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Random tessellations and Boolean random

functions

Dominique Jeulin

Centre de Morphologie Mathématique,
Mathématiques et Systémes, 35 rue Saint-Honoré, 77300 Fontainebleau, France

Abstract. Generalizations of various random tessellation models gener-
ated by Poisson point processes are proposed and their functional prob-
ability P (K) is given. They are interpreted as characteristics of Boolean
random functions models, which provide a generic way of simulation of
general random tessellations.

Key words: Voronoi tessellation, random tessellation, Boolean random
function

1 Introduction

Some models of random tessellations in the Euclidean space Rn are defined
from distances to the points xk of a point process, usually the Poisson point
process P: the Voronoi tessellation is defined from the zones of influence of points
xk. Its generalizations like the Johnson-Mehl and the Laguerre tessellations use
a time sequence of points, and a sequence of ponderations allocated to each
point. It turns out that these models can be re-interpreted in the framework of
Boolean random functions, with appropriate primary functions. In what follows,
we propose new models of random tessellations based on local metrics attached to
each point of the process. They correspond to specific Boolean random function
models, which can be used for their simulation. The new models show a wide
flexibility, generating tessellations with non planar boundaries, that can be used
to simulate metallic grains [1] or foams [10].

2 Reminder on random tessellations

Random tessellations were formalized by G. Matheron in [11].

Definition 1. Consider a locally compact denumberable space E and subsets Ci
of E, belonging to ℘(E). A tessellation Θ is a collection of classes Ci ∈ ℘(E)
with

∪iCi = E and Ci ∩Cj = ∅ for i �= j

We note Π(E) (namely Πg(E)) the set of tessellations of E (namely of tes-
sellations with open (or point) classes). RA is the subset of Πg(E), such that
A ⊂ E is contained in one class C.
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Subsets RG, where G are open parts of E, generate a σ algebra on Πg(E),
σ(RG), on which a probability can be constructed. A random tessellation Θ is
characterized by P (RG) = P{G ⊂ Ci}. In the present paper, we study some
models of random tessellations in the Euclidean space Rn. In addition, we will
consider locally finite random tessellations, for which the random number of
classes in every bounded domain D is a finite random number N(D).

With this σ algebra, we can define events (and their probability) like ”x
belongs to a single class”, ”x1 and x2” belong to a single class, ”x1, x2, ... xm
belong to k classes, or more generally "the compact set K is included in a single
class". Note that the classes of a random tessellation in Rn can be split in several
connected components, as is the case for the dead leaves tessellation [6], or for
some tessellations introduced in this paper.

3 Lp Voronoi tessellations

3.1 Standard Voronoï tessellation

Definition 2. The Poisson Voronoï tessellation in the Euclidean space Rn is
defined from zones of influence of Poisson points [4, 16, 17]. The class Ck of the
tessellation containing point xk of the Poisson point process P is defined by

Ck = {x ∈ Rn, d(x, xk) < d(x, xl), xk ∈ P, xl ∈ P, l �= k} (1)

It is easy to show that every cell of the tessellation is an open set. Its closure
is delimited by planar faces (planes in R3 and segments in R2) orthogonal to
segments connecting neighbour points of P. Indeed, using the Euclidean distance
with

d2(x, xk) =
i=n∑

i=1

(xi − xki)
2

xi being the coordinates of point x in Rn, the boundary separating cells Ck and
Cl is obtained by means of

d2(x, xk) = d2(x, xl), (2)

generating a linear equation with respects to coordinates xi, which provides the
equation of an hyperplane.

The physical interpretation of this model is the isotropic growth from random
point germs. Two-phase models of materials were generated from 3D Voronoi
tessellations in [7].

3.2 Anisotropic Voronoï tessellation

A first change of the model is obtained by a non isotropic growth of germs.
This can be made by using a Euclidean metric with positive eigenvalues λi and
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with orthogonal eigenvectors obtained by a rotation of the basis of vectors ei.
In that case, the Euclidean metric is represented by a symmetric positive def-
inite matrix M(n, n). Noting X and Xk the vectors with coordinates xi and
xki, we get d

2(x, xk) = (X
t−Xt

k)M(X−Xk), noting Xt the transpose of vector
X. Changing the Euclidean metric is equivalent to performing affine transforma-
tions in the directions of the eigenvectors, with ratios λi. Therefore, the resulting
Voronoï tessellation is obtained by performing the corresponding affine transfor-
mations to the standard Voronoï tessellation, resulting in an anisotropic model,
as considered in [15].

