
HAL Id: hal-00742536
https://minesparis-psl.hal.science/hal-00742536

Submitted on 18 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task Parallelism and Data Distribution: An Overview of
Explicit Parallel Programming Languages

Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt, François Irigoin

To cite this version:
Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt, François Irigoin. Task Parallelism and Data Distri-
bution: An Overview of Explicit Parallel Programming Languages. 25th International Workshop on
Languages and Compilers for Parallel Computing (LCPC 2012), Sep 2012, Tokyo, Japan. pp 174-189,
�10.1007/978-3-642-37658-0_12�. �hal-00742536�

https://minesparis-psl.hal.science/hal-00742536
https://hal.archives-ouvertes.fr

Task Parallelism and Data Distribution: An Overview of
Explicit Parallel Programming Languages

Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt and François Irigoin

CRI, Mathématiques et systèmes
MINES ParisTech

35 rue Saint-Honoré, 77300 Fontainebleau, France
firstname.lastname@mines-paristech.fr

Abstract. Programming parallel machines as effectively as sequential ones would
ideally require a language that provides high-level programming constructs to
avoid the programming errors frequent when expressing parallelism. Since task
parallelism is considered more error-prone than data parallelism, we survey six
popular and efficient parallel language designs that tacklethis difficult issue: Cilk,
Chapel, X10, Habanero-Java, OpenMP and OpenCL. Using as single running ex-
ample a parallel implementation of the computation of the Mandelbrot set, this
paper describes how the fundamentals of task parallel programming, i.e., col-
lective and point-to-point synchronization and mutual exclusion, are dealt with
in these languages. We discuss how these languages allocateand distribute data
over memory. Our study suggests that, even though there are many keywords and
notions introduced by these languages, they all boil down, as far as control issues
are concerned, to three key task concepts: creation, synchronization and atomic-
ity. Regarding memory models, these languages adopt one of three approaches:
shared memory, message passing and PGAS (Partitioned Global Address Space).
The paper is designed to give users and language and compilerdesigners an up-
to-date comparative overview of current parallel languages.

1 Introduction

Parallel computing is about 50 years old. The market dominance of multi- and many-
core processors and the growing importance and the increasing number of clusters in the
Top500 list (top500.org) are making parallelism a key concern when implementing
current applications such as weather modeling [13] or nuclear simulations [12]. These
important applications require large computational powerand thus need to be pro-
grammed to run on powerful parallel supercomputers. Programming languages adopt
one of two ways to deal with this issue: (1) high-level languages hide the presence of
parallelism at the software level, thus offering a code easyto build and port, but the per-
formance of which is not guaranteed, and (2) low-level languages use explicit constructs
for communication patterns and specifying the number and placement of threads, but
the resulting code is difficult to build and not very portable, although usually efficient.

Recent programming models explore the best trade-offs between expressiveness and
performance when addressing parallelism. Traditionally,there are two general ways to
break an application into concurrent parts in order to take advantage of a parallel com-
puter and execute them simultaneously on different CPUs: data and task parallelisms.

In data parallelism, the same instruction is performed repeatedly and simultaneously
on different data. In task parallelism, the execution of different processes (threads) is
distributed across multiple computing nodes. Task parallelism is often considered more
difficult to specify than data parallelism, since it lacks the regularity present in the latter
model; processes (threads) run simultaneously different instructions, leading to differ-
ent execution schedules and memory access patterns. Task management must address
both control and data issues, in order to optimize executionand communication times.

This paper describes how six popular and efficient parallel programming language
designs tackle the issue of task parallelism specification:Cilk, Chapel, X10, Habanero-
Java, OpenMP and OpenCL. They are selected based on the richness of their func-
tionality and their popularity; they provide simple high-level parallel abstractions that
cover most of the parallel programming language design spectrum. We use a popular
parallel problem (the computation of the Mandelbrot set [4]) as a running example. We
consider this an interesting test case, since it exhibits a high-level of embarrassing par-
allelism while its iteration space is not easily partitioned, if one wants to have tasks of
balanced run times. Since our focus is here the study and comparison of the expressive-
ness of each language’s main parallel constructs, we do not give performance measures
for these implementations.

Our paper is useful to (1) programmers, to choose a parallel language and write
parallel applications, (2) language designers, to comparetheir ideas on how to tackle
parallelism in new languages with existing proposals, and (3) designers of optimizing
compilers, to develop automatic tools for writing parallelprograms. Our own goal was
to use this case study for the design of SPIRE [14], a sequential to parallel intermediate
representation extension of the intermediate representations used in compilation frame-
works, in order to upgrade their existing infrastructure toaddress parallel languages.

After this introduction, Section 2 presents our running example. We discuss the
parallel language features specific to task parallelism, namely task creation, synchro-
nization and atomicity, and also how these languages distribute data over different pro-
cessors in Section 3. In Section 4, a selection of current andimportant parallel pro-
gramming languages are described: Cilk, Chapel, X10, Habanero Java, OpenMP and
OpenCL. For each language, an implementation of the Mandelbrot set algorithm is pre-
sented. Section 5 compares and discusses these languages. We conclude in Section 6.

