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3D Keypoints Detection for Objects Recognition

Ayet Shaiek', and Fabien Moutarde'
'Robotics laboratory (CAOR) Mines ParisTech 60 Bd/@thel, F-75006 Paris, France

Abstract - In this paper, we propose a new 3D object
recognition method that employs a set of 3D local features
extracted from point cloud representation of 3D views. The
method makes use of the 2D organization of range data
produced by 3D sensor. A detector of 3D interest points
requires the expression of the local surface variation around
points. In our case, we opted for a curvature-based approach.
We test six methods which combine principles curvatures
values under the form of: 1) a measure of the Shape Index
(9), 2) a measure of a Quality Factor (FQ), 3) a map of
Shape Index (S) and curvedness(C), 4) a map of Gaussian (H)
and Mean (K) curvatures, 5) a combination of 3 and 4
(SC_HK) and 6) a combination of 5 and 4(SC_HK_FQ). For
each extracted point, a local description using the point and
its neighbors is done by combining the shape index histogram
and the normalized histogram of angles between normals.
This local surface patch representation is used to find the
correspondences between a model-test view pair. Performance
evaluation of the detectors in terms of stability and
repeatability shows the robustness of the proposed detectors
to viewpoint variations. Experimental results on the Minolta
data set are presented to demonstrate the efficiency of the
proposed approach in view based object recognition.

Mean Curvature,
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1 Introduction

3D Object class detection and recognition haimec
an extremely active research theme over the lasidde due
to good success of object recognition techniquethén2D
field, and to the promising reliability of the ne®&D
acquisition techniques. 3D recognition, howevernvays
several issues related to class variability, plitifrmation,
as well as scales and viewpoints differences acewsrered.
As previous works in the 2D case have shown, lowthods
perform better than global features to partiallyermome
those problems. Global features need the complktégted
shape for their extraction. Examples of global gBtfires are
volumetric part-based descriptions [1]. These nadtare less
successful when dealing with partial shape andaiolass
variations while remaining partially robust to rmisclutter

and inter-class variations. Several 3D categoomatethods
based on local features have already been propdied,
tensors [2] and integral shape descriptors [3]nfaif-interest
(POI) detection, widely used in 2D image analysisalso
extended to 3D and therefore many recent reseatuies
investigated in finding 3D interest-points detestoand
descriptors. For example, the Harris detector hasnb
extended to three dimensions, first in [4] with twpatial
dimensions and time, then in [5] which discussasas of the
Harris measure and recently in [6] where a 3D-SURF
adaptation is proposed.

Regarding descriptors of local 3D features, initimtd to
3D-SURF, we can mention Spin Images [7] which rdsax
spatial histogram of the 3D model’s spatial occupdoy the
remaining points w.r.t the current point.

3D Keypoint approaches can be classified into rivein
categories: fixed scale category and scale invadategory.
In the Scale invariant category, we mention theSQIRF and
KPQ Scale Invariant (KPQ-SI) [8]. In the fixed seal
approach, we find for example, the Local Surfacéclitss
(LSP) [9] and the KeyPoint Quality (KPQ) [8]. Oumposed
method belongs to the second category and we aiettct
salient and repeatable keypoints under viewpoimiatian.
\We propose to use a measure of curvature in teeofirChen
and Bhanu's work [9] and construct a patch labeltng
classify different surface shapes [9,10]. Most 3Djeot
recognition methods doing surface shape clasdiicatise
mean-gaussian curvatures (HK) or shape index-cuessl
(SC) values. In [11], authors present a comparifathe two
approaches to show the qualitatively different sifesation
and the impact of thresholds and noise levels.

In this paper, we propose a new method that coesbin
criteria to extract invariant 3D feature pointsedity from a
point cloud, using differential measures. The catepl
recognition system with detection, description anatching
phases is introduced in 82. The proposed methods ar
evaluated and compared in §3.