3.3 Use of the Lp metric

Replacing the Euclidean metric by the Lp metric produces new models of tes-
sellations. We have for the Lp metric with the integer p

dp(x, xk) =
i=n∑

i=1

|xi − xki|
p (3)

The separation between cells becomes

dp(x, xk) = dp(x, xl).

When p > 1, this expression gives polynomials with degree p − 1 with respect
to coordinates. For p = {1, 2} the separations are planar. For p = 3, we get
portions of quadrics. Increasing the value of p gives higher order polynomial
surfaces. However the obtained tessellations are not isotropic in the Euclidean
space, since the balls defined by

∑i=n
i=1 |xi|

p = rp are not isotropic, except for
p = 2, giving spheres. For p = 1, the balls are hypercubes with edges orthogonal
to directions given by (±1,±1, ...,±1). When p→∞ we get the L∞ metric, for
which balls are hypercubes with edges parallel to the coordinates system. For
p = 1 and p =∞, the separations are parallel to the faces of the corresponding
hypercubes.

3.4 Tesselations defined from local metrics

To simulate locally anisotropic growth and local growth rates, it is interesting
to start with a field of metrics depending on the location x. Depending on vari-
ations of the metric in space, tessellations with oriented cells following a field of
orientations will be produced. This approach is followed by [8] in the context of
meshing, using local Euclidean metrics, but no probabilistic properties is given.

Tesselations defined with a local Euclidean metric We will now attach
to every Poisson point xk the Euclidean metric defined by the matrix Mk. In
general the matrices corresponding to different germs will be correlated.

The definition of the tessellation (2) becomes:
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Definition 3. The local Poisson Voronoï tessellation in the Euclidean space Rn

is defined from zones of influence of Poisson points, using the Euclidean distance
dk for point xk. The class Ck of the tessellation containing point xk is defined
by

Ck = {x ∈ Rn, dk(x, xk) < dl(x, xl), xk ∈ P, xl ∈ P, l �= k} (4)

The separation between cells Ck and Cl is given by the equation

(Xt −Xt
k)Mk(X −Xk) = (X

t −Xt
l )Ml(X −Xl) (5)

Rearranging the terms in equation (5), we get

Xt(Mk −Ml)X − 2Xt(MkXk −MlXl) +Xt
kMkXk −Xt

lMlXl = 0 (6)

The separations of cells are made of portions of quadrics, and the edges
are therefore portions of conics. Note that the cells Ck can be made of several
connected components.

Tesselations defined with a local Lp metric We will now consider attached
to each germ xk a local Lp metric defined on a basis obtained from the ortho-
normal basis of Rn by a rotation matrix Rk and a system of positive weights
aki. In this basis, the coordinates of point x become X′ = RX and expression
(3) becomes

d
p
k(x, xk) =

i=n∑

i=1

aki |x
′

i − x′ki|
p

(7)

The definition of the tessellation (2) becomes:

Definition 4. The local Poisson Voronoï tessellation in the Euclidean space Rn

is defined from zones of influence of Poisson points, using the Lp metric dk for
point xk. The class Ck of the tessellation containing point xk is defined by

Ck = {x ∈ Rn, d
p
k(x, xk) < d

p
l (x, xl), xk ∈ P, xl ∈ P, l �= k} (8)

As before, cells Ck are not necessarily connected. Their separations are made
of portions of hypersurfaces of degree p, and the edges are portions of curves of
degree p.

3.5 Calculation of the probability P (K)

Voronoï tessellation with a constant metric Lp Consider a compact set

K. General expressions of the probability P (K) = P (K ⊂ Ck) can be derived for
the Voronoi models defined from a Poisson point process with intensity θ(x), by
generalization of the results of Gilbert [4]. We note B(x, r) the ball with center
x and radius r, defined from the metric Lp. We have B(x, r) = {y, dp(x, y) ≤ rp}
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Theorem 1. Consider a Voronoi tessellation of space defined from the Poisson
point process with intensity θ(x), and the metric Lp. The probability P (K) =
P (K ⊂ Ck) is given by

P (K) =

∫

Rn
θ(dy)exp− θ(F (K, y)) (9)

where θ(F (K, y)) =
∫
Rn θ(dx)1F (K,y)(x) is the measure of the Voronoi flower

F (K, y) = ∪x∈KB(x, d(x, y)). In the stationary case, for a constant intensity θ,
equation (9) becomes

P (K) = θ

∫

Rn

exp− θµn(F (K, y))dy, (10)

µn being the Lebesgue measure in Rn.

