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Abstract

How to predict the probability of a nuclear accident using past observations?
What increase in probability the Fukushima Dai-ichi event does entail? Many
models and approaches can be used to answer these questions. Poisson regression
as well as Bayesian updating are good candidates. However, they fail to address
these issues properly because the independence assumption in which they are
based on is violated. We propose a Poisson Exponentially Weighted Moving
Average (PEWMA) based in a state-space time series approach to overcome this
critical drawback. We find an increase in the risk of a core meltdown accident
for the next year in the world by a factor of ten owing to the new major accident
that took place in Japan in 2011.
Keywords: nuclear risk, nuclear safety, time series count data

1 Introduction

The triple core meltdown at the Fukushima Dai-ichi power plant on March 11,
2011 is the worst nuclear accident since the catastrophe at Chernobyl in 1986. It has
aroused an old age debate: Is nuclear power safe? Critics claim that nuclear power
entails a latent threat to society and we are very likely to witness an accident in the
near future. Proponents say that the conditions that provoked the Fukushima disaster
were unlikely, assert that new reactors can successfully face extreme conditions and
conclude that the probability of a nuclear accident is very low.

Two months after the fukushima Dai ichi meltdown, a French newspaper published
an article coauthored by a French engineer and an economist1. They both argued that
the risk of a nuclear accident in Europe in the next thirty years is not unlikely but
on the contrary, it is a certainty. They claimed that in France the risk is near to 50%
and more than 100% in Europe.
∗Centre d’Economie Industrielle. École des Mines de Paris. 75006, Paris, France. E-mail:

lina.escobar_rangel@mines-paristech.fr
†Centre d’Economie Industrielle. École des Mines de Paris. 75006, Paris, France. E-mail:

francois.leveque@ensmp.fr
1 Benjamin Dessus and Bernard Laponche, June 3, 2011, available at

http://www.liberation.fr/politiques/01012341150-accident-nucleaire-une-certitude-statistique
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Their striking result comes from dividing the number of reactor explosions (one in
Chernobyl and 3 in Fukushima Dai-ichi) over cumulated experience (14.000 reactor-
years) and multiplying this ratio by the number of reactors and 30 years. So if we
take 58 operative reactors in France, we get 0.49 and if we consider 143 reactors in
Europe we obtain 1.22; hence, their conclusion that a nuclear accident is a certainty
in the European Union.

Their methodology is essentially flawed since the figures they found are larger
than 1. On the other hand, the results found by nuclear probabilistic risk assessments
(PRA, hereafter) have been quite optimistic with respect to what has been observed
until now. According to EPRI (2008), the probability of a core meltdown damage
type of accident in the US is of the order of 2.0E-5. This means one expected event
per 50.000 reactor years. As of today, one accounts 14500 operating years of nuclear
reactors and 10 core meltdowns (see section 2). This implies an observed frequency
of 1 accident per 1450 reactor years.

What seems to be clear from this debate is that assessing properly the probability
of a nuclear accident with available data is key to clarify why there are such
discrepancies and to shed light in the risks that nuclear power will entail on tomorrow.

Therefore, the main objective of this paper is to discuss different statistical
approaches to estimate the probability of nuclear accidents. Our results suggest,
that indeed there has been a sustained decrease in the frequency of core meltdowns
as testified by PRAs made in different periods of time, but this feature challenges the
assumptions that underline the Poisson model that is typically used to estimate the
probability of accidents.

To deal both with the discrete and temporal nature of the data, we propose to
use a Poisson Exponentially Weighted Moving Average (PEWMA) that is based in
a state-space time series framework developed by Harvey and Fernandes (1989) to
estimate core melt’s arrival rate.

The remainder of this paper is structured as follows. The next section outlines the
economic literature about nuclear risk assessment. Section three investigates how to
estimate the probability of a nuclear accident using successively a frequentist and a
Bayesian approach. Section four presents the PEWMA model and its results. Section
five concludes.

2 Literature review

It is possible to distinguish two approaches to assess the probability of nuclear
accidents: PRA models and statistical analysis.