2 Mandelbrot Set Computation

The Mandelbrot set is a fractal set. For each complexc ∈ C, the set of complex num-
berszn(c) is defined by induction as follows:z0(c) = c andzn+1(c) = z2

n
(c) + c. The

Mandelbrot setM is then defined as{c ∈ C/ limn→∞ zn(c) < ∞}; thus,M is the
set of all complex numbersc for which the serieszn(c) converges. One can show [4]
that a finite limit forzn(c) exists only if the modulus ofzm(c) is less than 2, for some
positivem. We give a sequential C implementation of the computation ofthe Mandel-
brot set in Figure 2. Running this program yields Figure 1, inwhich each complexc
is seen as a pixel, its color being related to its convergenceproperty: the Mandelbrot
set is the black shape in the middle of the figure. We use this base program as our
test case in our parallel implementations, in Section 4, forthe parallel languages we

Fig. 1. Result of the Mandelbrot set

unsigned long min c o lo r = 0 , max co lor = 16777215;
unsigned i n t wid th = NPIXELS; u i n t h e i g h t = NPIXELS; u i n t N = 2 , ma x i t e r = 10000;
double r min = −N, r max = N, i m in = −N, i max = N;
double s c a l e r = (r max − r min) / w id th ;
double s c a l e i = (i max − i m in) / h e i g t h ;
double s c a l e c o l o r = (max co lor − min c o lo r) / ma x i t e r ;
D i s p la y ∗ d i s p l a y ; Window win ; GC gc ;
f o r (row = 0 ; row < h e i g h t ; ++row) {

f o r (c o l = 0 ; c o l < wid th ; ++ c o l) {
z . r = z . i = 0 ;
/∗ Sc a le c as d i s p l a y c o o r d i n a t e s o f c u r r e n t p o i n t∗ /
c . r = r min + ((double) c o l ∗ s c a l e r) ;
c . i = i m in + ((double) (he igh t−1−row) ∗ s c a l e i) ;
/∗ I t e r a t e s z = z∗z+c w h i l e | z | < N, or max i t e r i s reached∗ /
k = 0 ;
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le (z . r∗z . r + z . i∗z . i < (N∗N) && k < ma x i te r) ;
/∗ Se t c o l o r and d i s p l a y p o i n t∗ /
c o l o r = (u long) ((k−1) ∗ s c a l e c o l o r) + m in c o lo r ;
XSetForeground (d i s p la y , gc , c o l o r) ;
XDrawPoint (d i s p la y , win , gc , co l , row) ;

}
}

Fig. 2: Sequential C implementation of the Mandelbrot set

selected. This is an interesting case for illustrating parallel programming languages: (1)
it is an embarrassingly parallel problem, since all computations of pixel colors can be
performed simultaneously, and thus is obviously a good candidate for expressing par-
allelism, but (2) its efficient implementation is not obvious, since good load balancing
cannot be achieved by simply grouping localized pixels together because convergence
can vary widely from one point to the next, due to the fractal nature of the Mandelbrot
set.

3 Task Parallelism Issues

Among the many issues related to parallel programming, the questions of task creation,
synchronization, atomicity and memory model are particularly acute when dealing with
task parallelism, our focus in this paper.

3.1 Task Creation

In this paper, a task is a static notion, i.e., a list of instructions, while processes and
threads are running instances of tasks. Creation of system-level task instances is an
expensive operation, since its implementation, via processes, requires allocating and
later possibly releasing system-specific resources. If a task has a short execution time,
this overhead might make the overall computation quite inefficient. Another way to
introduce parallelism is to use lighter, user-level tasks,called threads. In all languages
addressed in this paper, task management operations refer to such user-level tasks. The
problem of finding the proper size of tasks, and hence the number of tasks, can be
decided at compile or run times, using heuristic means.

In our Mandelbrot example, the parallel implementations weprovide below use a
static schedule that allocates a number of iterations of theloop row to a particular
thread; we interleave successive iterations into distinctthreads in a round-robin fashion,
in order to group loop body computations into chunks, of sizeheight/P , whereP is
the (language-dependent) number of threads. Our intent here is to try to reach a good
load balancing between threads.

3.2 Synchronization

Coordination in task-parallel programs is a major source ofcomplexity. It is dealt with
using synchronization primitives, for instance when a codefragment contains many
phases of execution where each phase should wait for the precedent ones to proceed.
When a process or a thread exits before synchronizing on a barrier that other processes
are waiting on or when processes operate on different barriers using different orders, a
deadlock occurs. Programs must avoid these situations (andbe deadlock-free). Differ-
ent forms of synchronization constructs exist, such as mutual exclusion when access-
ing shared resources using locks, join operations that terminate child threads, multi-
ple synchronizations using barriers1, and point-to-point synchronization using counting
semaphores [18].

In our Mandelbrot example, we need to synchronize all pixel computations before
exiting; one also needs to use synchronization to deal with the atomic section (see next
subsection). Even though synchronization is rather simplein this example, caution is
always needed; an example that may lead to deadlocks is mentioned in Section 5.

