N

N

Task Parallelism and Data Distribution: An Overview of
Explicit Parallel Programming Languages

Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt, Francois Irigoin

» To cite this version:

Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt, Francois Irigoin. Task Parallelism and Data Distri-
bution: An Overview of Explicit Parallel Programming Languages. 25th International Workshop on
Languages and Compilers for Parallel Computing (LCPC 2012), Sep 2012, Tokyo, Japan. pp 174-189,
10.1007/978-3-642-37658-0_12 . hal-00742536

HAL Id: hal-00742536
https://minesparis-psl.hal.science/hal-00742536

Submitted on 18 Oct 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://minesparis-psl.hal.science/hal-00742536
https://hal.archives-ouvertes.fr

Task Parallelism and Data Distribution: An Overview of
Explicit Parallel Programming L anguages

Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt and Fasi¢rigoin

CRI, Mathématiques et systemes
MINES ParisTech
35 rue Saint-Honoré, 77300 Fontainebleau, France
firstnanme. | ast name@ri nes-pari stech. fr

Abstract. Programming parallel machines as effectively as sequemiés would
ideally require a language that provides high-level progréng constructs to
avoid the programming errors frequent when expressindlpbsan. Since task
parallelism is considered more error-prone than data leéisah, we survey six
popular and efficient parallel language designs that tabidalifficult issue: Cilk,
Chapel, X10, Habanero-Java, OpenMP and OpenCL. Using gie $simning ex-
ample a parallel implementation of the computation of thenddbrot set, this
paper describes how the fundamentals of task parallel pnoging, i.e., col-
lective and point-to-point synchronization and mutuallesion, are dealt with
in these languages. We discuss how these languages alowhttistribute data
over memory. Our study suggests that, even though thereamg keywords and
notions introduced by these languages, they all boil dowffialaas control issues
are concerned, to three key task concepts: creation, symigation and atomic-
ity. Regarding memory models, these languages adopt ortead approaches:
shared memory, message passing and PGAS (Partitioned @lddireess Space).
The paper is designed to give users and language and cordedigners an up-
to-date comparative overview of current parallel langsage

1 Introduction

Parallel computing is about 50 years old. The market donuear multi- and many-
core processors and the growing importance and the inageasmber of clusters in the
Top500 list € op500. or g) are making parallelism a key concern when implementing
current applications such as weather modeling [13] or rauc@mulations [12]. These
important applications require large computational poaed thus need to be pro-
grammed to run on powerful parallel supercomputers. Progriag languages adopt
one of two ways to deal with this issue: (1) high-level langemhide the presence of
parallelism at the software level, thus offering a code ¢adyild and port, but the per-
formance of which is not guaranteed, and (2) low-level laggs use explicit constructs
for communication patterns and specifying the number aadgrhent of threads, but
the resulting code is difficult to build and not very portatdihough usually efficient.
Recent programming models explore the best trade-offsdestw@xpressiveness and
performance when addressing parallelism. Traditiontilste are two general ways to
break an application into concurrent parts in order to takeatage of a parallel com-
puter and execute them simultaneously on different CPUs: @lad task parallelisms.

In data parallelism, the same instruction is performed atgaly and simultaneously
on different data. In task parallelism, the execution ofedént processes (threads) is
distributed across multiple computing nodes. Task pdisiihes often considered more
difficult to specify than data parallelism, since it lacks tlegularity present in the latter
model; processes (threads) run simultaneously differesttuctions, leading to differ-
ent execution schedules and memory access patterns. Tasigemaent must address
both control and data issues, in order to optimize execai@hcommunication times.

This paper describes how six popular and efficient paratigjmmming language
designs tackle the issue of task parallelism specifica@dk; Chapel, X10, Habanero-
Java, OpenMP and OpenCL. They are selected based on thesgbh their func-
tionality and their popularity; they provide simple higivel parallel abstractions that
cover most of the parallel programming language designtspac We use a popular
parallel problem (the computation of the Mandelbrot set §]a running example. We
consider this an interesting test case, since it exhibiigla-level of embarrassing par-
allelism while its iteration space is not easily partitidn& one wants to have tasks of
balanced run times. Since our focus is here the study andaasop of the expressive-
ness of each language’s main parallel constructs, we davepgrformance measures
for these implementations.

Our paper is useful to (1) programmers, to choose a paraltgjuage and write
parallel applications, (2) language designers, to com{tegie ideas on how to tackle
parallelism in new languages with existing proposals, &)dlésigners of optimizing
compilers, to develop automatic tools for writing paraplebgrams. Our own goal was
to use this case study for the design of SPIRE [14], a secpleéafparallel intermediate
representation extension of the intermediate represensaised in compilation frame-
works, in order to upgrade their existing infrastructuradalress parallel languages.

After this introduction, Section 2 presents our runningregke. We discuss the
parallel language features specific to task parallelisrmeta task creation, synchro-
nization and atomicity, and also how these languageshlig&ridata over different pro-
cessors in Section 3. In Section 4, a selection of currentimpdrtant parallel pro-
gramming languages are described: Cilk, Chapel, X10, Haloadava, OpenMP and
OpenCL. For each language, an implementation of the Manakedbt algorithmis pre-
sented. Section 5 compares and discusses these languagesndllde in Section 6.