PRA models describe how nuclear reactor systems will respond to different
initiating events that can induce a core meltdown after a sequence of successive
failures. This methodology estimates the core damage frequency (CDF, hereafter)2
based on observed and assumed probability distributions for the different parameters
included in the model.
2 PRA can be done at 3 levels. The first one considers internal or external initiating events followed

by a series of technical and human failures that challenge the plant operation and computes the
CDF as a final outcome. Level 2 evaluates how the containment structures will react after an
accident, at this level the Large Early Release Frequency (LERF) is computed. The last level
determines the frequencies of human fatalities and environmental contamination.
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The use of PRAs in commercial reactors is a common practice in the U.S, because
they are a key input for the risk-based nuclear safety regulation approach (Kadak
and Matsuo (2007)). The Nuclear Regulatory Commission (NRC, hereafter) has been
doing PRA studies since 1975, when the so called WASH-1400 was carried out. This
first study estimated a CDF equal to 5E-05 and suggested an upper bound of 3E-04.

The lessons from Three Mile Island accident and the ensuing improvements in
PRA techniques allowed the NRC to perform a PRA for 5 units in 1990; the average
CDF found was 8.91E-05.

It was not until 1997, that theNRC published the Individual Plant Examination
Program NUREG-1560, which contains the PRA results, including CDFs, for all the
108 commercial nuclear power plants in the U.S.

According to EPRI (2008) report, this metric of safety has shown a decreasing
trend from 1992 to 2005 due to safety enhancements that have induced significant
reductions.

Figure 1: Core Damage Frequency Industry Average Trend (EPRI, 2008)

This paper belongs to the statistical approach of assessing the probability of
nuclear accident based on historical observations. One problem is that as nuclear
accidents are rare events, data is scarce.

Hofert and Wüthrich (2011) is the first attempt in this category. The authors
used Poisson MLE to estimate the frequency of annual losses derived from a nuclear
accident. The total number of accidents is computed as a Poisson random variable
with constant arrival rate λ.

The authors recognized that λ estimates change significantly depending on the
time period taken. This suggests that there are doubts about the assumption of a
non-time dependent arrival rate.

If the events are correlated somehow, Poisson results are no longer valid. Hence it
is not suitable to ignore the temporal nature of the data. Our paper tries to fill this
gap in the literature. We propose to use a structural-time series approach that has
been develop by Harvey and Fernandes (1989) and used in political science by Brandt
and Williams (1998), but is yet to be used to assess nuclear risks.
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3 How to model the probability of a nuclear acci-
dent?

3.1 Data

Our first task is to define the scope of our study: which events can be considered
as nuclear accidents. In general, the criterion used to classify them is the magnitude
of their consequences, which is closely linked with the amount of radioactive material
that is released outside the unit.

For instance, the INES scale3 ranks nuclear events into 7 categories. The first 3
are labeled as incidents and only the last 4 are considered as accidents. The major
nuclear accident is rated as 7 and is characterized by a large amount of radioactive
material release. Accidents like Chernobyl and Fukushima Dai-ichi are classified
within this category, whereas Three Mile Island event is classified as accident with
wider consequences (Level 5) because it had very limited release.

The definition of nuclear accident is an important empirical issue because as it gets
narrower, the number of observed events is reduced. According to Cochran (2011)
only 9 nuclear commercial reactors4 have experienced partial core meltdown, including
fuel damage, from 1955 to 2010; while Sovacool (2008) accounts 67 nuclear accidents
from 1959 to 2011. However his list includes other types of accident in addition to
core meltdowns5

This implies a trade-off between estimation reliability and the significance of the
results. If we take a broader definition of accidents, we have more information in our
sample; therefore, we can be more confident of the results, but what we can infer
about the probability of a major nuclear accident is much more limited. On the
contrary, if we restrict our attention only to the most dramatic accidents, we only
have 2 cases (i.e., Chernobyl and Fukushima Dai-ichi) which undermines the degrees
of freedom of any statistical model.

In order to avoid the sparseness issue that arises when we consider only major
nuclear accidents and in order to be able to compare our results with the CDF
computed in the PRA studies, we take core meltdowns with or without releases as
the definition of nuclear accident.