3.3 Atomicity

Access to shared resources requires atomic operations that, at any given time, can be
executed by only one process or thread. Atomicity comes in two flavors: weak and
strong [16]. A weak atomic statement is atomic only with respect to other explic-
itly atomic statements; no guarantee is made regarding interactions with non-isolated
statements (not declared as atomic). By opposition, strongatomicity enforces non-
interaction of atomic statements with all operations in theentire program. It usually

1The term “barrier” is used in various ways by authors [17]; weconsider here that barriers
are synchronization points that wait for the termination ofsets of threads, defined in a language-
dependent manner.

requires specialized hardware support (e.g., atomic “compare and swap” operations),
although a software implementation that treats non-explicitly atomic accesses as im-
plicitly atomic single operations (using a single global lock) is possible.

In our Mandelbrot example, display accesses require connection to the X server;
drawing a given pixel is an atomic operation since GUI-specific calls need synchro-
nization. Moreover, two simple examples of atomic sectionsare provided in Section 5.

3.4 Memory Models

The choice of a proper memory model to express parallel programs is an important issue
in parallel language design. Indeed, the ways processes andthreads communicate using
the target architecture and impact the programmer’s computation specification affect
both performance and ease of programming. There are currently three main approaches.
Message Passing This model uses communication libraries to allow efficient parallel
programs to be written for distributed memory systems. These libraries provide routines
to initiate and configure the messaging environment as well as sending and receiving
data packets. Currently, the most popular high-level message-passing system for scien-
tific and engineering applications is MPI (Message Passing Interface) [1]. OpenCL [2]
uses a variation of the message passing memory model.
Shared memory Also called global address space, this model is the simplestone to
use [7]. There, the address spaces of the threads are mapped onto the global memory; no
explicit data passing between threads is needed. However, synchronization is required
between the threads that are writing and reading data to and from the shared memory.
OpenMP [3] and Cilk [8] use the shared memory model.
Partitioned Global Address Space PGAS-based languages combine the programming
convenience of shared memory with the performance control of message passing by
partitioning logically a global address space; each portion is local to each thread. From
the programmer’s point of view programs have a single address space and one task of
a given thread may refer directly to the storage of a different thread. The three other
programming languages in this paper use the PGAS memory model.

4 Parallel Programming Languages

We present here six parallel programming language designs and describe how they deal
with the concepts introduced in the previous section. Giventhe large number of parallel
languages that exist, we focus primarily on languages that are in current use and popular
and that support simple high-level task-oriented parallelabstractions.

4.1 Cilk

Cilk [8], developed at MIT, is a multithreaded parallel language based on C for shared
memory systems. Cilk is designed for exploiting dynamic andasynchronous paral-
lelism. A Cilk implementation of the Mandelbrot set is provided in Figure 32.

2From now on, variable declarations are omitted, unless required for the purpose of our pre-
sentation.

{
c i l k l o c k i n i t (d i s p l a y l o c k) ;
f o r (m = 0 ; m< P ; m++)

spawn c ompu te po in t s (m) ;
sync ;

}
c i l k vo id c ompu te po in t s (u i n t m) {

f o r (row = m; row < h e i g h t ; row +=P)
f o r (c o l = 0 ; c o l < wid th ; ++ c o l) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le (z . r∗z . r + z . i∗z . i < (N∗N) && k < ma x i te r) ;
c o l o r = (u long) ((k−1) ∗ s c a l e c o l o r) + m in c o lo r ;
c i l k l o c k (d i s p l a y l o c k) ;
XSetForeground (d i s p la y , gc , c o l o r) ;
XDrawPoint (d i s p la y , win , gc , co l , row) ;
c i l k u n l o c k (d i s p l a y l o c k) ;

}
}

Fig. 3: Cilk implementation of the Mandelbrot set (--nproc P)

Task Parallelism Thecilk keyword identifies functions that can be spawned in par-
allel. A Cilk function may create threads to execute functions in parallel. Thespawn
keyword is used to create child tasks, such ascomputepoints in our example, when
referring to Cilk functions.

Cilk introduces the notion of inlets [5], which are local Cilk functions defined to
take the result of spawned tasks and use it (performing a reduction). The result should
not be put in a variable in the parent function. All the variables of the function are
available within an inlet.Abort allows to abort a speculative work by terminating all
of the already spawned children of a function; it must be called inside an inlet. Inlets
are not used in our example.
Synchronization Thesync statement is a local barrier, used in our example to ensure
task termination. It waits only for the spawned child tasks of the current procedure to
complete, and not for all tasks currently being executed.
Atomic Section Mutual exclusion is implemented using locks of typecilk lockvar,
such asdisplay lock in our example. The functioncilk lock is used to test a lock
and block if it is already acquired; the functioncilk unlock is used to release a lock.
Both functions take a single argument which is an object of type cilk lockvar.
cilk lock init is used to initialize the lock object before it is used.
Data Distribution In Cilk’s shared memory model, all variables declared outside Cilk
functions are shared. To avoid possible non-determinism due to data races, the program-
mer should avoid the situation when a task writes a variable that may be read or written
concurrently by another task, or use the primitivecilk fence that ensures that all
memory operations of a thread are committed before the next operation execution.