Proof. We have K ⊂ Ck ⇐⇒ ∀x ∈ K, ∀l �= k, d(x, xk) ≤ d(x, xl) ⇔ the ball
with center x ∈ K and radius d(x, xk) contains no point of the Poisson point
process. Calling F (K, y) = ∪x∈KB(x, d(x, y)) the Voronoi flower [2] of K with
center y, we have K ⊂ Ck ⇔ F (K,xk) contains no point of the process, with
probability exp − θ(F (K,xk)). Equation (9) is obtained by randomization of
the point xk, θ(dy) being the probability that the element of volume dy contains
a point of the process.

When K is a connected compact set, P (K) gives the probability for K to be
included in a single connected component of the cell.

Tesselations defined with a local Lp metric We consider now random
tessellations with local Lp metrics d

p
k and d

p
l , attached to germs xk and xl.

These random metrics, defined by a set of random coefficients and a rotation,
are independent for separate germs. They are characterized by some multivariate
distribution function noted ϕ(k). We note Bl(x, r) the ball with center x and
radius r, defined from the metric d

p
l . We have Bl(x, r) = {y, d

p
l (x, y) ≤ rp}. We

call Flk(K, y) = ∪x∈KBl(x, dk(x, y)) the flower of K with center y, and metrics
dpl and dpk.

Theorem 2. Consider a random tessellation of space with local Lp metrics, de-
fined from the Poisson point process with intensity θ(x). The probability P (K) =
P (K ⊂ Ck) is given by

P (K) =

∫

Rn

ϕ(l)dlϕ(k)dkθ(dy)exp− θ(Flk(K, y)) (11)

In the stationary case, for a constant intensity θ, equation (11) becomes

P (K) = θ

∫

Rn
ϕ(l)dlϕ(k)dkexp− (θµn(Flk(K, y)))dy (12)
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Proof. Conditionally to the metrics dpk and d
p
l , and to the location of a Poisson

point xk, we have K ⊂ Ck ⇐⇒ ∀x ∈ K, ∀l �= k, dk(x, xk) ≤ dl(x, xl). Therefore,
for every point x of K, the ball Bl(x, dk(x, xk)) contains no point of the process,
and finally Flk(K,xk) contains no point of the process, with probability exp −
θ(Flk(K,xk)). Equation (11) is obtained by randomization of the point xk,
followed by a randomization of the choice of metrics dpk and d

p
l .

It is possible to replace the deterministic intensity θ(x) by a realization of a
positive random function, replacing the Poisson point process by a Cox process
[3]. In that case, we obtain Cox based random tessellations. Their corresponding
moments P (K) are deduced from equations (9, 11) by taking their expectation
with respect to the random intensity.

4 Extension to Johnson-Mehl and to Laguerre random

tessellation

The Johnson-Mehl tessellation [14] is obtained by combining germination (through
a sequential intensity θ(t)) and growth (with growth rate α(t)). The usual model
is based on constant (with respect to time) germination (with intensity θ) and
growth rate (with intensity α). During the time sequence, germs falling inside
growing crystals are deleted. Considering the sequence of Poisson germs {xk, tk},
we have:

Ck = {x ∈ Rn, d(x, (xk, tk)) + α(tk)tk < d(x, (xl, tl)) + α(tl)tl,
xk ∈ P, xl ∈ P, l �= k}

Extensions of this model are obtained by means of a Lp metric, instead of
the Euclidean distance. We can also use a local metric in the process, to generate
anisotropic growth:

Ck = {x ∈ Rn, dk(x, (xk, tk)) + α(tk)tk < dl(x, (xl, tl)) + α(tl)tl,
xk ∈ P, xl ∈ P, l �= k}

The Laguerre tessellation [9, 10] is a generalization of the Voronoi tessellation,
where to each Poisson point xk is attached a random radius Rk. The cell is now
defined from the power P (x, xk) = d2(x, xk)−R2k. We have:

Ck = {x ∈ Rn, P (x, xk) < P (x, xl), xk ∈ P, xl ∈ P, l �= k} (13)

Some germs xl generate empty cells, depending on the values of R2k and on the
distance to other germs. Cells are bounded by portions of hyperplanes. New ran-
dom tessellations can be defined, based on the Lp metric, replacing in equation
(13) P (x, xk) by dp(x, xk)−R

p
k. In general, non planar cell separations will be

generated.

An extension of the construction (8) to the local metric case is obtained
if P (x, xk) and P (x, xl) are replaced by d

p
k(x, xk) − R

p
k and d

p
l (x, xk) − R

p
l in

equation (13).
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5 Random tessellations and Boolean random functions

The previous constructions can be obtained as characteristics of some Boolean
random functions, re-interpreting the definition of Ck in terms of distance func-
tion.