2 Methodology

2.1 Subdivision of 3D Points Cloud into Local
Patches

As we address a recognition scenario wherein arfly
views are matched, we deal with some views of tlelats
from specific viewpoints. In the work presented ehewe
exploit the lattice structure provided by the raimgage. First,

we search the coordinates of the maximum and mmimu

points at x-axis and y-axis in the sample, anddoaiibounding
box based on the two limit points. After, our pregisits all
the delimited points, determines their neighbouch@atch
and computes the measure of saliency over the fatah. In

point is marked as a feature point if its shapeeind),
satisfies (2) within point neighbours,

I, = max of shape indexes and+ (1+a) * p ;
Or
) = min of shape indexes angkk (1-8) * p;
2

where p is the mean of shape index over the Sl point
neighbours values and Oe= B<=1. In above expression (2),
«a and B parameters control the selection of feature points
figure 1 is illustrated the range image of one nmade its
shape index image. In the depth map, the darkepittel, the
farther the real point is from camera. On the otfaerd, in the
shape index image brighter pixels correspond togtieatest

our approach, we consider a rectangular regionnardbe

point, with a span in the x and y direction, and thweshold
the distance between neighbour points. The x aspbys are
chosen adaptively for covering a proportion of the

bounding box dimensions, so as to make our metblbdst to
different spatial samplings, and to scaling. An adage of
subdividing the point cloud in local regions isawoid mutual
impact between them.

values of Sl (i.e domes and ridge) and darker oepsesent
rut or cup surfaces. We denote this detector bly» S

2.2 Keypoint Detectors

Fig. 1. On left, range image of the angel model; in thedigd
The aim of this step is to pick out a repeatable salient Shape index Image: on right, Factor quality image
set of 3D points.

Principal curvatures correspond to the eigenvabhfethe
Hessian matrix and are invariant under rotationndde we
propose to use local curvatures which can be ckdleither
directly from first and second derivatives, or imdily as the
rate of change of normal orientations in a localtest region.
The usual pair of Gaussian curvature K and meavature H
only provides a poor representation, since the esmlare
strongly correlated. Instead, we use them in comghderm
with curvature based quantities.

2.2.2  Factor Quality

The second detector we have implemented is based on
keypoint quality measure introduced by Mian etaald used
for ranking keypoints after the detection proces8].[ We
associate at each point k a quality measy&s Qiven by (3),

Qi = 73* ZIKI + max(100K) + [min (100K)| +

max(10 k") + min (10k,*)|; K = k'k,’ ()

2.2.1  Shapelndex

where R, and K, are maximum and minimum principal
This detector type was proposed in [9], and usesshape curvatures, respectively. Summation,' maximum angimim
index (Sp) for feature point extraction. It is a quantitativ values are calculated over the point neighbourssoAlte

measure of the surface shape at a point p, andfised by Values are taken so that positive and negativeatures do
(1), not cancel each other; positive and negative valoks

curvatures are equally descriptive. We computenth&mum

11 kp +k? 1) value maxFQ of the quality factor over all the psinA
Sy —E—Earctg KL — K2 threshold equal to maxFQ} is chosen to select keypoints
P P corresponding to the higher values. We then perfam

With this definition, all shapes are mapped inw ifiterval [0, Connected component analysis to group neighborivigte
1] where every distinct surface shape correspondsttnique Final keypoints are centers of connected componbnfigyure

value of Sl(except for planar surfaces, which will be mapped: the map of factor quality values of the angeldeiois
to the value 0.5, together with saddle shapeajger shape shown. Brighter pixels correspond to the highesiesof FQ,

index values represent convex surfaces and smshape and are located in descriptive regions within intaot shape

index values represent concave surfaces. The ndzangage Varation. We denote this detector by « FQ ».
of this measure is the invariance to orientatiod aoale. A



2.2.3 HK and SC Classification

Mean curvature H Gaussian curvature K

_ _ ) o _ K>0 K=0 K<0
The_ idea here is tp build shape cla55|f|cat|omepa§|ng fizb o Ridge S""add]e"““ﬁd
the pair mean-Gaussian curvatures (HK) or the phape T,=1 T,=2 T =3
index - curvedness (SC).

H=0 None Flat Minimal
Typically, for HK classification, we use the typanttion T T,=4 Tp,=5 T,=6
used in LSP descriptor [9] that associates to eaciple of H Saddle valle
and K values a unique type value (4), =9

T, =1 +3(1 +sgn,, ) + (1 - sgn,, &)

11 if X > g,
sgn., (X)) 4 0 if lxl = 2 4)
1 if X< g

Saddle
(05)

whereg, and z, are two thresholds over the H and K. Nine
region types are defined (figure 2).