4.2 Chapel

Chapel [10], developed by Cray, supports both data and control flow parallelism and
is designed around a multithreaded execution model based onPGAS for shared and

distributed-memory systems. A Chapel implementation of the Mandelbrot set is pro-
vided in Figure 4.

c o f o r a l l l o c in Loca le s do
on l o c {

f o r row in l o c . i d . . h e i g h t by numLocales do {
f o r c o l in 1 . . w id th do {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
k = k +1;

} whi le (z . r∗z . r + z . i∗z . i < (N∗N) && k < ma x i te r) ;
c o l o r = (u long) ((k−1) ∗ s c a l e c o l o r) + m in c o lo r ;
atomic {

XSetForeground (d i s p la y , gc , c o l o r) ;
XDrawPoint (d i s p la y , win , gc , co l , row) ;

}
}}}

Fig. 4: Chapel implementation of the Mandelbrot set

Task Parallelism Chapel provides three types of task parallelism [6], two structured
ones and one unstructured.cobegin{stmts} creates a task for each statement in
stmts; the parent task waits for thestmts tasks to be completed.coforall is a
loop variant of thecobegin statement, where each iteration of thecoforall loop is
a separate task and the main thread of execution does not continue until every iteration
is completed. Finally, inbegin{stmt}, the original parent task continues its execution
after spawning a child runningstmt.
Synchronization In addition tocobegin andcoforall, used in our example, which
have an implicit synchronization at the end, synchronization variables of typesync
can be used for coordinating parallel tasks. Async [6] variable is either empty or full,
with an additional data value. Reading an empty variable andwriting in a full variable
suspends the thread. Writing to an empty variable atomically changes its state to full.
Reading a full variable consumes the value and atomically changes the state to empty.
Atomic Section Chapel supports atomic sections (atomic{stmt}): this indicates that
stmt should be executed atomically with respect to any other thread.
Data Distribution Chapel introduces a type calledlocale to refer to a unit of the
machine resources on which a computation is running. A locale is a mapping of Chapel
data and computations to the physical machine. In Figure 4, ArrayLocales represents
the set of locale values corresponding to the machine resources on which this code is
running;numLocales refers to the number of locales. Chapel also introduces new
domain types to specify array distribution; they are not used in ourexample.

4.3 X10 and Habanero-Java

X10 [11], developed at IBM, is a distributed asynchronous dynamic parallel program-
ming language for multi-core processors, symmetric shared-memory multiprocessors
(SMPs), commodity clusters, high end supercomputers, and even embedded processors
like Cell. A X10 implementation of the Mandelbrot set is provided in Figure 5.

Habanero-Java [9], under development at Rice University, is derived from X10 [11],
and introduces additional synchronization and atomicity primitives surveyed below.

f i n i s h {
f o r (m = 0 ; m< p l a c e . MAXPLACES; m++) {

p l a c e p l row = p l a c e . p l a c e s (m) ;
async at (p l row) {

f o r (row = m; row < h e i g h t ; row+= p l a c e . MAXPLACES){
f o r (c o l = 0 ; c o l < wid th ; ++ c o l) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le (z . r∗z . r + z . i∗z . i < (N∗N) && k < ma x i te r) ;
c o l o r = (u long) ((k−1) ∗ s c a l e c o l o r) + m in c o lo r ;
atomic {

XSetForeground (d i s p la y , gc , c o l o r) ;
XDrawPoint (d i s p la y , win , gc , co l , row) ;

}
}}}}}

Fig. 5: X10 implementation of the Mandelbrot set

Task Parallelism X10 provides two task creation primitives: (1) theasync stmt con-
struct creates a new asynchronous task that executesstmt, while the current thread
continues, and (2) thefuture exp expression launches a parallel task that returns the
value ofexp.
Synchronization With finish stmt, the current running task is blocked at the end
of the finish clause, waiting till all the children spawned during the execution of
stmt have terminated. The expressionf.force() is used to get the actual value of
the “future” taskf.

X10 introduces a new synchronization concept: the clock. Itacts as a barrier for a
dynamically varying set of tasks [19] that operate in phasesof execution where each
phase should wait for previous ones before proceeding. A task that uses a clock must
first register with it (multiple clocks can be used). It then uses the statementnext to
signal to all the tasks that are registered with its clocks that it is ready to move to the
following phase, and waits until all the clocks with which itis registered can advance.
A clock can advance only when all the tasks that are registered with it have executed a
next statement.

Habanero-Java introduces phasers to extend this clock mechanism. A phaser is cre-
ated and initialized to its first phase using the functionnew. The scope of a phaser
is limited to the immediately enclosingfinish statement. A task can be registered
with zero or more phasers, using one of four registration modes: the first two are the
traditional SIG and WAIT signal operations for producer-consumer synchronization;
the SIGWAIT mode implements barrier synchronization, while SIGWAIT SINGLE
ensures, in addition, that its associated statement is executed by only one thread. As
in X10, anext instruction is used to advance each phaser that this task is registered
with to its next phase, in accordance with this task’s registration mode, and waits on
each phaser that task is registered with, with a WAIT submode. We illustrate the use of

clocks and phasers in Figure 8; note that they are not used in our Mandelbrot example,
since a collective barrier based on thefinish statement is sufficient.
Atomic Section When a thread enters anatomic statement, no other thread may enter
it until the original thread terminates it.