2 Mandelbrot Set Computation

The Mandelbrot set is a fractal set. For each complexC, the set of complex num-
bersz, (c) is defined by induction as followsy(c) = ¢ andz,41(c) = 22(c) + c. The
Mandelbrot setV! is then defined agc € C/lim,_ o 2,(c) < oo}; thus, M is the
set of all complex numbersfor which the serieg,,(c) converges. One can show [4]
that a finite limit forz, (c) exists only if the modulus of,,, () is less than 2, for some
positivermn. We give a sequential C implementation of the computatiothefMandel-
brot set in Figure 2. Running this program yields Figure lwhich each complex
is seen as a pixel, its color being related to its convergenoperty: the Mandelbrot
set is the black shape in the middle of the figure. We use ttge paogram as our
test case in our parallel implementations, in Section 4ttierparallel languages we

Fig. 1. Result of the Mandelbrot set

unsigned long min_color = 0, maxcolor = 16777215;
unsigned int width = NPIXELS; uint height = NPIXELS; uint N = 2, maxiter = DDO;

double r_min = —-N, r_max = N, iimin = —N, i.max = N;
double scaler = (romax — r_min)/width;
double scalei = (i_max — i-min)/heigth;

double scale.color = (maxcolor — min_color)/ maxiter;
Display xdisplay; Window win; GC gc;
for (row = 0; row< height; ++row) {
for (col = 0; col < width; ++col) {
z.r =z.i = 0;
/«+ Scale ¢ as display coordinates of current poimt/
c.r = r_min + ((double) col x* scaler);

c.i = i_min + ((double) (height—1-row) *x scale.i);
[« lterates z = zz+c while |z] < N, or maxiter is reachedsx/
k = 0;
do {
temp = z.mz.r — z.ixz.i + c.r;
z.i = 2xz.rxz.i + Cc.i; z.r = temp;
++Kk;

} while (z.rxz.r + z.ixz.i < (N*N) & k < maxiter);
I/« Set color and display pointx/

color = (ulong) ((k-1) = scalecolor) + min.color;
XSetForeground (display, gc, color);

XDrawPoint (display , win, gc, col, row);

Fig. 2: Sequential C implementation of the Mandelbrot set

selected. This is an interesting case for illustrating felrarogramming languages: (1)
it is an embarrassingly parallel problem, since all comipoits of pixel colors can be
performed simultaneously, and thus is obviously a good iciatel for expressing par-
allelism, but (2) its efficient implementation is not obvisince good load balancing
cannot be achieved by simply grouping localized pixels tiogiebecause convergence
can vary widely from one point to the next, due to the fractdlre of the Mandelbrot
set.

3 Task Parallelism | ssues

Among the many issues related to parallel programming, tiestipns of task creation,
synchronization, atomicity and memory model are partitykacute when dealing with
task parallelism, our focus in this paper.

3.1 Task Creation

In this paper, a task is a static notion, i.e., a list of insians, while processes and
threads are running instances of tasks. Creation of sykeahtask instances is an
expensive operation, since its implementation, via preegsrequires allocating and
later possibly releasing system-specific resources. Ilatas a short execution time,
this overhead might make the overall computation quiteficieht. Another way to
introduce parallelism is to use lighter, user-level taskdled threads. In all languages
addressed in this paper, task management operationsoefiech user-level tasks. The
problem of finding the proper size of tasks, and hence the eumbtasks, can be
decided at compile or run times, using heuristic means.

In our Mandelbrot example, the parallel implementationsprevide below use a
static schedule that allocates a number of iterations ofdbp r ow to a particular
thread; we interleave successive iterations into disthretads in a round-robin fashion,
in order to group loop body computations into chunks, of kigeght /P, whereP is
the (language-dependent) number of threads. Our inteptifeo try to reach a good
load balancing between threads.

3.2 Synchronization

Coordination in task-parallel programs is a major sourceoofiplexity. It is dealt with
using synchronization primitives, for instance when a ctrdgment contains many
phases of execution where each phase should wait for thegeatones to proceed.
When a process or a thread exits before synchronizing onreebtirat other processes
are waiting on or when processes operate on different bamwgng different orders, a
deadlock occurs. Programs must avoid these situationsh@@adlock-free). Differ-
ent forms of synchronization constructs exist, such as at#xclusion when access-
ing shared resources using locks, join operations thatitete child threads, multi-
ple synchronizations using barriérand point-to-point synchronization using counting
semaphores [18].

In our Mandelbrot example, we need to synchronize all pieehputations before
exiting; one also needs to use synchronization to deal Wwératomic section (see next
subsection). Even though synchronization is rather sirptais example, caution is
always needed; an example that may lead to deadlocks isanedtin Section 5.