In the shape index-curvedness (SC) space, S defirees
shape and C defines the degree of curvature ahé square-

root of the deviation from flatness. Similarly toKH Fig. 2. HK classification (from [9]) on first column and S|
representation, the continuous graduation of Sldisides classification [12] on second column.

surface shapes into 9 types. Planar surfaces assifiéd o o

using the C value. 224  Combinaison of Criteria

We define a type functiod, (5) that associates a unique Theoretically, the two classifications HK and SCould
type value to each couple of Sl and C values (aties provide the same result; therefore we suggest aumpithe
between 0.8125 and 0.9375 correspond to domesang 7). two criteria to increase reliability. In fact, ouesult will be

validated with two measures of keypoints detectiafter

S, = 0ifC < = labeling points with a pair of valuer(,5,), points with salient
else (5) type pair, are selected, in other words, if the tlabels
S € .21 s1elo1l. correspond to the same of the 5 salient regiorstypeviously

mentioned. Then, points with the same pair valeegaouped
using the connected- component labeling. Connégtiig

- ) carried out by checking the 8-connectivity of eguhint.

of one of the 5 following types: dome, trough, Si®, fina)ly, the centers of the connected componenselected as
saddle rut and saddle ridge regions. More detaéisgaven in  keynoints. We call the detector combining the twiteda

[11, 12]. The HK and SI classifications of surfasee Sc HK ».

illustrated in figure 2. -

We denote the two detectors by « HK » and « SC ». We also propose further combination by ranking the
selected keypoints according to their factor qualitilue.

Therefore, we compute the maximum value maxFQ afitgu
factor values over the selected keypoints and palgts with
FQ value superior to maxFQL are finally selected as
keypoint. We call this last detector « SC_HK_FQ ».

For both classifications, salient regions are setkas those

2.3 Keypoint Descriptors

After keypoints detection step, a 3D descriptor is
computed around each selected 3D interest poirthdrcase
of range data, the dominant orientation at a p@nthe
direction of the surface normal at that point. Betected
keypoints, we compute the shape index values amauigles
0 between the reference surface normals at theréaiint
and the neighboursnes. The reference normal of a keypoint
is obtained by averaging the normals of points tgitoy to
the connected component associated to the featune pVe



suggest comparing two ways to cumulate the shagexin £, =15,IM,} and £, = {5,|M,} where S means test surface
values and the cosine of the angle values: patch and M means model surface patch, they stsatldfy
(7) if they are consistent corresponding pairs.
* Combined _descrlptor: we for_m a 2D. histogram byGiven a list of corresponding pairs, the groupimgcedure
accumulating points in particular bins along twofor everv pair in the list is as follows:
axes which relates the shape index value and the R Inﬁiglize each pair of a group )
cosine of the angle to the 2D histogram bin. One )
g J  For every group, add other pairs to it if they Sfst{7).

axis of this histogram is the shape index which is
in the range [0, 1]; the other is the cosine of the ° Repeat the same procedure for every group. Séiect t
group which has the largest size.

angle (co®) between the surface normal vectors
and one of its neighbours. de,c, = |d51_5: _ dmi_mz| < g (7)
e Concatenate descriptor: we cumulate shape index

and cosine of the angle values into 1D histogram. 3 Experimental results

Two different spans are used to bin the cosine aikee 3.1 Data and Parameters
more informative values appear when neighbour nbrma
direction is near the orthogonal direction of theference We performed our experiments on real range fiata the
normal. Therefore, the span is smaller in the imter Minolta data set [13]. There are 16 objects in database

corresponding to near orthogonal directions. with a total of 348 frames (figure 3). The numbefdeature
points detected from these range images vary fram 250,
2.4 Matching and Recognition depending on the viewpoint and the complexity obuin

shape. To every feature is assigned a 11x19-dimeslsi
We are validating the proposed detector and d#scri signature.

using a view matching approach. Given a test opjeet

compute a measure of similarity between descripggtacted The parameters of our approach age3%, b =20, a =0.45,
on the test view and those of the models in databas B=0.25% = 0.003, &y =2y .2¢ = &y.&, = 3

2.4.1 Hash tablebuilding

To speed up the comparison process, we use tha areh
standard deviation of shape index of the neighboosind the
feature point to index a hash table and insert the
corresponding hash bin the information (model 1D 2
histogram, surface type, the centroid). For eactehobject,

we repeat the same process to build the model asdalfor a
test object, we index each keypoint and computtodriam
similarity. Fig. 3. Range images of the 16 objects from the Minolta
Database

Histogram-based local descriptors are often congpéne

bin-to-bin metrics, especially the distance. Hence, for each _ N
histogram Q {qi} from test view, we find the besttohing 3.2  Keypoint Stability

descriptor V {vi} from database view using thgz — 1 evaluate detector performance, we propose taefithe
divergence (2). Two keypoints are matched accorthniieir  gpsolute repeatability which is the number of répiele
histogram distance and their type of surface. keypoints of one view in another view of the sarbgot [14].