Habanero-Java supports weak atomicity using theisolated stmt primitive for
mutual exclusion and isolation. The Habanero-Java implementation takes a single-lock
approach to deal with isolated statements.
Data Distribution In order to distribute work across processors, X10 and HJ intro-
duce a type calledplace. A place is an address space within which a task may run;
different places may however refer to the same physical processor and share physi-
cal memory. The program address space is partitioned into logically distinct places.
Place.MAX PLACES, used in Figure 5, is the number of places available to a pro-
gram.

4.4 OpenMP

OpenMP [3] is an application program interface providing a multi-threaded program-
ming model for shared memory parallelism; it uses directives to extend sequential lan-
guages. A C OpenMP implementation of the Mandelbrot set is provided in Figure 6.

P = omp ge t num th re a ds () ;
#pragma omp p a r a l l e l shared (he igh t , width , s c a l er ,\

s c a l e i , max i te r , s c a l ec o l o r , m in c o lo r , r min , i m in)\
p r i v a t e (row , co l , k ,m, c o lo r , temp , z , c)

#pragma omp s i n g l e
{

f o r (m = 0 ; m< P ; m++)
#pragma omp tas k

f o r (row = m; row < h e i g h t ; row+=P) {
f o r (c o l = 0 ; c o l < wid th ; ++ c o l) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r − z . i∗z . i + c . r ;
z . i = 2∗z . r∗z . i + c . i ; z . r = temp ;
++k ;

} whi le (z . r∗z . r + z . i∗z . i < (N∗N) && k < ma x i te r) ;
c o l o r = (u long) ((k−1) ∗ s c a l e c o l o r) + m in c o lo r ;

#pragma omp c r i t i c a l
{

XSetForeground (d i s p la y , gc , c o l o r) ;
XDrawPoint (d i s p la y , win , gc , co l , row) ;

}
}}}

Fig. 6: C OpenMP implementation of the Mandelbrot set

Task Parallelism OpenMP allows dynamic (omp task) and static (omp section)
scheduling models. A task instance is generated each time a thread (the encountering
thread) encounters aomp task directive. This task may either be scheduled immedi-
ately on the same thread or deferred and assigned to any thread in a thread team, which
is the group of threads created when anomp parallel directive is encountered. The
omp sections directive is a non-iterative work-sharing construct. It specifies that

the enclosed sections of code, declared withomp section, are to be divided among
the threads in the team; these sections are independent blocks of code that the compiler
can execute concurrently.
Synchronization OpenMP provides synchronization constructs that control the exe-
cution inside a team thread:barrier andtaskwait. When a thread encounters a
barrier directive, it waits until all other threads in the team reachthe same point;
the scope of a barrier region is the innermost enclosing parallel region. Thetaskwait
construct is a restricted barrier that blocks the thread until all child tasks created since
the beginning of the current task are completed. Theomp single directive identifies
code that must be run by only one thread.
Atomic Section The critical andatomic directives are used for identifying a
section of code that must be executed by a single thread at a time. Theatomic direc-
tive works faster thancritical, since it only applies to single instructions, and can
thus often benefit from hardware support. Our implementation of the Mandelbrot set in
Figure 6 usescritical.
Data Distribution OpenMP variables are either global (shared) or local (private);
see Figure 6 for examples. A shared variable refers to one unique block of storage for
all threads in the team. A private variable refers to a different block of storage for each
thread. More memory access modes exist, such asfirstprivate orlastprivate,
that may require communication or copy operations.

4.5 OpenCL

OpenCL (Open Computing Language) [2] is a standard for programming heterogeneous
multiprocessor platforms where programs are divided into several parts: some called
“the kernels” that execute on separate devices, e.g., GPUs,with their own memories
and the others that execute on the host CPU. The main object inOpenCL is the com-
mand queue, which is used to submit work to a device by the enqueueing of OpenCL
commands to be executed. An OpenCL implementation of the Mandelbrot set is pro-
vided in Figure 7.
Task Parallelism OpenCL provides the parallel constructclEnqueueTask, which
enqueues a command requiring the execution of a kernel on a device by a work item
(OpenCL thread). OpenCL uses two different models of execution of command queues:
in-order, used for data parallelism, and out-of-order. In an out-of-order command queue,
commands are executed as soon as possible, and no order is specified, except for wait
and barrier events. We illustrate the out-of-order execution mechanism in Figure 7, but
currently this is an optional feature and is thus not supported by many devices.
Synchronization OpenCL distinguishes between two types of synchronization: coarse
and fine. Coarse grained synchronization, which deals with command queue operations,
uses the constructclEnqueueBarrier, which defines a barrier synchronization
point. Fine grained synchronization, which covers synchronization at the GPU function
call granularity level, uses OpenCL events viaClEnqueueWaitForEvents calls.