Another reason to choose this scope is that the magnitude of internal consequences
of a core meltdown (i.e., the loss of the reactor and its clean-up costs) do not differ
much between a major and less severe accidents 6. Then knowing the probability of
a core meltdown as we have defined, could be useful to design insurance contracts
to hedge nuclear operators against the internal losses that will face in case of any of
these events.
3 This scale was designed in 1989 by a group of international experts in order to assure coherent

reporting of nuclear accidents. In the scale each increasing level represents an accident
approximately ten times more severe than the previous level. See http://www-ns.iaea.org/tech-
areas/emergency/ines.asp

4 See Table 7 in the Appendix
5 This list was set to compare major accidents within the energy sector. This goal explains why the

nuclear accidents sub-list is far to be comprehensive, representative (e.g., nuclear incidents in the
USA are over-represented) and consistent.

6 By contrast, the damages in case of radioactive elements releases in the environment could vary
in several orders of magnitude depending on the meteorological conditions and the population
density in the areas affected by the nuclear cloud
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Figure 2: Major nuclear accidents, reactors and operating experience 1955-2011

Figure 2 plots the number of events collected by Cochran (2011) as well as
the number of installed reactors and cumulated nuclear operating experience (in
reactor years) published in the PRIS7 database.These variables will be used in our
estimation.8.

At first glance, we can conclude that sparseness remains an issue even if the
scope of accidents that we have taken is broader. It also seems that PRA results
are not completely wrong, since most of the accidents were recorded at the early
stages of nuclear power history. It is important to highlight that during the period in
which nuclear experience grew exponentially (i.e., over the last 10 years), only (and
fortunately) the Fukushima Dai-ichi meltdowns have been observed, which intuitively
suggests that there has been a safety improvement trend.

Our second issue is to parametrize our problem. We have to assume that accidents
are realizations that follow some known stochastic process.

Within the discrete probability functions, Poisson process isis the best fit for
our problem because it models the probability of a given number of discrete events
occurring in a continuous but fixed interval of time. In our case, the ”events”
correspond to core meltdowns and the interval time to one year.

Assumption 1: Let yt denote the number of nuclear accidents observed at year
t. Assume that yt is a Poisson random variable with an arrival rate λ and density
function given by:

f(yt|λ) =
(λEt)yt exp(−λEt)

yt!
(1)

7 The Power Reactor Information System
8 Is important to mention that we have considered Fukushima Dai-ichi as one rather than three

accidents
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Given one year is the time interval chosen, we have to offset the observations by
the exposure time in within this interval. Et corresponds to the number of operative
reactors at year t an it is the exposure time variable in our model. Is important to
note that it is not the same to observe one accident when there is only one reactor in
operation, than with 433 reactors working.

Under Assumption 1 our problem is fully parametrized and we only need to know
λ in order to compute the probability of a nuclear accident at time t. Before we
proceed further, we want to reiterate the necessary conditions for a count variable to
follow Poisson distribution:

i. The probability of two simultaneous events is negligible

ii. The probability of observing one event in a time interval is proportional to the
length of the interval

iii. The probability of an event within a certain interval does not change over
different intervals

iv. The probability of an event in one interval is independent of the probability of
an event in any other non-overlapping interval

For the case of nuclear accidents, assumptions i and ii do not seem far from reality.
Even if in Fukushima Dai-ichi the events occurred the same day, the continuous
nature of time allows us to claim that they did not happen simultaneously; and it is
not unreasonable to expect that as we reduce the time interval, the likelihood of an
accident goes down.

On the contrary, conditions iii and iv might be more disputable. For the moment
we will assume that our data satisfy these assumptions and we will deal with both of
them in section 4.

3.2 Frequentist approach

As mentioned before, knowing λ is enough to assess the probability of a nuclear
accident under Assumption 1. The frequentist approach consist in using the
observations in the sample ({yt}Tt=0, {Et}Tt=0) to compute the MLE estimate for our
parameter of interest λ. In our case λ equals the cumulative frequency.

Table 1: Poisson with constant arrival rate (1955-2011)

Database λ̂ Coefficients Estimate Std. Error z value Pr(> |z|)
Corchan 0.000667022 -7.3127 0.3162 -23.12 <2e-16 ***

If we compute λ̂ using the information available up to year 2010, we can define ∆
as the change in the estimated arrival rate to measure how Fukushima-Daiichi affected
the rate.

