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This paper exposes a methodology to solve constrained optimal control problems for non linear systems using interior penalty methods. A constructive choice for the penalty functions that are introduced to account for the constraints is established in the article. It is shown that this choice allows one to approach a solution of the non linear optimal control problem using a sequence of unconstrained problems, whose solutions are readily characterized by the simple calculus of variations. An illustrative example is given. The paper extends recent contributions, originally focused on single input single output systems.

INTRODUCTION

This paper exposes a methodology allowing one to solve a constrained optimal control problem (COCP) for a general multi-input multi-output (MIMO) system with non linear dynamics. This methodology belongs to the class of interior point methods (IPMs) which consists in approaching the optimum by a path lying strictly inside the constraints. The reason for employing such a technique is that in the interior, optimality conditions are much easier to characterize and to explicit. For this purpose, penalty function approach commonly considered in finite dimensional optimization problem is employed.

Generally, in penalty methods, an augmented performance index is considered. This is the case for both finite optimization problems and optimal control problems. This augmented index is constructed as the sum of the original cost function and so-called penalty functions that have some diverging asymptotic behavior when the constraints are approached by any tentative solution. The optimum of this augmented performance index can then be readily characterized by simple stationarity conditions, yielding a (usually) biased estimate of the solution of the original problem. Then, gradually, the weight of the penalty functions is reduced to provide a converging sequence, hopefully diminishing the bias.

The penalty function methods are computationally appealing, as they yield unconstrained problems for which a vast range of highly effective algorithms are available. In finite dimensional optimization, outstanding algorithms have resulted from the careful analysis of the choice of penalty functions and the sequence of weights. In particular, the interior points methods [START_REF] Nocedal | Numerical Optimization[END_REF] which are nowadays implemented in successful software packages such as KNITRO [START_REF] Byrd | Knitro: An integrated package for nonlinear optimization[END_REF], OOQP [START_REF] Wright | The interior-point revolution in optimization: History, recent developments, and lasting consequences[END_REF] have their foundations in these approaches. We refer the interested reader to [START_REF] Forsgren | Interior methods for nonlinear optimization[END_REF] for a historical perspective on this topic. In this article, we apply similar penalty methods to solve COCPs. COCPs represent a valuable formulation of objectives in numerous applications, especially because constraints are very natural in problems of engineering interest. Unfortunately, these constraints induce some serious difficulties [START_REF] Bryson | Applied Optimal Control[END_REF][START_REF] Bonnans | Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods[END_REF][START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF]. In particular, it is a well known fact [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] that constraints bearing on state variables are difficult to characterize, as they generate both constrained and unconstrained arcs along the optimal trajectory. To determine optimality conditions, it is usually necessary to know (or to a-priori postulate) the sequence and the nature of the arcs constituting the desired optimal trajectory. Active or inactive parts of the trajectory split the optimality system in as many coupled subsets of algebraic and differential equations. Yet, not much is known on this sequence, and this often results in a high complexity. Therefore, it is often preferred to use a discretization based approach to this problem, and to treat it, e.g. through a collocation method [START_REF] Hargraves | Direct optimization using nonlinear programming and collocation[END_REF], as a finite dimensional problem [START_REF] Kojima | LQ control for constrained continuous-time systems[END_REF][START_REF] Yuz | Control of constrained linear systems using fast sampling rates[END_REF][START_REF] Bemporad | A predictive reference governor for constrained control systems[END_REF][START_REF] Bemporad | The explicit linear quadratic regulator for constrained systems[END_REF][START_REF] Petit | Inversion based constrained trajectory optimization[END_REF][START_REF] Bhattacharya | OPTRAGEN: A Matlab toolbox for optimal trajectory generation[END_REF][START_REF] Ross | Pseudospectral knotting methods for solving nonsmooth optimal control problems[END_REF]. In this context, IPMs have been applied to optimal control problems by Wright [START_REF] Wright | Interior point methods for optimal control of discrete time systems[END_REF], Vicente [START_REF] Vicente | On interior-point newton algorithms for discretized optimal control problems with state constraints[END_REF], Leibfritz and Sachs [START_REF] Leibfritz | Inexact SQP interior point methods and large scale optimal control problems[END_REF], Jockenhövel, Biegler and Wächter [START_REF] Jockenhövel | Dynamic optimization of the tennessee eastman process using the optcontrolcentre[END_REF]. This is not the path that we explore, as we whish to use indirect methods (a.k.a. adjoint methods) to take advantage of their accuracy.