Data transfers between the GPU memory and the host memory, via functions such as
clEnqueueReadBuffer andclEnqueueWriteBuffer, also induce synchro-
nization between blocking or non-blocking communication commands. Events returned

k e r n e l vo id ke rne l ma in (complex c , u i n t maxi te r , double s c a l e c o l o r ,
u i n t m, u i n t P , ulong c o l o r [NPIXELS] [NPIXELS]) {

f o r (row = m; row < NPIXELS; row+=P)
f o r (c o l = 0 ; c o l < NPIXELS; ++ c o l) {

/ / I n i t i a l i z a t i o n o f c , k and z
do {

temp = z . r∗z . r−z . i∗z . i +c . r ;
z . i = 2∗z . r∗z . i +c . i ; z . r = temp ;
++k ;

} whi le (z . r∗z . r +z . i∗z . i<(N∗N) && k<ma x i te r) ;
c o l o r [row] [c o l] = (ulong) ((k−1)∗ s c a l e c o l o r) ;

}
}
c l i n t r e t = c lGetP la t formI Ds (1 , &p l a t f o r m i d , &r e t n u m p l a t f o r m s) ;
r e t = c lGetDev ice I Ds (p l a t f o r m i d , CL DEVICE TYPE DEFAULT , 1 ,

&d e v i c e i d , &r e t n u m d e v i c e s) ;
c l c o n t e x t c o n t e x t = c lCreateContext (NULL, 1 , &d e v i c e i d , NULL, NULL, &r e t) ;
cQueue=clCreateCommandQueue (c on te x t , d e v i c ei d , OUT OF ORDEREXEC MODE ENABLE,NULL) ;
P = CL DEVICE MAX COMPUTEUNITS;
memc = c l C r e a t e B u f f e r (c on te x t , CLMEM READ ONLY , s i z e o f (complex) , c) ;
/ / . . . Create read−on l y b u f f e r s w i t h max i te r , s c a l ec o l o r and P too
memcolor = c l C r e a t e B u f f e r (c on te x t , CLMEM WRITE ONLY,

s i z e o f (ulong)∗ h e i g h t∗width , NULL,NULL) ;
clEnqueueWriteBuffer (cQueue , memc , CLTRUE, 0 , s i z e o f (complex) ,&c , 0 ,NULL,NULL) ;
/ / . . . Enqueue w r i t e b u f f e r w i t h max i te r , s c a l ec o l o r and P too
program = clCreateProgramWithSource (c on te x t , 1 , &programsource , NULL, NULL) ;
e r r = clBuildProgram (program , 0 , NULL, NULL, NULL, NULL) ;
k e r n e l = c lCreateKerne l (program , ” ke rne l ma in ” , NULL) ;
c lSe tKerne lArg (ke rne l , 0 , s i z e o f (clmem) , (vo id ∗)&memc) ;
/ / . . . Se t k e r n e l argument w i t h memmaxiter , memsca leco lor , memP and memcolor t oo
f o r (m = 0 ; m< P ; m++) {

memm = c l C r e a t e B u f f e r (c on te x t , CLMEM READ ONLY , s i z e o f (u i n t) , m) ;
clEnqueueWriteBuffer (cQueue , memm, CLTRUE, 0 , s i z e o f (u i n t) , &m, 0 , NULL, NULL) ;
c lSe tKerne lArg (ke rne l , 0 , s i z e o f (clmem) , (vo id ∗)&memm) ;
clEnqueueTask (cQueue , ke rne l , 0 , NULL, NULL) ;

}
c l F i n i s h (cQueue) ;
clEnqueueReadBuffer (cQueue , memcolor , CLTRUE, 0 , space , c o lo r , 0 ,NULL,NULL) ;
f o r (row = 0 ; row < h e i g h t ; ++row)

f o r (c o l = 0 ; c o l < wid th ; ++ c o l) {
XSetForeground (d i s p la y , gc , c o l o r [c o l] [row]) ;
XDrawPoint (d i s p la y , win , gc , co l , row) ;

}

Fig. 7: OpenCL implementation of the Mandelbrot set

by clEnqueue operations can be used to check if a non-blocking operation has com-
pleted.
Atomic Section Atomic operations are only supported on integer data, via functions
such asatom add or atom xchg. Currently, these are only supported by some de-
vices as part of an extension of the OpenCL standard. OpenCL lacks support for general
atomic sections, thus the drawing function is executed by the host in Figure 7.

Data Distribution Each work item can either use (1) its private memory, (2) its local
memory, which is shared between multiple work items, (3) itsconstant memory, which
is closer to the processor than theglobal memory, and thus much faster to access,
although slower than local memory, and (4) global memory, shared by all work
items. Data is only accessible after being transferred fromthe host, using functions
such asclEnqueueReadBuffer andclEnqueueWriteBuffer that move data
in and out of a device.