∆ =
λ̂2011 − λ̂2010

λ̂2010

(2)
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Using this model, the Fukushima accident represented an increase in the arrival
rate equal to ∆ = 0.07904. In other words, after assuming a constant world fleet of
433 reactors on the planet from 2010 to 2012, this model predicts the probability of a
core meltdown accident as 6.175 10-4 in the absence of Fukushima Dai ichi accident.
On including this accident, the probability jumps to 6,667 10-4 (i.e., about a 8%
increase) because of the new catastrophe in Japan.

It is important to recognize that the simplicity of this model comes with a high
price. First, it only takes into account the information that we have in our sample;
given that what we have is predominantly zeros, it would been suitable to incorporate
other sources of knowledge about the drivers of the frequency of a core meltdown. In
fact, it seems odd to compute a predictive probability of accident that is only based
on a few historical observations whereas there exists a huge amount of knowledge
brought by nuclear engineers and scientists over the past 40 years on the potential
causes that may result in major accidents, especially core meltdowns. Second, the
change in the number of operating commercial reactors is the only considered time-
trend. Our computation assumes as if all the reactors built over the past 50 years are
the same and their safety features invariant with time. This basic Poisson model does
not allow us to measure if there has been a safety trend that reduces the probability
of a nuclear accident progressively as the PRA studies shown. We will try to address
these limitations in the following methods.

3.3 Bayesian approach

A second alternative to assess the estimation of λ is to consider it as a random
variable. Under this approach observations are combined with a prior distribution,
denoted by f0(λ) that encodes all the knowledge that we have about our parameter,
using Bayes’ law.

f(λ|yt) =
f(yt|λ)f0(λ)∫
f(yt|θ)f0(θ)dθ

(3)

Equation 3 shows the updating procedure for a continuous random variable. Note
that once we have updated f0(λ) using the available information in {yt}Tt=0 we can use
mean of the posterior distribution f(λ|yt) in Equation 1 to compute the probability
of an accident.

The choice the prior distribution has always been the central issue in Bayesian
models9. Within the possible alternatives, the use of a conjugate prior has two
important advantages: it has a more clear cut interpretation and it is easier to
compute.

Since we have already assumed that the accidents come from a Poisson
distribution, we will assume that λ follows the conjugate distribution for this
likelihood that is Gamma with parameters (a, b).

Assumption 2: The arrival rate λ is a Gamma random variable with parameters
(a, b) and density function given by:
9 For an extended discussion on the prior’s selection, see Carlin and Louis (2000) or Bernardo and

Smith (1994)
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f0(λ) =
exp(−bλ)λa−1ba

Γ(a)
(4)

Given the properties of the gamma distribution, it is possible to interpret the
chosen parameters. The intuition behind this updating procedure is the following:
Prior to collecting any observations, our knowledge indicates that we can expect to
observe a number of accidents in b reactor years. This gives us an expected rate equal
to a/b which is the mean of gamma distribution.

The parameter that reflects how confident we are about this previous knowledge
is b. Given that it is closely related with the variance (V (λ) = a/b2), the greater b is
the more certain we are of our prior.

Once we have collected observations, yt accidents in Et reactor years, we can
update our prior following a simple formula:

au = a+ yt (5)
bu = b+ Et (6)

Which gives a new expected rate given by au/bu.

PRA estimates have valuable information to construct the prior. For instance,
if we use the upper bound found in WASH-1400 report that is a CDF equal to 3E-
04 it means approximately 1 accident over 3.500 years, which can be expressed in
terms of prior parameters as (a = 1, b = 3.500). Likewise we can take the 8.91E-05
found in the NUREG-1150, which can be expressed as a pair of prior parameters
(a = 1, b = 10.000).

If we consider the first PRA as a good starting point, this will reflect not only a
higher expected arrival rate but also that we are highly uncertain about the value of λ.
Thus the results will be mainly driven by the observations and will quickly converge
towards the results of the frequentist approach. In fact, if we use the (a = 1, b = 3.500)
as a prior, the Poisson-gamma model predicts an expected arrival rate for 2011 equal
to λ̂2011 = 5.99E-0.4 and when we compute ∆ we find that the Fukushima Dai-ichi
accident represented an increase of 7.09% ; these figures are quite similar of those we
have obtained with the frequentist model.