We will attach to every Poisson point xk a primary random function Z′k(x)
defined according to the distance used in various definitions (4, 8, 4, 4, 13). For
instance, for the standard Voronoi model, the primary function is an increasing
paraboloid of revolution, while for the extension to the local Euclidean metric,
it is an increasing paraboloid with general ellipsoidal sections in Rn. For the
Johnson-Mehl model, primary functions are cones (with ellipsoidal section in
the local case for the Euclidean metric); for germ {xk, tk}, the primary function
is translated upward by addition of the constant α(tk)tk. Models based on the

Lp metric make use of functions defined in Rn by Z′k(x) =
∑i=n
i=1 aki |x

′

i|
p
. The

distance function associated to a model built from Poisson germs is given by

Z(x) = ∧kZ
′

k(x− xk) (14)

By definition the random function Z(x) is an Infimum Boolean random function
[6]. For the Johnson-Mehl model, the primary function becomes Z′k(x − xk) +
α(tk)tk. For the Laguerre tessellation model, it becomes Z′k(x− xk)−R

p
k.

Sections of primary functions at level z are balls defined by the corresponding
metric. Define

B′

k(z) = {x,Z
′

k(x) < z}

From equation (14) we have

B(z) = {x,Z(x) < z} = ∪xkB
′

k(z)xk (15)

By construction equation (15) B(z) is a Boolean random set with convex
primary grains B′

k(z). Consider a compact set K and the infimum Z∧(K) =
∧y∈K{Z(y)}. We have

P{Z∧(K) ≥ z} = exp− {E(θ(B′

k(z)⊕ Ǩ))} (16)

and for the stationary case

P{Z∧(K) ≥ z} = exp− {θE(µn(B
′

k(z)⊕ Ǩ))} (17)

For the simulation of random tessellations, we just need to simulate realiza-
tions of the Boolean random function with primary functions Z′k corresponding
to the model. The boundaries of the tessellation are provided by the crest lines
of the random functions, obtained by the watershed of the random function
using as markers the Poisson points. By construction of the Boolean random
functions, the location of crest lines, and therefore the boundaries of the classes
of the resulting tessellation are invariant by a non decreasing transformation
Φ (anamorphosis) of the values of Z′k(x) (for instance using Z

′p
k (x) instead of

Z′k(x)), that is compatible with the order relationship, namely such that z1 < z2
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implies Φ(z1) < Φ(z2). An alternative extraction of classes is given by their la-
bels Ck. Starting from the simulation, and from the germs xk, we generate in
each point x a set of labels L(x):

L(x) = {k, Z(x) = Z′k(x− xk)} (18)

Points x with the single label k generate the interior of cell Ck. Points with
two labels k and l are on the boundaries between cells Ck and Cl. In R3, points
with three labels are on the edges of the tessellation, and points with four labels
are its vertices.

This is illustrated in Figure 1 by a simulation in R, where a non connected
class Ck is generated by the point xk. This is just obtained by application of
equation (18), the distance to xk of points located in the left part of Ck of the
figure being shorter than the distance to other germs.

Figure 1 : Example of simulation of a random tessellation in R by means of a
Boolean random function with different primary functions. The class Ck,

generated by germ xk , is not connected.

In Figure 2 is shown a realization of a Boolean random function BRF where
the primary functions are doublets of elliptical cones with two orthogonal direc-
tions (the two vertical cones being obtained by a horizontal translation, and the
two horizontal cones by a vertical translation) and the same minima. Figure 3
shows the corresponding local L2 Voronoï random tessellation obtained from the
watershed of the BRF. A simulation of a Boolean random function with vertial
and horizontal elliptical cones having different minima is given in Figure 4. Its
watershed in Figure 5 generates a realization of a local L2 Johnson-Mehl random
tessellation.



Random tessellations and Boolean random functions 9

Figure 2: Example of simulation of a Boolean random function with elliptical
cones doublets in two orthogonal directions (image 800 x 800).

Figure 3: Local L2 Voronoï random tessellation generated by the realization of
the Boolean random function of Figure 2 (image 800 x 800). The classes of the
tessellation are obtained as the attraction zones of the minima of the BRF
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Figure 4 (left) : Example of simulation of a Boolean random function with
elliptical cones in two orthogonal directions. The primary functions start from

different values (image 256 x 256).
Figure 5 (right): Local L2 Johnson-Mehl random tessellation generated by the
realization of the Boolean random function of Figure 4 (image 256 x 256). The

classes of the tessellation are obtained from the watershed of the BRF.