5 Discussion and Comparison

This section discusses the salient features of our surveyedlanguages. More specifically,
we look at their design philosophy and the new concepts they introduce, how point-to-
point synchronization is addressed in each of these languages, the various semantics
of atomic sections and the data distribution issues. We end up summarizing the key
features of all the languages covered in this paper.
Design Paradigms Our overview study, based on a single running example, namely the
computation of the Mandelbrot set, is admittedly somewhat biased, since each language
has been designed with a particular application framework in mind, which may, or may
not, be well adapted to a given application. Cilk is well suited to deal with divide-and-
conquer strategies, something not put into practice in our example. On the contrary,
X10, Chapel and Habanero-Java are high-level Partitioned Global Address Space lan-
guages that offer abstract notions such as places and locales, which were put to good
use in our example. OpenCL is a very low-level, verbose language that works across
GPUs and CPUs; our example clearly illustrates that this approach is not providing
much help here in terms of shrinking the semantic gap betweenspecification and im-
plementation. The OpenMP philosophy is to add compiler directives to parallelize parts
of code on shared-memory machines; this helps programmers move incrementally from
a sequential to a parallel implementation.
New Concepts Even though this paper does not address data parallelism perse, note
that Cilk is the only language that does not provide special support for data parallelism;
yet, spawned threads can be used inside loops to simulate SIMD processing. Also, Cilk
adds a facility to support speculative parallelism, enabling spawned tasks abort oper-
ations via theabort statement. Habanero-Java introduces theisolated statement
to specify the weak atomicity property. Phasers, in Habanero-Java, and clocks, in X10,
are new high-level constructs for collective and point-to-point synchronization between
varying sets of threads.
Point-to-Point Synchronization We illustrate the way our surveyed languages address
the difficult issue of point-to-point synchronization via asimple example, a hide-and-
seek game in Figure 8. X10 clocks or Habanero-Java phasers help express easily the
different phases between threads. The notion of point-to-point synchronization cannot
be expressed easily using OpenMP or Chapel. We were not able to implement this game
using Cilk high-level synchronization primitives, sincesync, the only synchronization
construct, is a local barrier for recursive tasks: it synchronizes only threads spawned
in the current procedure, and thus not the two searcher and hider tasks. As mentioned
above, this is not surprising, given Cilk’s approach to parallelism.
Atomic Section The semantics and implementations of the various proposalsfor deal-
ing with atomicity are rather subtle.

Atomic operations, which apply to single instructions, canbe efficiently imple-
mented, e.g. in X10, using non-blocking techniques such ascompare-and-swap
instructions. In OpenMP, the atomic directive can be made towork faster than the crit-
ical directive, when atomic operations are replaced with processor commands such as
GLSC [15]; therefore, it is better to use this directive whenprotecting shared memory
during elementary operations. Atomic operations can be used to update different ele-
ments of a data structure (arrays, records) in parallel without using many explicit locks.

f i n i s h async {
c l o c k c l = c l o c k . make () ;
async c locked (c l) {

c oun t to a numbe r () ;
next ;
s t a r t s e a r c h i n g () ;

}
async c locked (c l) {

h i d e o n e s e l f () ;
next ;
c o n t i n u e t o b e h i d d e n () ;

}
}

f i n i s h async{
phaser ph = new phaser () ;
async phased (ph) {

c oun t to a numbe r () ;
next ;
s t a r t s e a r c h i n g () ;

}
async phased (ph) {

h i d e o n e s e l f () ;
next ;
c o n t i n u e t o b e h i d d e n () ;

}
}

c i l k vo id s e a r c h e r () {
c oun t to a numbe r () ;
p o i n t t o p o i n t s y n c () ; / / m i s s ing
s t a r t s e a r c h i n g () ;

}
c i l k vo id h i d d e r () {

h i d e o n e s e l f () ;
p o i n t t o p o i n t s y n c () ; / / m i s s ing
c o n t i n u e t o b e h i d d e n () ;

}
vo id main () {

spawn s e a r c h e r () ;
spawn h i d d e r () ;

}

Fig. 8: A hide-and-seek game (X10, HJ, Cilk)

In the example of Figure 9, the updates of different elementsof Array x are allowed to
occur in parallel. General atomic sections, on the other hand, serialize the execution of
updates to elements via one lock.

#pragma omp p a r a l l e l f o r shared (x , index , n)
f o r (i =0 ; i<n ; i ++) {
#pragma omp atomic

x [i nde x [i]] += f (i) ; / / i nde x i s supposed i n j e c t i v e
}

Fig. 9: Example of an atomic directive in OpenMP

With the weak atomicity model of Habanero-Java, theisolated keyword is used
instead ofatomic to make explicit the fact that the construct supports weak rather than
strong isolation. In Figure 10, Threads 1 and 2 may access toptr simultaneously; since
weakly atomic accesses are used, an atomic access totemp->next is not enforced.

/ / Thread 1
p t r = head ;/ / non i s o l a t e d s t a t e m e n t
i s o l a t e d {

re a dy = t r u e ;
}

/ / Thread 2
i s o l a t e d {

i f (re a dy)
temp−>ne x t = p t r ;

}

Fig. 10: Data race onptr with Habanero-Java

Data Distribution PGAS languages offer a compromise between the fine level of con-
trol of data placement provided by the message passing modeland the simplicity of the
shared memory model. However, the physical reality is that different PGAS portions,
although logically distinct, may refer to the same physicalprocessor and share physical
memory. Practical performance might thus not be as good as expected.

Regarding the shared memory model, despite its simplicity of programming, pro-
grammers have scarce support for expressing data locality,which could help improve
performance in many cases. Debugging is also difficult when data races occur.

Finally, the message passing memory model, where processors have no direct access
to the memories of other processors, can be seen as the most general one, in which
programmers can both specify data distribution and controllocality. Shared memory
(where there is only one processor managing the whole memory) and PGAS (where
one assumes that each portion is located on a distinct processor) models can be seen as
particular instances of the message passing model, when converting implicit write and
read operations with explicit send/receive message passing constructs.
Summary Table We collect in Table 1 the main characteristics of each language ad-
dressed in this paper. Even though we have not discussed the issue of data parallelism
in this paper, we nonetheless provide, for the interested reader, the main constructs used
in each language to launch data parallel computations.