3.3 Atomicity

Access to shared resources requires atomic operationsathety given time, can be
executed by only one process or thread. Atomicity comes i ftawvors: weak and
strong [16]. A weak atomic statement is atomic only with exgpto other explic-
itly atomic statements; no guarantee is made regardinggictiens with non-isolated
statements (not declared as atomic). By opposition, staingicity enforces non-
interaction of atomic statements with all operations in ¢éiméire program. It usually

1The term “barrier” is used in various ways by authors [17]; seasider here that barriers
are synchronization points that wait for the terminatiorsets of threads, defined in a language-
dependent manner.

requires specialized hardware support (e.g., atomic “@mpnd swap” operations),
although a software implementation that treats non-eitifliatomic accesses as im-
plicitly atomic single operations (using a single globalkpis possible.

In our Mandelbrot example, display accesses require caiometo the X server;
drawing a given pixel is an atomic operation since GUI-sfiecialls need synchro-
nization. Moreover, two simple examples of atomic sectiarmsprovided in Section 5.

3.4 Memory Models

The choice of a proper memory model to express parallel progiis an importantissue
in parallel language design. Indeed, the ways processaharatls communicate using
the target architecture and impact the programmer’s coatiput specification affect
both performance and ease of programming. There are clyrterge main approaches.
M essage Passing This model uses communication libraries to allow efficieatgilel
programs to be written for distributed memory systems. &libsaries provide routines
to initiate and configure the messaging environment as vgedleading and receiving
data packets. Currently, the most popular high-level nggsgassing system for scien-
tific and engineering applications is MPI (Message Passitarface) [1]. OpenCL [2]
uses a variation of the message passing memory model.

Shared memory Also called global address space, this model is the simplestto
use [7]. There, the address spaces of the threads are mappabeglobal memory; no
explicit data passing between threads is needed. Howeawerhsonization is required
between the threads that are writing and reading data torandthe shared memory.
OpenMP [3] and Cilk [8] use the shared memory model.

Partitioned Global Address Space PGAS-based languages combine the programming
convenience of shared memory with the performance confrolessage passing by
partitioning logically a global address space; each poiigdocal to each thread. From
the programmer’s point of view programs have a single addspace and one task of
a given thread may refer directly to the storage of a diffetkread. The three other
programming languages in this paper use the PGAS memorylmode

4 Parallel Programming Languages

We present here six parallel programming language desighdescribe how they deal
with the concepts introduced in the previous section. Gitierlarge number of parallel
languages that exist, we focus primarily on languages tiedhacurrent use and popular
and that support simple high-level task-oriented paraleitractions.

4.1 Cilk

Cilk [8], developed at MIT, is a multithreaded parallel larage based on C for shared
memory systems. Cilk is designed for exploiting dynamic asginchronous paral-
lelism. A Cilk implementation of the Mandelbrot set is prded in Figure 3.

2From now on, variable declarations are omitted, unlessiregdior the purpose of our pre-
sentation.

cilk_lock_init (display_-lock);
for (m = 0; m< P; m++)

spawn computepoints (m);
sync;

cilk void computepoints (uint m) {
for (row = m; row < height; row +=P)

for (col = 0; col < width; ++col) {
/l'Initialization of ¢, k and z
do {
temp = z.wz.r — z.ixz.i + c.r;
zZ.i = 2¢z.rxz.i + c.i; z.r = temp;
++k;

} while (z.rxz.r + z.ixz.i < (N*N) & k < maxiter);
color = (ulong) ((k-1) = scalecolor) + min_color;
cilk_lock (display_-lock);

XSetForeground (display, gc, color);

XDrawPoint (display , win, gc, col, row);
cilk_unlock (display-lock);

Fig. 3: Cilk implementation of the Mandelbrot set{npr oc P)

Task Parallelism Theci | k keyword identifies functions that can be spawned in par-
allel. A Cilk function may create threads to execute funeiin parallel. Thespawn
keyword is used to create child tasks, suclcasputepointsin our example, when
referring to Cilk functions.

Cilk introduces the notion of inlets [5], which are local Cfunctions defined to
take the result of spawned tasks and use it (performing actieah). The result should
not be put in a variable in the parent function. All the vakégbof the function are
available within an inletAbor t allows to abort a speculative work by terminating all
of the already spawned children of a function; it must beechihside an inlet. Inlets
are not used in our example.

Synchronization Thesync statement is a local barrier, used in our example to ensure
task termination. It waits only for the spawned child task¢he current procedure to
complete, and not for all tasks currently being executed.

Atomic Section Mutual exclusion is implemented using locks of tygad k_| ockvar ,
such adisplaylock in our example. The functioni | k_| ock is used to test a lock
and block if it is already acquired; the functionl k_unl ock is used to release a lock.
Both functions take a single argument which is an object petyi | k_| ockvar.

ci |l k.l ock_ nit isused to initialize the lock object before it is used.

Data Distribution In Cilk's shared memory model, all variables declared a@ilk
functions are shared. To avoid possible non-determiniserialdata races, the program-
mer should avoid the situation when a task writes a variddaerhay be read or written
concurrently by another task, or use the primitdiel k_f ence that ensures that all
memory operations of a thread are committed before the npetation execution.

