuracy.

An approach that shares some similarities with ours is described in [7]. This
paper enhances classical polyhedral techniques to tackle while loops and ar-
bitrary conditionnals, relying on over-approximation of the iteration domains
through convex hulls. However, it does not propose any solution other than in-
lining to handle function calls.

7 Conclusion

Automatic code generation currently seems a good lasting option while hetero-
geneous architectural models are emerging at a sustainable pace, and as a single
application may have to be executed on di�erent numerous targets during its
life cycle. In this context, e�ciently managing data transfers between di�erent
memory spaces is a key issue, usually addressed by restricting the control �ow
of the application kernels.

In this paper, we introduce several techniques relying on the summarizing
power of array region analyzes, to lift these barriers and broaden the input class
of applications, without sacri�cing the e�ciency of the generated code.

These techniques have been implemented in the PIPS compiler infrastructure
used by the Par4All tool. They have been successfully used to generate code for



GPGPUs, vector processing units, domain-speci�c architectures, including het-
erogeneous architectures with task scheduling dedicated cores. . . Other targets
are yet being considered such as multi-GPUs architectures. In addition, our ap-
proach could be adapted to directly manage memory hierarchies like software
managed cache in GPUs.
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