Language Task creationTask joinSynchronization Atomic Data Memory
section parallelism model

Cilk (MIT) spawn sync — cilk lock — Shared

Chapel (Cray) begin — sync sync forall PGAS
cobegin atomic coforall (Locales)

X10 (IBM) async finish next atomic foreach PGAS
future force (Places)

Habanero-Java async finish next isolated foreach PGAS
(Rice) future get (Places)

OpenMP omp task omp omp barrier omp critical omp for Shared
omp section taskwait omp atomic

OpenCL EnqueueTask Finish EnqueueBarrier,atom add, EnqueueND-Message
events ... RangeKernelPassing

Table 1. Summary of parallel languages constructs

6 Conclusion

This paper presents, using the Mandelbrot set computation as a running example, an
up-to-date comparative overview of six parallel programming language designs: Cilk,
Chapel, X10, Habanero-Java, OpenMP and OpenCL. These languages are in current
use, popular, offer rich and highly abstract functionalities, and most support both data
and task parallel execution models. The paper describes how, in addition to data dis-
tribution and locality, the fundamentals of task parallel programming, namely task cre-
ation, collective and point-to-point synchronization andmutual exclusion are dealt with
in these languages.

This paper can be of use to (1) programmers, by providing a taxonomy of parallel
language designs useful when deciding which language is more appropriate for a given
project, (2) language designers, by presenting design solutions already field-tested in
previous languages, and (3) implementors of automatic program conversion tools, by
helping them narrow down the issues that need to be tackled when dealing with parallel

execution and memory models. We used this case study as a basis for the design of
SPIRE [14], a sequential to parallel intermediate representation extension that can be
used to upgrade the intermediate representations used in compilation frameworks in
order to represent task concepts in control-parallel languages and constructs; SPIRE is
simple and generic enough to describe, to our knowledge, allparallel languages, even
though the intricacies of the various existing synchronization models, exhibited by this
study, require low-level representation support.

References

1. Message Passing Interface.http://www-unix.mcs.anl.gov/mpi/index.html.
2. OpenCL - The Open Standard for Parallel Programming of Heterogeneous Systems.http:

//www.khronos.org/opencl.
3. OpenMP Specifications.http://www.openmp.org/blog/specifications/.
4. The Mandelbrot Set.http://warp.povusers.org/Mandelbrot/.
5. Cilk 5.4.6 Reference Manual. Supercomputing Technologies Group, MIT Laboratory for

Computer Science,http://supertech.lcs.mit.edu/cilk, 1998.
6. Chapel Language Specification 0.796. Cray Inc., 901 Fifth Avenue, Suite 1000, Seattle, WA

98164, October 21, 2010.
7. S. V. Adve and K. Gharachorloo. Shared Memory ConsistencyModels: A Tutorial. IEEE

Computer, 29:66–76, 1996.
8. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,K. H. Randall, and Y. Zhou.

Cilk: An Efficient Multithreaded Runtime System. InJournal of Parallel and Distributed
Computing, pages 207–216, 1995.

9. V. Cavé, J. Zhao, and V. Sarkar. Habanero-Java: the New Adventures of Old X10. In9th
International Conference on the Principles and Practice ofProgramming in Java (PPPJ),
August 2011.

10. B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and the Chapel Lan-
guage.Int. J. High Perform. Comput. Appl, 21:291–312, August 2007.

11. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,
and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform Cluster Computing.
SIGPLAN Not., 40:519–538, October 2005.

12. E. Cuevas, A. Garcia, F. J. J.Fernandez, R. J. Gadea, and J. Cordon. Importance of Simu-
lations for Nuclear and Aeronautical Inspections with Ultrasonic and Eddy Current Testing.
Simulation in NDT, Online Workshop inwww.ndt.net, September 2010.

13. J. B. Dennis, G. R. Gao, and K. W. Todd. Modeling The Weather With a Data Flow Super-
computer.IEEE Trans. Computers, pages 592–603, 1984.

14. D. Khaldi, P. Jouvelot, C. Ancourt, and F. Irigoin. SPIRE: A Sequential to Parallel Inter-
mediate Representation Extension. Technical Report CRI/A-487 (Submitted to CGO’13),
MINES ParisTech, 2012.

15. S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugani, C. J. Hughes, C. Kim, V. W.
Lee, and A. D. Nguyen. Atomic Vector Operations on Chip Multiprocessors.SIGARCH
Comput. Archit. News, 36(3):441–452, June 2008.

16. J. Larus and C. Kozyrakis. Transactional Memory.Commun. ACM, 51:80–88, July 2008.
17. D. A. Padua, editor.Encyclopedia of Parallel Computing. Springer, 2011.
18. V. Sarkar. Synchronization Using Counting Semaphores.In ICS’88, pages 627–637, 1988.
19. J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: A Unified Deadlock-Free

Construct for Collective and Point-To-Point Synchronization. In ICS’08, pages 277–288,
New York, NY, USA, 2008. ACM.