4.2 Chapd

Chapel [10], developed by Cray, supports both data and aloifev parallelism and
is designed around a multithreaded execution model basd®)GaS for shared and

distributed-memory systems. A Chapel implementation ef Mandelbrot set is pro-
vided in Figure 4.

coforall loc in Locales do
on loc {
for row in loc.id.. height by numLocales do {
for col in 1..width do {
/lInitialization of c, k and z

do {

temp = z.&z.r — z.ixz.i + c.r;

Z.i = 2xz.rxz.i + c.i; z.r = temp;

k = k+1;
} while (z.rxz.r + z.ixz.i < (NxN) & k < maxiter);
color = (ulong) ((k-1) * scalecolor) + min_color;
atomic {

XSetForeground (display , gc, color);
XDrawPoint (display , win, gc, col, row);
}
P

Fig. 4: Chapel implementation of the Mandelbrot set

Task Parallelism Chapel provides three types of task parallelism [6], twocdtired
ones and one unstructureclobegi n{stmts} creates a task for each statement in
stmts; the parent task waits for th&mts tasks to be completed.of oral | is a
loop variant of theobegi n statement, where each iteration of tef or al | loop is

a separate task and the main thread of execution does nateenintil every iteration

is completed. Finally, ibbegi n{stmt}, the original parent task continues its execution
after spawning a child runningmt.

Synchronization In addition tocobegi n andcof or al | , used in our example, which
have an implicit synchronization at the end, synchroniatiariables of typeync
can be used for coordinating parallel taskssync [6] variable is either empty or full,
with an additional data value. Reading an empty variablevaritthg in a full variable
suspends the thread. Writing to an empty variable atoryichlanges its state to full.
Reading a full variable consumes the value and atomicaliyghs the state to empty.
Atomic Section Chapel supports atomic sectiorg mi c{stmt}): this indicates that
stmt should be executed atomically with respect to any otheathre

Data Distribution Chapel introduces a type calléacal e to refer to a unit of the
machine resources on which a computation is running. A éoisah mapping of Chapel
data and computations to the physical machine. In FigureréyA ocal es represents
the set of locale values corresponding to the machine reeswn which this code is
running;nunLocal es refers to the number of locales. Chapel also introduces new
domai n types to specify array distribution; they are not used inexample.

4.3 X10 and Habanero-Java

X10 [11], developed at IBM, is a distributed asynchronousatyic parallel program-
ming language for multi-core processors, symmetric sharethory multiprocessors
(SMPs), commodity clusters, high end supercomputers, &g @mbedded processors
like Cell. A X10 implementation of the Mandelbrot set is piaed in Figure 5.

Habanero-Java[9], under development at Rice Universitjerived from X10 [11],
and introduces additional synchronization and atomiaityjtives surveyed below.

finish {
for (m = 0; m< place.MAXPLACES; m++) {
place plLrow = place.places(m);
async at (pl-row) {
for (row = m; row< height; row+=place.MAXPLACESY

for (col = 0; col < width; ++col) {
/l'Initialization of c, k and z
do {
temp = z.&z.r — z.ixz.i + c.r;
zZ.i = 2xz.rxz.i + c.i; z.r = temp;
++k;

} while (z.rxz.r + z.ixz.i < (NxN) & k < maxiter);
color = (ulong) ((k-1) * scalecolor) + min_color;
atomic {
XSetForeground (display , gc, color);
XDrawPoint (display , win, gc, col, row);

3338,

Fig.5: X10 implementation of the Mandelbrot set

Task Parallelism X10 provides two task creation primitives: (1) theync stmt con-
struct creates a new asynchronous task that exeetites while the current thread
continues, and (2) thfeut ur e exp expression launches a parallel task that returns the
value ofexp.

Synchronization With f i ni sh stmt, the current running task is blocked at the end
of thef i ni sh clause, waiting till all the children spawned during the @xé&n of
stmt have terminated. The expressibnf or ce() is used to get the actual value of
the “future” taskf .

X10 introduces a new synchronization concept: the cloclcls as a barrier for a
dynamically varying set of tasks [19] that operate in pha¥esxecution where each
phase should wait for previous ones before proceeding. lAthest uses a clock must
first register with it (multiple clocks can be used). It theses the statemenext to
signal to all the tasks that are registered with its clocled this ready to move to the
following phase, and waits until all the clocks with whichstregistered can advance.
A clock can advance only when all the tasks that are regidtgith it have executed a
next statement.

Habanero-Java introduces phasers to extend this clockanerh. A phaser is cre-
ated and initialized to its first phase using the functicew. The scope of a phaser
is limited to the immediately enclosinfg ni sh statement. A task can be registered
with zero or more phasers, using one of four registration @sothe first two are the
traditional SIG and WAIT signal operations for producensomer synchronization;
the SIGWAIT mode implements barrier synchronization, while SI&IT _SINGLE
ensures, in addition, that its associated statement isues@by only one thread. As
in X10, anext instruction is used to advance each phaser that this taglgistered
with to its next phase, in accordance with this task’s regi&in mode, and waits on
each phaser that task is registered with, with a WAIT subm@deillustrate the use of

clocks and phasers in Figure 8; note that they are not useariMandelbrot example,
since a collective barrier based on theni sh statement is sufficient.