A keypoint is said to be repeatable if:

2
— (qi ~ Vi) )
RQVI=2T0 5y © |Rs Kt tms = KL < =0®
I I ! —> <> <>

Model keypoint rotated and translated Scene keypoint Repeatability threshold

242 Geometric Constraints [14]

A set of nearest neighbors is returned after histog

matching. The potential corresponding pairs attergd and between different views/scales, we consider twasiesiew 1

rouped based on the geometric constraints in 7 - .
group 9 : ! In EQUAT) and view 2 of the same object. As we know the real

below, whered;, . andd,,, ,. are Euclidean distance between : ; _ :
. 172 T transformation T (rotation or scaling) between tilve views,
centroids of two surface patches. For two corredpooes

we compute the distance to the nearest neighbaweket

Hence to measure the repeatability of detectegdials



positions of every keypoint detected in view 1 mftee

application of the transformation T and keypoietetted in
view 2. We plot the average of the repeatabilityasiges
between different pairs of views in Minolta datagégure 4 £ b \‘ Y

illustrates the six plots of keypoint repeatabiliby the 9 A

objects, respectively for SC_HK_FQ detector (SC_RR), Fig. 5. Positions of detected keypoint on bird model with:
SC_HK detector (SC_HK), SC detector (SC), HK detect SC_HK_FQ in first column, SC_HK in second columi ia
(HK), FQ detector (FQ) and SI detector (Sl). Thexys third colon and SC in fourth column

shows the percentage keypoints of the transformed/sv
which could find a corresponding keypoint in thaiah view
within the distance shown on the x-axis. Resultswslthat
SC_HK_FQ and SC_HK have almost the same behavibr an
outperform the four other detectors. FQ has clethdylowest
repeatability. The repeatability reaches 80% at earest
neighbor distance of ~0.7% of the average diagdis&nce
for SC_HK_FQ and SC_HK, 70% for HK, SC and SI, and
60% for FQ.

ility of the 6 SC HKFQ, SC HK, HK,SC, FQ and S

0
90 . T : : . T .

== SC HK FQ g u B
80l- | * SCHK .‘ol" I —

== S| i
L] ®Fa

—

==: HK

60

o
S
T

% Repeatability

Fig. 6. On the left, SC classification; in the middle, HK
classification; and on the right, combination of &l HK
(surface typespit, saddle ridge, saddle rut and peak)

I I I 7 1 b A "/i-‘\.w
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ; 4 g 4 ﬁ#ﬁ

Nearest Neighbourd Di ( % di

Fig. 4. Keypoint repeatability between different views the
six detectors:SC_HK_FQ, SC HK, 9, SC, HK and FQ

Furthermore, visual comparison of keypoint posgio
detected with SC_HK_FQ, SC_HK, HK and SC detecsor i
shown in figure 5. It reveals that the final sedecpoints are
quite well localized. The combining process (figB)eallows
a better feature point filtering than SC or HK aowhere
false detected point in both are eliminated anchygowith
correct surface type remain. Figure 7 illustrates telative
stability of keypoint's positions detected with 34K FQ
detector when varying viewpoints for the same dbjec Fig. 7. Illustration of detectors stability, showing posits of
Clearly, we recover almost same keypoint positionghe  detected keypoints (showniied) for the views (100°, 120°,
different views, which qualitatively illustrate tretability of  140° and 180°) in bird model. Ligne 1: result of tonnected
our keypoints. components processes. Ligne 2, result of SC_HKcttatand

ligne 3, result of SC_HK_FQ detector.

3.3 Impact of Noisein the detection

A good detector is able to extract local featuresthe
original surface as well as in the noisy data. hdeo to
evaluate the repeatability of the feature pointsitevGaussian
noise with standard deviatian ranging from 0.1 to 1.2 was



added to the 3D surfaces. When noise is introduoethe
point clouds, the details of the shape are lesiblgisAs a
result, here would be fewer features points detetenoisy
images compared to the original one. However, itnjsortant
that the local keypoints detected in the originaifecce will
present in the noisy data.

It is to notice that the tested database alreadyains noise
since it represents real object captures. Figush@ws the
features extracted from the ‘dough’ model for diffet levels
of noise for the two detectors SC_HK_FQ and SC_Hkan
be seen from the figure that a large portion otldeatures
from the original model are presented in the naiggsions.
For example, there are still many feature pointsglyaround
salient structures such as the nose, eyes, crésirars even in
the noisiest surface. With the noise levelbef0.36, most of
the keypoints in the original image appears in tioésy
version. A quantitative evaluation of the repediybof the
features for four different 3D models with a totdl72 views
is shown in Figure 9. At the noise levelwt 0.06, nearly all
of the features in the original model (98%) cardetected in
the noisy surface.