However, if we take the NUREG-1150 study as a source for the prior we stay more
stuck to the prior and need a larger number of observations to move far from it. With
this information we find an expected arrival rate equal to λ̂2011 =4.3E-4 and ∆= 8%.

Results in Figure 3 seem to show that there has been a sustained decrease in the
expected rate of nuclear accidents over the past 10 years. To test if this has been
the case, we will define λ as a function of a time trend. Note that such an approach
challenges what is stated in condition (iii) because we are allowing that the arrival
rate changes in each time interval (i.e., one year in our case) .

3.4 Poisson regression models

In this section we define the arrival rate as function of time in order to try to
capture the safety and technological enhancements in nuclear power industry.

8



Figure 3: Bayesian updating with Poisson-Gamma model

Assumption 3: The systematic component (mean) λt is described by a
logarithmic link function given by:

λt = exp(β0 + β1t) (7)

Table 2: Poisson with deterministic time trend

Coefficients Estimate Std. Error z value Pr(> |z|)
Intercept 221.88694 55.78873 3.977 6.97e-05 ***

time -0.11548 0.02823 -4.091 4.29e-05 ***

Results in Table 2 are MLE estimates for (β0, β1). The time trend coefficient
confirms the hypothesis that the probability of a nuclear accident has been reduced
along this period. As expected, the estimate is negative and significant. Therefore, if
the effect of regulatory strictness, technological improvements and safety investments
can be summarized in this variable, we have found some evidence that supports the
safety trend that PRA studies have shown.

In this case, the λ̂2011=3.20E-0.5 is closer to the estimated CDF of last PRA
studies. When we compute the Fukushima Dai-ichi effect on the arrival rate we find
an increase of ∆=2.3. Unlike in the previous two models this increase is significant.
10

Summing up, we have found results supporting the idea of a decreasing arrival
rate like in the PRA studies, however this challenges condition (iii).
10The Poisson regression can also be done under a Bayesian approach, nevertheless the prior is

not as easy to construct as in the previous case, because in this setting the coefficients (β0, β1)
are the random variables. Generally it is assumed that they come form a normal distribution
β ∼ Nk(b0, B0). Where k = 2 (in our case) is the number of explanatory variables; b0 is the vector
of prior means and B0 is the variance-covariance matrix. Then to construct the prior will require
a lot of assumptions not only in the level and precision of the coefficients, but also in how they
are related. Given that precisely what we want is to relax as much assumptions as possible, we
are not going to consider such a model.
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Now we discuss the no correlation hypothesis (i.e., condition iv). At first glance
one could say that nuclear accidents fulfill this condition. TMI is not related with
what happened in Chernobyl, etc. Nevertheless we are using the sum of nuclear
accidents in each year from 1959 to 2011 and from one year to another a significant
part of the fleet is the same because nuclear reactors have a long life. Therefore, at
some point our time series reflects how the state of technology and knowledge linked
with nuclear safety has evolved during this period.

Given that we are using a time series, we have to check if there is a stochastic
process that governs nuclear accidents’ dynamics. This means to know if accidents
are somehow correlated, or if instead we can assume that they are independent events
(condition iv). To test this we propose to use a time series state-space approach.

Why conditions (iii) and (iv) are relevant? As in the classical regression analysis,
the MLE Poisson estimation assigns an equal weight to each observation because
under this assumption, all of them carry the same information. However, if observed
events are somehow correlated with those in previous periods, some of them bring
more information about the current state than others, therefore past observations
have to be discounted accordingly.

4 Poisson Exponentially Weighted Average (PEWMA)
model

Although Autoregressive Integrated Moving Average (ARIMA, hereafter) models
are the usual statistical framework to study time series, there are two limitations to
use them in the case of nuclear accidents.

First, it is inappropriate to use them with discrete variables because these models
are based on normality assumptions. The second limitation (Harvey and Fernandes
(1989)) is related to the fact that nuclear accidents are rare events. This implies
that the mean tends to zero and that the ARIMA model could result in negative
predictions, which is incompatible with Assumption 1 (Brandt and Williams (1998)).

To deal with these two limitations, Harvey and Fernandes (1989) and Brandt and
Williams (1998) propose to use a structural time series model for count data. This
framework has a time-varying mean as in the ARIMA models and allows for a Poisson
or a negative binomial conditional distribution f(yt|λt).