Although there is a well-established literature on the mathematical foundations of IPMs for finite-dimensional mathematical programming [START_REF] Wright | The interior-point revolution in optimization: History, recent developments, and lasting consequences[END_REF], this is not yet the case for optimal control problems. A main difficulty is to guarantee that the sequence of solutions is strictly interior. This point is critical since interiority is a requirement to avoid ill-posedness and computational failure of implemented algorithms. The problem of interiority in infinite dimensional optimization has been addressed in [START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF] for input-constrained optimal control, and in [START_REF] Malisani | Design of penalty functions for optimal control of linear dynamical systems under state and input constraints[END_REF][START_REF] Malisani | A constructive interior penalty method for non linear optimal control problems with state and input constraints[END_REF] for single input single output (SISO) linear and nonlinear dynamics respectively. These contributions provide penalty functions guaranteeing the interiority of the solutions. As shown in [START_REF] Malisani | Design of penalty functions for optimal control of linear dynamical systems under state and input constraints[END_REF][START_REF] Malisani | A constructive interior penalty method for non linear optimal control problems with state and input constraints[END_REF], a constructive choice of the penalty functions guarantees that the state constraint is strictly satisfied. But, in these articles the choice of the control penalty relies on a strong assumption on the behavior of the control in the vicinity of the saturation. The purpose of the presented research work is to generalize the results obtained in the case of SISO systems [START_REF] Malisani | Design of penalty functions for optimal control of linear dynamical systems under state and input constraints[END_REF][START_REF] Malisani | A constructive interior penalty method for non linear optimal control problems with state and input constraints[END_REF] to multi input multi output systems and to remove the assumption on the behavior of the control. This paper is organized as follows: in Section 2, the COCP is presented together with a penalized optimal control problems (POCP) where the state constrained has been relaxed. In Section 3, sufficient conditions on the penalty functions are exhibited such that the optimal solution of the POCP is strictly interior to the constraints. In Section 4, a constructive choice of the penalty is given such that the aforementioned conditions hold and a completely unconstrained algorithm is given.The proposed algorithm is tested on an illustrative example in Section 5. Conclusions and perspectives are given in Section 6.

2 Notations, problem statement and penalty method.

Constrained optimal control problem and notations

In this article, we investigate the following state and input constrained COCP

min u∈U ad J(x u , u) = T 0 (x u , u)dt (1) 
where : R n × R m → R is a Lipschtiz function of its arguments with Λ a Lipschitz constant, x u (t) ∈ R n and u(t) ∈ R m are the state and the control of the following MIMO non linear dynamics

ẋ = f (x, u), x(0) = x 0 (2) 
Further, over the time interval [0, T ], T > 0 given, it is assumed that f is C 1 and that there exists a constant 0 < D < +∞ such that the following inequality (a.k.a. sub-linear growth condition) holds:

f (x, u) ≤ D(1+ x ), ∀x, ∀|u| ≤ 1 (3) 
The control u is constrained to belong to the following set

U = {u ∈ L ∞ ([0, T ], R m ) s.t. ∀i = 1 . . . m u i (t) ≤ 1 a.e. t ∈ [0, T ]} (4) 
which is the unit closed ball of Lebesgue essentially bounded measurable functions [0, T ] → R m . The set U ad in (1) is the following

U ad {u ∈ U s.t. g(x u (t)) ≤ 0, ∀t ∈ [0, T ]} (5) 
where g : R n → R q is assumed to be of class C 1 . U ad is the set of control whose corresponding solutions satisfy the state constraints. For the analysis developed in the rest of the paper, we make the following assumption:

Assumption 1 The initial condition of the problem x 0 is such that the following holds:

max i g i (x 0 ) -α 0 < 0 and {u ∈ U s.t. sup t∈[0,T ] max i g i (x u (t)) < 0} = ∅ 2.