Atomic Section When a thread enters am onmi ¢ statement, no other thread may enter
it until the original thread terminates it.

Habanero-Java supports weak atomicity usingithel at ed stmt primitive for
mutual exclusion and isolation. The Habanero-Java impteation takes a single-lock
approach to deal with isolated statements.

Data Distribution In order to distribute work across processors, X10 and Ha-int
duce a type callegl ace. A place is an address space within which a task may run;
different places may however refer to the same physicalgasmr and share physi-
cal memory. The program address space is partitioned imgficdtly distinct places.

Pl ace. MAX_PLACES, used in Figure 5, is the number of places available to a pro-
gram.

44 OpenMP

OpenMP [3] is an application program interface providing @ltirthreaded program-
ming model for shared memory parallelism; it uses direstieeextend sequential lan-
guages. A C OpenMP implementation of the Mandelbrot setasiged in Figure 6.

P = ompgetnum.threads ();

#pragma omp parallel shared(height ,width, scaler,\
scalei ,maxiter ,scalecolor ,min.color,r_min,i_min)\
private (row, col ,k,m, color ,temp,z,c)

#pragma omp single

for (m = 0; m< P; m++)
#pragma omp task
for (row = m; row < height; row+=P) {

for (col = 0; col < width; ++col) {
/l'Initialization of c, k and z
do {
temp = z.&z.r — z.ixz.i + c.r;
zZ.i = 2xz.rxz.i + c.i; z.r = temp;

++k;
} while (z.rxz.r + z.ixz.i < (NxN) & k < maxiter);
color = (ulong) ((k-1) * scalecolor) + min_color;
#pragma omp critical

XSetForeground (display , gc, color);
XDrawPoint (display , win, gc, col, row);
}
P

Fig.6: C OpenMP implementation of the Mandelbrot set

Task Parallelism OpenMP allows dynamiofp t ask) and staticdnmp secti on)
scheduling models. A task instance is generated each tifeead (the encountering
thread) encounters@p t ask directive. This task may either be scheduled immedi-
ately on the same thread or deferred and assigned to anyltinradghread team, which
is the group of threads created wheroarp par al | el directive is encountered. The
onp secti ons directive is a non-iterative work-sharing construct. lesifies that

the enclosed sections of code, declared wittp sect i on, are to be divided among
the threads in the team; these sections are independekstdbcode that the compiler
can execute concurrently.

Synchronization OpenMP provides synchronization constructs that contrelexe-
cution inside a team threablarri er andt askwai t . When a thread encounters a
barri er directive, it waits until all other threads in the team re#ith same point;
the scope of a barrier region is the innermost enclosingdlparagion. Thet askwai t
construct is a restricted barrier that blocks the thread alhchild tasks created since
the beginning of the current task are completed. dimp si ngl e directive identifies
code that must be run by only one thread.

Atomic Section Thecritical andat om c directives are used for identifying a
section of code that must be executed by a single thread miea Tiheat om ¢ direc-
tive works faster thaeri ti cal , since it only applies to single instructions, and can
thus often benefit from hardware support. Our implementasfadhe Mandelbrot set in
Figure 6 usesri ti cal .

Data Distribution OpenMP variables are either globah@ar ed) or local (pr i vat e);
see Figure 6 for examples. A shared variable refers to orguerblock of storage for
all threads in the team. A private variable refers to a défifeéblock of storage for each
thread. More memory access modes exist, su€h ast pri vat e orl ast pri vat e,
that may require communication or copy operations.

45 OpenCL

OpenCL (Open Computing Language) [2] is a standard for mmogning heterogeneous
multiprocessor platforms where programs are divided ietegal parts: some called
“the kernels” that execute on separate devices, e.g., GRitlstheir own memories
and the others that execute on the host CPU. The main obj@pémCL is the com-
mand queue, which is used to submit work to a device by theargjng of OpenCL
commands to be executed. An OpenCL implementation of thedilanot set is pro-
vided in Figure 7.
Task Parallelism OpenCL provides the parallel construdtEnqueueTask, which
enqueues a command requiring the execution of a kernel owieedey a work item
(OpenCL thread). OpenCL uses two different models of execwaf command queues:
in-order, used for data parallelism, and out-of-orderriioat-of-order command queue,
commands are executed as soon as possible, and no ordeciftesihexcept for wait
and barrier events. We illustrate the out-of-order executhechanism in Figure 7, but
currently this is an optional feature and is thus not sugbloly many devices.
Synchronization OpenCL distinguishes between two types of synchronizatioarse
and fine. Coarse grained synchronization, which deals witimand queue operations,
uses the construatl EnqueueBarri er, which defines a barrier synchronization
point. Fine grained synchronization, which covers synotration at the GPU function
call granularity level, uses OpenCL events @laEnqueueWai t For Event s calls.
Data transfers between the GPU memory and the host memafyngtions such as
cl EnqueueReadBuf f er andcl EnqueueW i t eBuf f er, also induce synchro-
nization between blocking or non-blocking communicatiomenands. Events returned