The idea is to estimate the coefficients in the exponential link as in a Poisson
regression, but each observation is weighted by a smoothing parameter; for this reason
the model is called Poisson Exponentially Weighted Moving Average (PEWMA).

We briefly describe below the structural time series approach11, following what
has been developed by Brandt and Williams (1998) and (2000).

The model is defined by three equations: measurement, transition and a conjugate
prior. The first is the model’s stochastic component, the second shows how the state
λt changes over time and the third is the element that allows to identify the model.

Under Assumption 1, the measurement equation f(yt|λt) is given by Equation 1.
In this setting λt has two parts, the first shows the correlation across time and the
11Harvey and Shepard (1993) have elaborated a complete structural time series statistical analysis
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second captures the effect of the explanatory variables realized in the same period,
that corresponds to an exponential link exp(X ′tβ) like in the previous model.

Assumption 3’: The mean λt has an unobserved component given by λ∗t−1 and
an observed part denoted µt described by link Equation 7.

λt = λ∗t−1µt (8)

At its name implies, the transition equation describes the dynamics of the series.
It shows how the state changes across time.

Assumption 4: Following Brandt and Williams (1998), we assume that the
transition equation has a multiplicative form given by:

λt = λt−1 exp(rt)ηt, (9)

Where rt is the rate of growth and ηt is a random shock that follows a Beta
distribution.

ηt ∼ Beta(ωat−1; (1− ω)at−1) (10)

As in a linear moving average model, we are interested in knowing for how long
random shocks will persist in the series’ systematic component. In PEWMA setting,
ω is precisely the parameter that captures persistence. It shows how fast the mean
moves across time; in other words, how past observations should be discounted in
future forecast. Smaller values of ω means higher persistence, while values close to 1
suggests that observations are highly independent.

The procedure to compute f(λt|Yt−1) corresponds to an extended Kalman filter12.
The computation is recursive and makes use of the advantages of the Poisson-Gamma
Bayesian model that we discussed in the previous section.

The idea of the filter is the following. The first step consists in deriving the
distribution of λt conditional on the information set up to t−1. We get it by combining
an unconditional prior distribution λ∗t−1 that is assumed to be a Gamma, with the
transition Equation in 9.

Using the properties of the Gamma distribution we obtain f(λt|Yt−1) with
parameters (at|t−1, bt|t−1)

λt|Yt−1 ∼ Γ(at|t−1, bt|t−1) (11)

Where:
at|t−1 = ωat−1

bt|t−1 = ωbt−1 exp(−X ′β − rt)

The second step consists in updating this prior distribution using the information
set Yt and Bayes’ rule. This procedure give us a posterior distribution f(λt|Yt). As
we have seen in the previous section, the use of the conjugate distribution results
in a Gamma posterior distribution and the parameters are updated using a simple
updating formula.
12The derivation of this density function is described in Brandt and Williams (1998)
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λt|Yt ∼ Γ(at, bt) (12)

Where:
at = at|t−1 + yt

bt = bt|t−1 + Et

This distribution becomes the prior distribution at t and we use again the
transition equation and so on and so forth.

4.1 PEWMA Results

Given that we are not going to use covariates, the only parameter to estimate is
ω. We use PEST13 code, although some modifications have been made to include the
number of reactors as an offset variable. This model needs prior parameters, and we
choose (a = 1, b = 10.000).

The estimates obtained with this model are summarized in Table 3.

Table 3: PEWMA model

Model 1
ω̂ 0.814
(s.e) (0.035)
Z-score 23.139
LL -37.948
AIC 75.896

Note that ω̂ estimate is less than 1. If we use a Wald statistic to test
independence, we reject the null hypothesis, thus Poisson regression and Bayesian
updating method are not suitable to assess the probability of a nuclear accident
because the independence assumption is violated. This means that past observations
influence the current state, specially the more recent ones.

Table 4: Test for reduction to Poisson

Model 1
Wald test for ω=1 27.635
Wald p-value 1.46e-07

Our results mean that operational, technological and regulatory changes aimed
to increase nuclear safety have taken their time and have impacted technical
characteristics of the nuclear fleet progressively. It is undeniable that what
nuclear operators, regulators and suppliers knew during the early 60’s has evolved
substantially, (i.e better operation records, new reactor designs) and the experience
13The code is available in http://www.utdallas.edu/ pbrandt/pests/pests.htm
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gained from the observed accidents induced modifications that ended up reducing core
meltdowns frequency.