Presentation of the penalized problems

Following the approach of interior methods in their application to optimal control [START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF], we introduce two penalty functions

γ g : (-∞, 0) → [0, +∞) γ u : [-1, 1] → [0, +∞)
The penalty γ g is a strictly increasing function on (-∞, 0) going to infinity as its argument goes to zero by negative values. In the rest of the paper, we extend the state penalty on R as follows:

γ g (x) = 0, ∀x ∈ [0, +∞) (6) 
The penalty function γ u ∈ C 1 is a positive, symmetric, strictly convex function on (-1, 1) taking its minimum value in 0 such that

lim α↓0 γ u (1 -α) = +∞ Remark 1
The penalty function γ u satisfies the aforementioned conditions if and only if its derivative γ u : (-1, 1) → R is an increasing bijective and symmetric with respect to zero mapping such that γ u (0) = 0.

These functions serve to define the following POCP: Note > 0, solve:

min u∈ U K(u, ) = T 0 (x u , u) + q i=1 γ g • g i (x u ) + m i=1 γ u (u i ) dt (7) 
under the dynamics (2). We assume this POCP satifies the following assumption:

Assumption 2
The penalized problem [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] has at least one solution.

3 Feasibility of the optimal solution of the POCP

The objective of this section is to exhibit sufficient conditions on the penalty functions such that any optimal solution of POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] belongs to U ad so is admissible for COCP [START_REF] Nocedal | Numerical Optimization[END_REF]. In Section 3.2 a sufficient condition on the state penalty γ g guaranteeing that any optimal solution of POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] strictly satisfies the state constraints is exhibited. Then, in Section (3.3) a sufficient condition on the control penalty γ u guaranteeing that any optimal solution of POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] strictly satisfies the input constraints is exhibited. Thus, choosing these penalty functions guarantees that the optimal solution of POCP 7 are simply characterized by the classical stationarity conditions from the calculus of variations [START_REF] Bryson | Applied Optimal Control[END_REF]. To exhibit these conditions some preliminary result on the topological properties of the admissible control sets are needed. This is the object of Section 3.1.

Preliminary analysis

In the following, we note

U 0 {u s.t. ∀i = 1 . . . m ess sup t∈[0,T ] u i (t) < 1} (8) 
First, let us introduce the following useful subset of U ad .

Ψ = {u ∈ U s.t. sup t∈[0,T ] max i g i (x u (t)) < 0} (9) 
Ψ 0 = {u ∈ U 0 s.t. sup t∈[0,T ] max i g i (x u (t)) < 0} (10) 
The objective of this section is to prove that Ψ 0 is dense in Ψ in the L ∞ sense.

Proposition 1 There exists C < +∞ such that for all u, v ∈ U the following holds

x u -x v L ∞ ≤ C u -v L 1 (11) 
Moreover the sets Ψ and Ψ 0 satisfy

clos(Ψ 0 ) = clos(Ψ) (12) 
where clos(.) denotes the closure of its argument in the L ∞ sense.

Proof: First, from equation (3) and using Grönwall lemma [START_REF] Khalil | Nonlinear Systems[END_REF], x u is bounded for all u ∈ U, moreover f (., .) being C 1 implies that f is Lipschitz with respect to its arguments. Thus

ẋu (t) -ẋv (t) ≤ λ( x u (t) -x v (t) + u(t) -v(t) ), λ < +∞. Using again Grönwall lemma, there exists C < ∞ such that x u -x v L ∞ ≤ C u -v L 1 .
This proves equation [START_REF] Bemporad | A predictive reference governor for constrained control systems[END_REF]. Let us now prove equation [START_REF] Bemporad | The explicit linear quadratic regulator for constrained systems[END_REF].