--kernel void kernelmain (complex c,uint maxiter, double scalecolor,
uint m, uint P, ulong color [NPIXELS][NPIXELS]) {
for (row = m; row < NPIXELS; row+=P)
for (col = 0; col < NPIXELS; ++col) {
//'Initialization of c, k and z

do {
temp = z.mz.r—z.ixz.i+c.r;
Z.i = 2xz.rxz.i+c.i; z.r = temp;
++k;

} while (z.rxz.r+z.ixz.i<(N*N) & k<maxiter);
color[row][col] = (ulong) ((k—1)xscalecolor);
}

cl_int ret = clGetPlatformIDs(1, &platform.id , &ret_num_platforms);
ret = clGetDevicelDs(platform.id , CL.DEVICE_TYPE.DEFAULT, 1,
&device.id , &ret_num.devices);
cl_context context =clCreateContext (NULL, 1, &device.id , NULL, NULL, &ret);
cQueue=zlCreateCommandQueue(context ,deviceid ,OUT.OF.ORDEREXECMODE_ENABLE,NULL);
P = CLDEVICEMAX_COMPUTEUNITS;
memc = clCreateBuffer (context, CLMEM_READ.ONLY , sizeof(complex), c);
/Il ... Create readonly buffers with maxiter, scaleolor and P too
memcolor = clCreateBuffer (context, CLMEMWRITEONLY,
sizeof (ulong)x height«width ,NULL,NULL);
clEnqueueWriteBuffer (cQueue ,memc,CORUE,0, sizeof(complex),&c,0 ,NULL,NULL);
/1 ... Enqueue write buffer with maxiter, scaleolor and P too
program = clCreateProgramWithSource (context, 1, &programsource , NULL, NULL);
err = clBuildProgram(program, 0O, NULL, NULL, NULL, NULL);
kernel = clCreateKernel (program, "kernelmain”, NULL);
clSetKernelArg(kernel, 0, sizeof(cimem),(void x)&memc);
/I ... Set kernel argument with memmaxiter, memscatdor, memP and memcolor too
for(m = 0; m< P; m++) {
memm = clCreateBuffer (context, CLMEM_READONLY , sizeof(uint), m);
clEnqueueWriteBuffer (cQueue, memm, CORUE, 0, sizeof@int), &m, 0, NULL, NULL);
clSetKernelArg(kernel, 0, sizeof(cimem),(void x)&memm);
clEnqueueTask (cQueue, kernel, 0, NULL, NULL);

clFinish (cQueue);
clEnqueueReadBuffer (cQueue , memcolor ,CIRUE,0, space ,color ,0,NULL,NULL);
for (row = 0; row< height; ++row)
for (col = 0; col < width; ++col) {
XSetForeground (display, gc, color[col][row]);
XDrawPoint (display , win, gc, col, row);

}

Fig. 7: OpenCL implementation of the Mandelbrot set

by cl Enqueue operations can be used to check if a non-blocking operaasrcbm-
pleted.

Atomic Section Atomic operations are only supported on integer data, wetions
such asat omadd or at omxchg. Currently, these are only supported by some de-
vices as part of an extension of the OpenCL standard. Opess&s kupport for general
atomic sections, thus the drawing function is executed byntbst in Figure 7.

Data Distribution Each work item can either use (1) its private memory, (2)dtsl
memory, which is shared between multiple work items, (3¢dstant memory, which
is closer to the processor than thgl obal memory, and thus much faster to access,
although slower than | ocal memory, and (4) global memory, shared by all work
items. Data is only accessible after being transferred filoenhost, using functions
such agl EnqueueReadBuf f er andcl EnqueueW i t eBuf f er that move data
in and out of a device.

5 Discussion and Comparison

This section discusses the salient features of our surdapgdages. More specifically,
we look at their design philosophy and the new concepts thiegduce, how point-to-
point synchronization is addressed in each of these larggdlge various semantics
of atomic sections and the data distribution issues. We @nsummarizing the key
features of all the languages covered in this paper.

Design Paradigms Our overview study, based on a single running example, nathnel
computation of the Mandelbrot set, is admittedly somewfestdal, since each language
has been designed with a particular application frameworkind, which may, or may
not, be well adapted to a given application. Cilk is well edito deal with divide-and-
conquer strategies, something not put into practice in @ample. On the contrary,
X10, Chapel and Habanero-Java are high-level PartitiorledabAddress Space lan-
guages that offer abstract notions such as places and $oeabch were put to good
use in our example. OpenCL is a very low-level, verbose lagguhat works across
GPUs and CPUs; our example clearly illustrates that thigagmh is not providing
much help here in terms of shrinking the semantic gap betwpeaification and im-
plementation. The OpenMP philosophy is to add compilertives to parallelize parts
of code on shared-memory machines; this helps programnrs mcrementally from
a sequential to a parallel implementation.