Even when the standard deviation of the noise gwes 0.6,
about 80%o0f the original features repeat in theyndata.

.-y
Vv
0-72 0.36- 69 0.72-21 1.2-3

Figure 8. Features detected from the 'Dough’ medt different

3.4

M atching Result

We present the test protocol for recognition iblea.
We carry out two experiments, in the first one; glwose
manually N test views per object and use the reimgiviews
for the training stage. The descriptor used fos thiperiment
is the concatenate version. The same evaluatialori® in

experiment 2 with thecombined descriptor.

The two

experiments are carried out using the 6 detecidrs.results
are shown in table 2. The overall recognition ristejuite
promising for the SC_HK_FQ method in comparisorthe
other results, with 96.4%. This rate is achievethgughe
combined version of the descriptor which suggds#s it is
more descriptive then the concatenate version. tleenhere
that the computation time when matching the contbine
feature is more important (more bins to compardjickvcan
be an inconvenient when dealing with real time iaibn.

Tablel. Test protocol for object recognition

View/Per Experiment 1 with concatenate | Experiment 2
object descriptor with combined

descriptor

Test 4 views(num 80, 90, 100, 107 same as
for orangedino and 3 views (207, experiment 1

180°and 300°) for 8 other
object

Training The 32 remaining views for same as

orangedino and 15 remaining| experiment 1
views for the others

Table2. Recognition rates for the 6 methods

noise levels, SC_HK_FQ detector with in ligne 1 and

SC_HK detector in ligne 2. In the third lignesithdicated the SC_HK_FQ S?(—H sC HK SI FQ
couple: noise level — number of keypoints in eaalumn. Exp 1 82 1% 75% 821l 821 351 642
Keypoint repeatability for 4 models with different levels of noise % % % %
100Mgesg ‘ Exp 2 96.4% 82% | 92.8 | 928 | 64.2 | 64.2
90} S % % % %
N,
80
o 00
]
g_ 60
e 4 Conclusionsand Per spectives
o
® 40 = Angel “ In this paper, a comparison of six proposed detsct
30/ —+-Bird “\.\ based on curvature is presented. Our principalritarion is
20 I?:lti:.el:by “\.\ the idea of combining criteria for detection, amdgmsing a
=e=Courbe moyenne TN new 3D object recognition method that employs ao$e8D
10 1 1 1 1

|
0.2 0.4 0.6 0.8 1
Standard deviation of the noise

Figure 9. Repeatability of the features for 4 défg models in
different noise conditions.

local features (3D keypoints, or “points-of-intdfesPOl)
extracted from point cloud representation of 3D wge
Furthermore, a quantitative evaluation of the ditgbiof
obtained keypoints under viewpoint change on realev




depth images has shown promising results, with &08ée
repeatability obtained by combining SC (shape almess)
and HK criteria. The original combination processing
SC_HK_FQ detector seems to provide a pertinentrigisn
of the local surface typology. For the moment, meas of
curvatures are calculated at a constant scale , labhel
feature’s scale is still ambiguous. To overcoms fhit, we
propose to search for features at different scael$ for a
future work.

[10] Erdem A., Omer E., llkay U. "Scale-space approamh the

comparison of HK and SC curvature descriptionspsied to
object recognition”. ICIP, 413-416 (2009).

[11] H. Cantzler, R. B. Fisher, "Comparison of HK and @&@vature

description methods" In Conference on 3D Digitahgimg and
Modeling, 285-291 (2001).

[12]J. Koenderink and A. J. Doorn. "Surface shape and

curvature scale "Jmage Vis. Comput., vol. 10, no. 8, pp.
557-565, (1992).

[13] http://cheepnis.cse.nd.edu/~flynn/3DDB/3DDB/RID&Nd

X.htm

Regarding the 3D keypoint descriptor, we compar® tWj4] Samuele S., Federico T., and Luigi Di S. "A Perfance

descriptors that encode the occurrence frequencghape
index values vs. the cosine of the angle betweemdnmal of
reference feature point and that of its neighbo&ssults
show that the combined version is more efficierdanttthe
concatenate one.

As for the overall performance of the proposed weshfor
object recognition, we obtain best recognition r&de the
SC_HK_FQ method, with 96.4% on 9 objects from reatid
Minolta public dataset.
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