Ψ 0 ⊂ Ψ, thus clos(Ψ 0 ) ⊂ clos(Ψ). Now, let us prove the inverse inclusion. Consider any v ∈ Ψ \ Ψ 0 . Define -β sup t∈[0,T ] max i g i (x v (t))) < 0. One can build a sequence (u n ) n∈R with u n = (1 -n )v
, where ( n ) n∈N is a sequence converging to 0, with n > 0. The sequence (u n ) n∈N converges to v in the topology of both L 1 and L ∞ . From equation [START_REF] Bemporad | A predictive reference governor for constrained control systems[END_REF], one has

x un -x v L ∞ ≤ C u n -v L 1 .
Therefore, x un uniformly converges to x v . Using the continuity of g, the sequence (g(x un )) n∈N uniformly converges to g(x v ). Thus, there exists N such that, ∀n > N , g(x un ) -g(x v ) L ∞ < β 2 . Thus, the sequence (u n ) n>N belongs to Ψ 0 . Therefore, v is an adherent point to Ψ 0 and Ψ ⊂ clos(Ψ 0 ). Eventually, this yields clos(Ψ 0 ) = clos(Ψ).

Feasibility of the optimal constrained state

In this section, we exhibit a sufficient condition on the state penalty γ g ensuring that any optimal solution of POCP ( 7) is admissible for COCP (1).

Proposition 2 For any u ∈ U such that there exists at least one i ≤ q such that sup t g i (x u (t)) ≥ 0, if the state penalty satisfies

lim α↓0 γ g (-α)µ g i (α) = +∞ (13) 
where

µ g i (α) meas ({t s.t. 0 ≥ g i (x u (t)) ≥ -α}) (14) 
with meas(.) is the Lebesgue measure of its argument, then

K(u, ) = +∞
for all > 0.

Proof: From equation (6) we have:

I i T 0 γ g (g i (x(t)))dt = 0>g i (x(t)) γ g (g i (x(t)))dt
Moreover, since γ g ≥ 0, we have

I i ≥ 0>g i (x(t))≥-α γ g (g i (x(t)))dt J i (α)
The state penalty satisfies γ g ≥ 0 on (-∞, 0), thus J i (α) is a non decreasing positive right continuous function of α > 0.

Therefore J i (α) is minimum in α = 0 + J (0 + ) = lim α↓0 0>g i (x(t))≥-α γ g (g i (x(t)))dt ≥ lim α↓0 γ g (-α)µ g i (α)
with µ g i (.) the Lebesgue measure defined in equation ( 14). If (13) holds, then J i (0 + ) = +∞ which in turn implies that I i = +∞. From equation (3) and using Grönwall lemma, the function

x u : [0, T ] → R n is bounded for all u ∈ U. Plus, being Lipshitz yields that | T 0 (x u , u)dt| < +∞ for all u ∈ U. Moreover, i≤m T 0 γ u (u i )dt ≥ 0. Thus for any u ∈ U \ Ψ the cost K(u, ) = T 0 (x u , u) + i≤m γ u (u i )dt + i≤q I i = +∞.
This concludes the proof. Since the measure µ g i appears in equation ( 13), it is handy to give a lower bound on it. This will be used in Section 4, in the explicit construction of suitable penalty functions. A lower bound is given by the following result.

Proposition 3 Using Assumption 1, there exists a constant Γ < +∞ such that for all α ∈ [0, α 0 ], for all u ∈ U \ Ψ, the measure µ g i (α) defined in equation ( 14) is lower-bounded under the form

µ g i (α) ≥ α Γ (15) 
Proof: The proof is given in Appendix A.1 together with the expression of Γ.