More general random tessellations can be generated by the same process,
starting from Boolean random functions with any primary random function
Z′(x). We consider that the realization k of Z′(x) is characterized by some mul-
tivariate distribution ϕ(k), and owns simply connected compact sections B′

k(z),
such that B′

k(z1) ⊂ B′

k(z2) for z2 > z1. We consider primary random functions
reaching their minimum Z′(0) for x = 0. We associate to Z′k(x) the floor set A

′

k

defined by

A′k = {x,Z
′

k(x) = Z′k(0)} (19)

In all previous situations we had A′ = {O}. If for any pair of Poisson points
(xk, xl) we have A′kxk ∩ A′lxl = ∅, we can define the class Ck of the random
tessellation, generated by the germ xk and the primary random function Z′(x)
by:

Ck = {x ∈ Rn, Z′k(x− xk) < Z′l(x− xl), xk ∈ P, xl ∈ P, l �= k} (20)

This construction of classes associated to germs works when A′ = {O}. In
R2 it can also be applied when the floor set is made of parallel segments, while
segments with two different orientations may overlap. In R3, local anisotropy
can be obtained by the Euclidean distance function to segments with different
orientations, or even by Poisson lines [12, 5] with an infinite length. In that case,
point Poisson germs are replaced by segment germs or by lines. The generation of
classes in simulations can be made by means of the previous procedure involving
labels L(x).

Generalizing the previous case of local metrics, we call Flk(K, y) the flower
of K with center y, and primary functions Z′k(x) and Z′l(x). We have

Flk(K, y) = ∪x∈KB′

l(Z
′

k(x− y))x (21)

The previous results are extended as follows.
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Theorem 3. Consider a random tessellation of space defined from the Poisson
point process with intensity θ(x) and the primary random function Z′(x) gener-
ating the flower defined by equation (21). The probability P (K) = P (K ⊂ Ck)
is given by

P (K) =

∫

Rn

ϕ(l)dlϕ(k)dkθ(dy)exp− θ(Flk(K, y)) (22)

In the stationary case, for a constant intensity θ, equation (11) becomes

P (K) = θ

∫

Rn
ϕ(l)dlϕ(k)dkexp− θµn(Flk(K, y))dy (23)

Proof. Conditionally to the primary functions Z′k(x) and Z′l(x), and to the
location of a Poisson point xk, we have K ⊂ Ck ⇐⇒ ∀x ∈ K, ∀l �= k,
Z′k(x−xk) < Z′l(x−xl). Therefore, for every point x of K, the set B′

l(Z
′

k(x, xk))x
contains no point of the process, and finally Flk(K,xk) contains no point of the
process, with probability exp−θ(Flk(K,xk)). Equation (11) is obtained by ran-
domization of the point xk, followed by a randomization of the choice of the
primary functions Z′k(x) and Z′l(x).

As before, replacing the deterministic intensity θ(x) by a realization of a
positive random function Θ, we obtain Cox based random tessellations with cor-
responding moments P (K) deduced from equation (22) by taking its expectation
with respect to the random intensity Θ.

6 Some indications on model identification

For practical applications, the choice of a proper model has to be done from
available information, usually 2D or 3D images of the microstructures. Several
criteria can be used to select a representative model: the boundaries of cells can
be fit to polynomials of degree p, given the order of the Lp metric. In a work on
metallic grains fom EBSD images [1], pertinent information on local metrics is
extracted from the inertia matrix of the grains. Finally, use should be made of the
functional P (K) computed from the equations or estimated from measurements
on real or simulated microstructure. As a consequence of the presence of non
connected classes generated by the models, the measurements on images should
ne restricted to connected compact sets K, directly obtained by erosion of the
complementary set of the boundaries of classes by K.

7 Conclusion

Random tessellations models involving Poisson germs were revised and general-
ized by the use of local metrics attached to the germs. These models are related
to particular Boolean random functions with particular primary functions gener-
ated by the metrics. Using other primary functions extends the type of random
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tessellations that can be simulated, and gives more flexibility to model complex
real microstructures. Further generalizations of random tessellations can be ob-
tained on Riemannian manifolds, equipped with a Riemannian metric, zones of
influence of random points being generated by means of a geodesic distance, as
already studied on the sphere [13]. Most results on the present study can be ex-
tended to this situation. In Rn, the Lp metrics can also be replaced by a geodesic
distance, giving access to more general models.
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