If we use a narrower definition of nuclear accident (i.e nuclear accident with large
releases), we will tend to accept independence assumption, because what the data
reflect the particular conditions in which these accidents occurred. On the contrary,
if we take a broader set we will tend to estimate a lower ω, because data contain more
information about nuclear safety as a whole. For instance, if we use Sovacool (2008)
registered accidents as dependent variable, we find the results in Table 5.

Table 5: PEWMA model with broader definition of accident

Model 1
ω̂ 0.684
(s.e) (0.039)
Z-score 17.299
LL -69.626
AIC 139.253

Note that the ω̂ obtained taking into account more accidents is smaller than the
one that we estimated with our definition of nuclear accident.

4.2 Changes in ω̂

The predictions at each t in the filter for λt vary substantially depending on ω.
If all the events are independent ω → 1, they are considered equally important in
the estimation, past accidents are as important as recent ones. As ω gets smaller,
recent events become more important than those observed in the past. The latter are
therefore discounted.

Figure 4 plots the mean of f(λt|Yt) for different values of ω. Note that for higher
values, the changes are more subtle because the effect of a new accident is diluted
over the cumulated experience. When we discount past events, the observation in
the latest periods are the most important, that is the reason why the changes in the
expected arrival rate are more drastic than in the Poisson model.

The model estimates a λ̂2010= 4.42e-05 and λ̂2011=1.954e-3 which implies a
∆=43.21.

As in figure 2, the evolution in the number of accidents is broadly featured
with two periods. Until 1970 the arrival rate grows quickly to a very high peak.
This is because there were several accidents between 1960 and 1970 and also the
worldwide nuclear fleet stayed small. After 1970, one accounts several accidents but
the operating experience has considerably increased. Between 1970 and 2010, one
observes a decreasing trend for the arrival rate even though this period is featured
with the most well known accidents of Three Mile Island and Chernobyl.

The Fukushima Dai-ichi results in a huge increase in the probability of an accident.
The arrival rate in 2011 is again similar to the arrival rate computed in 1980 after the
Three Mile Isands and the Saint Laurent des Eaux core meltdown. In other terms,
Fukushima Dai-ichi accident has increased the nuclear risk for the near future in the
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Figure 4: PEWMA with different ω

same extent it has decreased over the past 30 years owing to safety improvements. In
informational terms, the adding of a new observation (i.e., new accident) is equivalent
to the offsetting of decades of safety progress.

The Fukushima Dai-ichi effect of ∆ 43 could appear as not realistic. In fact, at first
glance the triple meltdown seems very specific and caused by a series of exceptional
events (i.e., a seism of magnitude 9 and a tsunami higher than 10 meters). For most
observers, however, the Fuskushima Dai-ichi accident is not a black swan14. Seisms
followed by a wave higher than 10 meters have been previously documented in the
area. It is true that they were not documented when the Fukushima Dai-ichi power
plant was built in 1966. The problem is that this new knowledge appeared in the
80s and has then been ignored, deliberately or not, by the operator. It has also been
ignored by the nuclear safety agency NISA because as well-demonstrated now the
Nippon agency was captured by the nuclear operators (Gundersen (2012)).

Unfortunately, it is likely that several NPPs in the world have been built in
hazardous areas, have not been retrofitted to take into account better information
on natural risks collected after their construction, and are under-regulated by a
non-independent and poorly equipped safety agency as NISA. The Fukushima Dai-
ichi accident entails general lessons regarding the under-estimation of some natural
hazardous initiating factors of a core meltdown and the over confidence on the actual
control exerted by safety agency on operators. Note also that such an increase seems
more aligned with a comment made after the Fukushima Dai-ichi accident: a nuclear
catastrophe can even take place in a technologically advanced democracy. It means
that a massive release of radioactive elements from a nuclear power plant into the
environment is no longer a risk limited to a few unstable countries where scientific
knowledge and technological capabilities are still scarce

The 10 times order of magnitude of the Fuskushima Dai-ichi effect computed by
us could therefore be realistic.
14See FukushimaDai-chi NPS Inspection Tour (2012)
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5 Conclusion

Results in Table 6 recapitulates the different numbers for the arrival rate and the
Fuskushima Dai-ichi effect we obtained in running the 4 models.