Using Assumption 1 together with Propositions 2 and 3, one finally obtains the following lemma Lemma 1 If the state penalty γ g is such that

lim α↓0 αγ g (-α) = +∞ (16) 
then any optimal solution u * of POCP ( 7) is admissible for COCP (1) in the sense where

u * ∈ Ψ Proof:
Let us consider a control u ∈ U \ Ψ. Using Propositions 2 and 3 yields that K(u , ) = +∞ for all > 0. Using Assumption 2 yields that any optimal control for POCP (7) u * belongs to Ψ.

Interiority of the optimal constrained control

In this Section, we assume that the state penalty satisfies condition ( 16) from Lemma 1. Then, a sufficient condition on the control penalty to guarantee that any optimal solution of POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] satisfies u L ∞ < 1 is exhibited.

Construction of an interior control u 2

Let us consider any control u 1 ∈ Ψ \ Ψ 0 and note sup t∈[0,T ] max i g i (x u 1 (t))

-2β 0 ≤ 0. From equation ( 12), we have the following existence result:

∃α N > 0 s.t. ∀u s.t. u 1 -u L ∞ ≤ 2α N one has sup t∈[0,T ] max i g i (x u (t)) ≤ -β 0
For each coordinate u i 1 of the control u 1 , we construct the modified control u 2 coordinate by coordinate as follows:

u i 2 (t) = u i 1 (t) if |u i 1 (t)| < 1 -α 1 -2α otherwise ( 17 
)
with α ∈ (0, α N ].

Condition guaranteeing the strict interiority of the optimal trajectory

The following result gives an upper estimate on the difference K(u 2 , ) -K(u 1 , ). This estimate is the sum of three terms, representing respectively (i) the integral variation of the original cost (1) (ii) the integral variation of the state penalties i≤q γ g • g i (iii) the integral variation of the input penalty i≤m γ u Proposition 4 For any control u 1 ∈ Ψ \ Ψ 0 , considering u 2 from equation ( 17), for any > 0 one has

K(u 2 , ) -K(u 1 , ) ≤ α [U + U g ( ) -L( , α N )] µ u 1 (α) (18) 
with

U 2Λ [T C + 1] U g ( ) 2 T K g C q i=1 γ g (-β 0 ) L( , α) γ u (1 -2α)
where K and K g are positive constant (defined in Proposition 1 and Appendix A.2) and, for any measurable function u 1

µ u 1 (s) meas {t s.t. max i u i 1 (t) ≥ 1 -s} (19) 
where meas(.) is the Lebesgue measure of its argument.

Proof: See Appendix A.2. Finally, using [START_REF] Leibfritz | Inexact SQP interior point methods and large scale optimal control problems[END_REF], the following result holds.

Lemma 2 If any optimal control for POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] belongs to Ψ, if the penalty function γ u ∈ C 1 is a positive, symmetric, strictly convex function on (-1, 1) taking its minimum value in 0 such that lim α↓0 γ u (1 -α) = +∞, then any optimal control u * for POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] satisfies:

u * ∈ Ψ 0
Proof: Using Remark 1 one has lim α↓0 γ u (1 -α) = +∞. Moreover from the continuity of γ u , for all > 0 there exists α 1 > 0 such that γ u (1 -2α 1 ) = U + U g ( ) < +∞, where U , U g ( ) are defined in Proposition 4. Assuming that an optimal control u 1 for (7) belongs to Ψ \ Ψ 0 , the control u 2 ∈ Ψ 0 defined in equation ( 17) with α ∈ (0, min{α N , α 1 }) has a penalized cost lower than u 1 which contradicts its optimality and yields the result.

Main results and algorithm

In Sections 3.2 and 3.3, conditions have been given, under the form of Lemmas 1 and 2 respectively, such that any optimal solution of POCP ( 7) is admissible for COCP [START_REF] Nocedal | Numerical Optimization[END_REF]. In this section, a class of penalty functions γ g and γ u are given such that these conditions actually hold.

Penalty design

Our main result, stated below, is a constructive result yielding a relatively direct application under the form of an algorithm detailed below.