New Concepts Even though this paper does not address data parallelissepeote
that Cilk is the only language that does not provide speaigpert for data parallelism;
yet, spawned threads can be used inside loops to simulat® Btbtessing. Also, Cilk
adds a facility to support speculative parallelism, emapBpawned tasks abort oper-
ations via theabor t statement. Habanero-Java introducesithel at ed statement
to specify the weak atomicity property. Phasers, in Habadawva, and clocks, in X10,
are new high-level constructs for collective and poinptiint synchronization between
varying sets of threads.

Point-to-Point Synchronization We illustrate the way our surveyed languages address
the difficult issue of point-to-point synchronization visimple example, a hide-and-
seek game in Figure 8. X10 clocks or Habanero-Java phaskr&xgress easily the
different phases between threads. The notion of pointsiatsynchronization cannot
be expressed easily using OpenMP or Chapel. We were notibitement this game
using Cilk high-level synchronization primitives, singgnc, the only synchronization
construct, is a local barrier for recursive tasks: it syodizes only threads spawned
in the current procedure, and thus not the two searcher alad tdsks. As mentioned
above, this is not surprising, given Cilk’s approach to paliam.

Atomic Section The semantics and implementations of the various prop&satkeal-
ing with atomicity are rather subtle.

Atomic operations, which apply to single instructions, dam efficiently imple-
mented, e.g. in X10, using non-blocking techniques sucbhawmar e- and- swap
instructions. In OpenMP, the atomic directive can be madedxk faster than the crit-
ical directive, when atomic operations are replaced witicpssor commands such as
GLSC [15]; therefore, it is better to use this directive wipeatecting shared memory
during elementary operations. Atomic operations can bed tsepdate different ele-
ments of a data structure (arrays, records) in parallelonitiising many explicit locks.

Lo Lo cilk void searcher (){
finish async { finish async{ countto.anumber ():
clock cl = clock.make(); phaser ph = new phaser (); point_to_p_oint sync’()'//missing
async clocked (cl) { async phased(ph) { start__seérchin_g()' '
countto_a_number (); countto_a_number (); !
next; next; . . .
start.searching (); start searching (); c”iljjevglndesh;?fd(e;r'() {
} oin_t to oint’s nc ();// missin
async clocked (cl) { async phased(ph) { p t-to-p -SY o 9
hide_oneself (); hide.oneself (); continueto.be-hidden ();
next; . . next; . void main() {
continueto_be_hidden (); continueto_be_hidden (); spawn searcher ();
¥ } spawn hidder ();
} })

Fig.8: A hide-and-seek game (X10, HJ, Cilk)

In the example of Figure 9, the updates of different elemehfgray x are allowed to
occur in parallel. General atomic sections, on the othedhserialize the execution of
updates to elements via one lock.

#pragma omp parallel for shared(x, index, n)
for (i=0; i<n; i++) {
#pragma omp atomic
x[index[i]] += f(i); /l index is supposed injective

Fig. 9: Example of an atomic directive in OpenMP

With the weak atomicity model of Habanero-Java,itls®| at ed keyword is used
instead ofat ommi ¢ to make explicit the fact that the construct supports wetllerghan
strong isolation. In Figure 10, Threads 1 and 2 may accgssitasimultaneously; since
weakly atomic accesses are used, an atomic accésso- >next is not enforced.

/1 Thread 1 /1 Thread 2
ptr = head;//non isolated statement isolated {
isolated { if(ready)
ready = true; temp—>next = ptr;

Fig.10: Data race ompt r with Habanero-Java

Data Distribution PGAS languages offer a compromise between the fine levelsf co
trol of data placement provided by the message passing raadehe simplicity of the
shared memory model. However, the physical reality is tlifédrént PGAS portions,
although logically distinct, may refer to the same physprakcessor and share physical
memory. Practical performance might thus not be as good@ected.

Regarding the shared memory model, despite its simplidifgrogramming, pro-
grammers have scarce support for expressing data loaahigh could help improve
performance in many cases. Debugging is also difficult whaga thces occur.

Finally, the message passing memory model, where procesaee no direct access
to the memories of other processors, can be seen as the nmestabene, in which
programmers can both specify data distribution and comdieality. Shared memory
(where there is only one processor managing the whole mémaoy PGAS (where
one assumes that each portion is located on a distinct rogenaodels can be seen as
particular instances of the message passing model, whesm ity implicit write and
read operations with explicit send/receive message paseimstructs.
Summary Table We collect in Table 1 the main characteristics of each lagguad-
dressed in this paper. Even though we have not discussesstire of data parallelism
in this paper, we nonetheless provide, for the interestadae the main constructs used
in each language to launch data parallel computations.