Table 6: Summary of results

Model λ̂2010 λ̂2011 ∆
MLE Poisson 6.175e-04 6.66e-04 0.0790
Bayesian Poisson-Gamma 4.069e-04 4.39e-04 0.0809
Poisson with time trend 9.691e-06 3.20e-05 2.303
PEWMA Model 4.420e-05 1.95e-03 43.216

The basic Poisson model and the Bayesian Poisson Gamma model provide similar
figures. According to both models, the Fuskushima Dai-ichi effect is negligible. The
reason is that both models do not take any safety progress into account. The arrival
rate is computed as if all the reactors have been the same and identically operated
from the first application of nuclear technology to energy to this day. This is a strong
limitation because it is obvious that over the past 50 years the design of reactors and
their operation have improved. The current worldwide fleet has a higher proportion
of safer reactors than the 1960’s fleet.

By contrast, the introduction of a time-trend into the Poisson model has led to a
high decrease in the 2010 arrival rate. The time trend captures the effect of safety and
technological improvements in the arrival rate. Being significant this variable allows
to predict a lower probability of nuclear accident. If we use a Poisson regression, we
find a tripling of the arrival rate owing to the Fukushima Dai-ichi accident. Note
that both findings seem more aligned with common expertise. In fact, the probability
of an accident by reactor-year as derived by the 2010 arrival rate is closer to PRAs’
studies. Moreover, a significant increase in the arrival rate because of Fukushima
Dai-ichi meltdowns fits better with the features of this accident and its context.

Nevertheless, the Poisson regression is based on independent observations. The
PEWMA model has allowed us to test the validity of this hypothesis and we find that
it is not the case. This seems to be more suitable because nuclear reactors have a
long lifetime and the construction of new reactors, investments in safety equipment,
learning process and innovations take time to be installed and adopted by the whole
industry. Of course, the dependence hypothesis leads to a higher arrival rate because
it introduces some inertia in the safety performances of the fleet. A new accident
reveals some risks that have some systemic dimension.

In PEWMA models the Fukushima Dai-ichi event represents a very substantial,
but not unrealistic increase in the estimated rate. By construction each observation in
this model does not have the same weight. Past accidents are discounted more than
new accidents. This captures the idea that lessons from past accidents have been
learnt in modifying operations and design and that a new accident reveals new safety
gaps that will be progressively addressed later in order to avoid a similar episode.

An issue that remains unresolved is the heterogeneity among the accidents.
Although TMI, Chernobyl and Fukushima were core melt downs, both the causes and
the consequences differed from one to another. A step further in addressing correctly
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the probability of nuclear accidents, would consist in using a weighting index that
reflects each event magnitude.
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Appendix A List of nuclear accidents involving core
meltdown

Table 7: Partial core melt accidents in the nuclear power industry

Year Location Unit Reactor type
1959 California, USA Sodium reactor experi-

ment
Sodium-cooled power reactor

1961 Idaho, USA Stationary Low-Power
Reactor

Experimental gas-cooled, water
moderated

1966 Michigan, USA Enrico Fermi Unit 1 Liquid metal fast breeder reactor
1967 Dumfreshire, Scotland Chapelcross Unit 2 Gas-cooled, graphite moderated
1969 Loir-et-Chaire, France Saint-Laureant A-1 Gas-cooled, graphite moderated
1979 Pennsylvania, USA Three Mile Island Pressurized Water Reactor

(PWR)
1980 Loir-et-Chaire, France Saint-Laureant A-1 Gas-cooled, graphite moderated
1986 Pripyat, Ukraine Chernobyl Unit 4 RBKM-1000
1989 Lubmin, Germany Greifswald Unit 5 Pressurized Water Reactor

(PWR)
2011 Fukushima, Japan Fukusima Daiichi Unit

1,2,3
Boiling Water Reactor (BWR)

Cochran (2011)

17


	I3WP_12-ME-06-front.pdf
	I3WP-12_ME_06paper.pdf