Theorem 1 (Main Result) Under Assumption 1, there exists penalty functions γ g (.) and γ u (.) such that any optimal solution u * of POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] belongs to Ψ 0 . A particular choice of penalty is:

γ g • g(x) = -[g(x)] -ng (20) γ u (u) = -log(1 -u 2 ) ( 21 
)
with n g > 1

Proof: The existence is proven by showing that ( 20) and ( 21) are suitable penalties. The penalty [START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF] is such that equation ( 16) is satisfied, therefore any optimal solution of POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] belongs to Ψ. Now, let us prove that if any optimal solution u * of (7) belongs to Ψ, then it belongs to Ψ 0 . The control penalty [START_REF] Malisani | Design of penalty functions for optimal control of linear dynamical systems under state and input constraints[END_REF] is such that lim α ↓ 0 L( , α) ≥ lim α↓0 γ u (1 -2α) = +∞, U < +∞ and U g ( ) < +∞. Moreover, γ u is a continuous function of α. As a consequence, there always exists α ∈ (0, α N ] such that Lemma 2 holds. Therefore u * ∈ Ψ 0 which concludes the proof.

Change of variables

To employ the preceding result we now introduce a handy change of variables. Let ν be an element of L ∞ ([0, T ], R m ), the following change of variables

u φ(ν) = tanh(ν) (22) 
is a bijective mapping from L ∞ ([0, T ], R m ) to U 0 . Using this change of variable the following POCP is defined:

POCP2: min ν∈L ∞ ([0,T ],R m ) P (ν, ) = T 0 (x, φ(ν)) + i≤q γ g • g i (x) + i≤m γ u • φ(ν i ) dt (23) 
where the penalty functions are given by equations ( 20) and [START_REF] Malisani | Design of penalty functions for optimal control of linear dynamical systems under state and input constraints[END_REF].

Corollary 1 Under Assumption 1 and from Theorem 1, POCPs ( 7) and ( 23) are equivalent in the sense that

arg min u∈U K(u, ) = φ arg min ν∈L ∞ ([0,T ],R m ) P (ν, )
Proof: Let us consider u * ∈ U a minimizer of K(., ). From Theorem 1, u * ∈ Ψ 0 ⊂ U 0 . Thus there exists ν = φ -1 (u * ). Moreover,

K(u * , ) ≤ K(u, ) ∀u ∈ U 0 K(φ(ν ), ) ≤ K(φ(ν), ) ∀ν ∈ L ∞ ([0, T ], R m ) P (ν , ) ≤ P (ν, ) ∀ν ∈ L ∞ ([0, T ], R m )
Thus, ν is a minimizer of P (., ) and

arg min u∈U K(u, ) ⊂ φ arg min ν∈L ∞ ([0,T ],R m ) P (ν, ) Let us consider ν * ∈ L ∞ ([0, T ], R m
) a minimizer of P (., ) and u = φ -1 (ν * ).

P (ν * , ) ≤ P (ν, ) ∀ν ∈ L ∞ ([0, T ], R m ) P (φ -1 (u ), ) ≤ P (φ -1 (u), ) ∀u ∈ U 0 K(u , ) ≤ K(u, ) ∀u ∈ U 0
Since u is a minimizer of K(., ) over U 0 , from Theorem 1 u is a minimizer also a minimizer of K(., ) over U. Thus arg min

ν∈L ∞ ([0,T ],R m ) P (ν, ) ⊂ φ -1 arg min u∈U K(u, ) arg min u∈U K(u, ) ⊃ φ arg min ν∈L ∞ ([0,T ],R m ) P (ν, )
Finally,

arg min u∈U K(u, ) = φ arg min ν∈L ∞ ([0,T ],R m ) P (ν, )