6 Conclusion

Language |Task creatiofiTask joinSynchronization Atomic Data Memory

section | parallelism| model

Cilk (MIT) spawn sync — cilk_lock — Shared

Chapel (Cray| begin — sync sync forall PGAS
cobegin atomic coforall |(Locales

X10 (IBM) async finish next atomic foreach | PGAS
future force (Places)

Habanero-Jaya async finish next isolated foreach PGAS
(Rice) future get (Places)
OpenMP omptask | omp omp barrier |omp critical omp for | Shared

omp sectior taskwait omp atomig
OpenCL |EnqueueTagk Finish |EnqueueBarriefr,atomadd, |EnqueueND-Message
events RangeKernel Passing
Table 1. Summary of parallel languages constructs

This paper presents, using the Mandelbrot set computati@aranning example, an
up-to-date comparative overview of six parallel programgrianguage designs: Cilk,
Chapel, X10, Habanero-Java, OpenMP and OpenCL. Thesedgeguare in current
use, popular, offer rich and highly abstract functionefitiand most support both data
and task parallel execution models. The paper describesin@uddition to data dis-
tribution and locality, the fundamentals of task parall@lgramming, namely task cre-
ation, collective and point-to-point synchronization andtual exclusion are dealt with
in these languages.
This paper can be of use to (1) programmers, by providing antamxy of parallel
language designs useful when deciding which language ie appropriate for a given
project, (2) language designers, by presenting desigriigntualready field-tested in
previous languages, and (3) implementors of automaticrarogonversion tools, by
helping them narrow down the issues that need to be tackled w@ealing with parallel

execution and memory models. We used this case study assafbashe design of
SPIRE [14], a sequential to parallel intermediate repriegiem extension that can be
used to upgrade the intermediate representations usedripiledion frameworks in
order to represent task concepts in control-parallel laggs and constructs; SPIRE is
simple and generic enough to describe, to our knowledgpaadillel languages, even
though the intricacies of the various existing synchrotiramodels, exhibited by this
study, require low-level representation support.

References
1. Message Passing Interfadd.t p: / / www- uni x. nts. anl . gov/ npi /i ndex. ht i .
2. OpenCL - The Open Standard for Parallel Programming oftdgeneous Systenist t p:

g b w

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.

/I www. khr onos. or g/ opencl .

. OpenMP Specificationit t p: / / www. opennp. or g/ bl og/ speci fi cati ons/.
. The Mandelbrot Settt p: // war p. povuser s. or g/ Mandel brot /.
. Cilk 5.4.6 Reference ManualSupercomputing Technologies Group, MIT Laboratory for

Computer Sciencéat t p: / / supertech.lcs.nit. edu/cil k,1998.

. Chapel Language Specification 0.7%ray Inc., 901 Fifth Avenue, Suite 1000, Seattle, WA

98164, October 21, 2010.

. S. V. Adve and K. Gharachorloo. Shared Memory Consistdhaglels: A Tutorial. IEEE

Computer 29:66—76, 1996.

. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisersartl. Randall, and Y. Zhou.

Cilk: An Efficient Multithreaded Runtime System. UDournal of Parallel and Distributed
Computing pages 207-216, 1995.

. V. Cavg, J. Zhao, and V. Sarkar. Habanero-Java: the Newe#tdres of Old X10. Ifth

International Conference on the Principles and PracticdPofgramming in Java (PPP,J)
August 2011.

B. Chamberlain, D. Callahan, and H. Zima. Parallel Paognability and the Chapel Lan-
guage.Int. J. High Perform. Comput. App21:291-312, August 2007.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. KiaJ¥K. Ebcioglu, C. von Praun,
and V. Sarkar. X10: An Object-Oriented Approach to Non-dnifi Cluster Computing.
SIGPLAN Not.40:519-538, October 2005.

E. Cuevas, A. Garcia, F. J. J.Fernandez, R. J. Gadea, @utdbn. Importance of Simu-
lations for Nuclear and Aeronautical Inspections with Béwnic and Eddy Current Testing.
Simulation in NDT, Online Workshop imww. ndt . net , September 2010.

J. B. Dennis, G. R. Gao, and K. W. Todd. Modeling The Waattith a Data Flow Super-
computer.|EEE Trans. Computerpages 592—-603, 1984.

D. Khaldi, P. Jouvelot, C. Ancourt, and F. Irigoin. SPIRESequential to Parallel Inter-
mediate Representation Extension. Technical Report GR®A (Submitted to CGO’13),
MINES ParisTech, 2012.

S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugdhi J. Hughes, C. Kim, V. W.
Lee, and A. D. Nguyen. Atomic Vector Operations on Chip Marticessors.SIGARCH
Comput. Archit. News36(3):441-452, June 2008.

J. Larus and C. Kozyrakis. Transactional Mem&@pmmun. ACM51:80-88, July 2008.

D. A. Padua, editolEncyclopedia of Parallel Computingpringer, 2011.

V. Sarkar. Synchronization Using Counting SemaphdrekCS’'88 pages 627—637, 1988.
J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherbaders: A Unified Deadlock-Free
Construct for Collective and Point-To-Point Synchronimat In ICS'08 pages 277-288,
New York, NY, USA, 2008. ACM.