Algorithm

The purpose of the main result of this paper, i.e. Theorem 1 (and Corollary 1 which stems from it), is to allow one to solve a simple OCP (Problem ( 23)) instead of POCP [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF] because they are equivalent. Each problem [START_REF] Khalil | Nonlinear Systems[END_REF] penalized by from a sequence ( n ) n∈N can be solved using the calculus of variations. The sequence ( n ) is used to gradually determine the solution, as the solution obtained with n serves as an initial guess for the problem defined by n+1 . Define the Hamiltonian of the penalized problem [START_REF] Khalil | Nonlinear Systems[END_REF] as follows

H (x, ν, p) (x, φ(ν)) + i≤q γ g • g i (x) + i≤m γ u • φ(ν i ) + p T f (x, φ(ν)) (24) 
where p ∈ R n is the adjoint state of Pontryagin solution of dp dt = -∂H ∂x and where the penalty functions are chosen according to Theorem 1. Now, using the positive decreasing sequence ( n ) n∈N , one can approach the solution of (1).

• Step 1: Initialize the continuous functions x(t) and p(t) such that the initial values satisfy g i (x(t)) < 0 for all t ∈ [0, T ], and set = 0 . Note that x(t) and p(t) need not to satisfy any differential equation at this stage, even if it is better if they do.

• Step 2: Solve for each time ∂H ∂ν = 0, and note ν * the solution.

• Step 3: Solve the 2n differential equations dx dt = f (x, φ(ν * )) and dp dt = -∂H ∂x (x, ν * , p) forming a two point boundary values problem using bvp4c (see [START_REF] Shampine | Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c[END_REF]), with the following boundary constraints x(0) = x 0 and p(T ) = 0.

• Step 4: Decrease , initialize x(t) and p(t) with the solutions found at Step 3 and restart at Step 2.

Numerical Example

To illustrate the proposed methodology, we consider the following nonlinear dynamics

ẍ(t) = x(t) 3 + x(t) -ẋ(t) + 10x(t) 2 u(t)
The optimal control problem is the following:

min u J(u) = 1 0 - x(t) 2 2 dt
The boundary conditions are the following

x(0) = 0.3 , ẋ(0) = 0
the problem is solved under the following constraints:

|u| ≤ 1 g 1 (x, ẋ) = x 3 -ẋ/2 -0.7 -0.3 cos 1 1.05 -t g 2 (x, ẋ) = 0.5 -ẋ these constraints are nonlinear and have strongly oscillatory behavior. The corresponding Hamiltonian is the following

H (x, ν, p) = - x(t) 2 2 + 2 i=1 (γ g • g i (x(t), ẋ(t))) + γ u • φ(ν(t)) • • • +p 1 (t) ẋ(t) + p 2 (t) x(t) 3 + x(t) -ẋ(t) + 10x(t) 2 φ(ν(t))
The optimal control ν * is solution of the following equation:

γ u • φ(ν(t)) + 10p 2 (t)x(t) 2 = 0
Using Lemma 2 and Remark 1, one can take γ u as a bijective increasing mapping from (-1, 1) to R. Moreover, φ being a bijective mapping from R to (-1, 1), the function γ u • φ is a bijective mapping from R to R. Conveniently, to have an analytical solution for Step 2 of the algorithm described in Section 4.3 we do not directly define γ u but γ u • φ instead. Setting satisfies the conditions from Lemmas 1 and 2 which yields that any optimal solution of this problem belongs to Ψ 0 . The first state constraint g 1 (x, ẋ) is displayed on figure 1, the second state constraint g 2 is displayed on figure 2, the optimal control obtained after 40 steps of ( n )is displayed on figure 2 and the adjoint states are give on figure 3.

γ u • φ(x) = sinh(x) 0 

CONCLUSIONS

As a result of the proposed study, a practical method to solve constrained optimal control problems for non linear systems has been given. It solely requires the mathematical formulation of a suitably penalized OCP. A constructive choice has been given. This unconstrained problem can then be handled using a classic two-point boundary value problem solver. The presented iterative algorithm using an off-the-shelf routine is quite easy to implement and provides satisfactory results. First, using Assumption (A1) together with Grönwall Lemma, one has for all t ∈ [0, T ] x(t) ≤ e DT (1+ x 0 ) -1 K T . Now, let us define:

K x sup x ≤K T ,|u|≤1 f (x, u) (25) 
K g max i sup x ≤K T ∂g i ∂x (x) (26) 
The continuity of f and ∂g i ∂x yields K x , K g < +∞ . Let us recall that x(t)-x(s) = t s f (x(τ ), u(τ ))dτ . From Assumption 1 for all α ∈ [0, α 0 ] there exists s, t ∈ [0, T ] such that g i (x u (s)) = -α and g i (x u (t)) = 0. This yields g i (x(t)) -g i (x(s)) = α ≤ K g x(t) -x(s) ≤ K g K x (t -s) This yields t -s ≥ α(K x K g ) -1 . Now, let us define τ sup t≤s {t s.t. where meas(.) is the Lebesgue measure of its argument. Note Γ K x K g . This concludes the proof.

A.2 Proof of Proposition 4

A.2.1 An upper bound on the possible increase K +

To exhibit an upper bound on the possible increase, K + is split into two parts itself: the possible increase of the original cost (x, u, t)dt and the possible increase due to the penalties, separately.

Possible increase of the original cost

There, an upper bound on the possible increase of | T 0 (x u 2 , u 2 ) -(x u 1 , u 1 )dt| is exhibited. Let us call K this upper bound. Now, let us consider that the cost function (x, u, t)dt is Lipschitz with constant Λ, then from Proposition 1 equation [START_REF] Bemporad | A predictive reference governor for constrained control systems[END_REF] and equation ( 17), one has

K ≤ Λ T 0 x u 2 -x u 1 L ∞ + u 2 (t) -u 1 (t) dt ≤ Λ [T C + 1] u 2 -u 1 L 1 ≤ 2Λα [T C + 1] µ u 1 (α) (27) 
We define this upper bound as follows:

αU µ u 1 (α) 2αΛ [T C + 1] µ u 1 (α) (28) 
Possible increase due to the state penalty Note K γg q i=1 T 0 γ g •g i (x u 2 )-γ g •g i (x u 1 )dt. The integrand is positive when g i (x u 2 (t)) ≥ g i (x u 1 (t)). But, from the construction of u 2 and equation (3.3.1), one has max i g i (x u 2 (t)) ≤ -β 0 for all t ∈ [0, T ]. Using equation [START_REF] Graichen | Incorporating a class of constraints into the dynamics of optimal control problems[END_REF] and Proposition 1 equation (11) one obtains

K γg ≤ T 0 K g x u 2 -x u 1 L ∞ q i=1 γ g (-β 0 )dt K γg ≤ T K g q i=1 γ g (-β 0 )C u 2 -u 1 L 1 ≤ 2 T K g q i=1 γ g (-β 0 )Cαµ u 1 (α) (29) 
We define this upper bound as follows:

αU g ( )µ u 1 (α) 2α T K g C q i=1 γ g (-β 0 )µ u 1 (α) (30) 
Finally, using equations ( 28) and (30), we have:

K + ≤ α [U + U g ( )] µ u 1 (α) (31) 
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 27374 Figure 2: Optimal constrained state g 2 for POCP (7) with = 10 -7

  g i (x(t)) = -α} and the set E(α) {t s.t. 0 ≥ g i (x(t)) ≥ -α}Then, we have [τ, s] ⊂ E(α) wich yieldsµ g i (α) = meas(E(α)) ≥ s -τ ≥ α(K x K g ) -1

A.2.2 A lower bound on the possible decrease K -

The aim of this part is to exhibit a lower bound on |K -|. Here, we consider that the decrease can only be provided by the control penalty. Let us define 

We define this lower bound as follows:

A.2.3 An upper bound on K(u 2 , ) -K(u 1 , )

Gathering equations ( 31) and ( 33), one finally obtains

This concludes the proof of Proposition 4.