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Abstract

Generalizations of various random tesselation models generated by
Poisson point processes are proposed. They are interpreted as charac-
teristics of Boolean random functions models, which provide a generic
way of simulation of general random tesselations.

1 Introduction

Some models of random tesselations in the Euclidean space Rn are defined
from distances to the points xk of a point process, usually the Poisson point
process P: the Voronoi tesselation is defined from the zones of influence
of points xk. Its generalizations like the Johnson-Mehl and the Laguerre
tesselations use a time sequence of points, and a sequence of ponderations
allocated to each point. It turns out that these models can be re-interpreted
in the framework of Boolean random functions, with appropriate primary
functions. In what follows, we propose new models of random tesselations
based on local metrics attached to each point of the process. They cor-
respond to specific Boolean random function models, which can be used
for their simulation. The new models show a wide flexibility, generating
tesselations with non planar boundaries.

2 Lp Voronoi tesselations

2.1 Standard Voronoï tesselation [3, 9, 10]

Definition 1 The Poisson Voronoï tesselation in the Euclidean space Rn

is defined from zones of influence of Poisson points. The class Ck of the
tesselation containing point xk is defined by

Ck = {x ∈ Rn, d(x, xk) < d(x, xl), xk ∈ P, xl ∈ P, l 6= k} (1)
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It is easy to show that every cell of the tesselation is delimited by planar
faces (planes in R3 and segments in R2) orthogonal to segments connecting
neighbour points of P. Indeed, using the euclidean distance with

d2(x, xk) =
i=n∑
i=1

(xi − xki)2

xi being the coordinates of point x in Rn, the boundary separating cells Ck
and Cl is obtained by means of

d2(x, xk) = d2(x, xl), (2)

generating a linear equation with respects to coordinates xi, which provides
the equation of an hyperplane.

The physical interpretation of this model is the isotropic growth from
random germs. Two-phase models of materials were generated from 3D
Voronoi tesselations in [2].

2.2 Anisotropic Voronoï tesselation

A first change of the model is obtained by a non isotropic growth of germs.
This can be made by using a euclidean metric with positive eigenvalues λi
and with orthogonal eigen vectors obtained by a rotation of the basis of
vectors ei. In that case, the euclidean metric is represented by a symmetric
positive definite matrix M(n, n). Noting X and Xk the vectors with coor-
dinates xi and xki, we get d2(x, xk) = (Xt − Xt

k)M(X − Xk), noting Xt

the transpose of vector X. Changing the euclidean metric is equivalent to
performing affi ne transformations in the directions of the eigen vectors, with
ratios λi. Therefore, the resulting Voronoï tesselation is obtained by per-
forming the corresponding affi ne transformations to the standard Voronoï
tesselation, resulting in an anisotropic model, as considered in [8].

2.3 Use of the Lp metric

Replacing the euclidean metric by the Lp metric produces new models of
tesselations. We have for the Lp metric with the integer p

dp(x, xk) =
i=n∑
i=1

|xi − xki|p (3)

The separation between cells becomes

dp(x, xk) = dp(x, xl)

When p > 1, this expression gives polynomials with degree p−1 with respect
to coordinates. For p = {1, 2} the separations are planar. For p = 3, we get
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portions of quadrics. Increasing the value of p gives higher order polynomial
surfaces. However the obtained tesselations are not isotropic, since the balls
defined by

∑i=n
i=1 |xi|

p = rp are not isotropic, except for p = 2, giving spheres.
For p = 1, the balls are hypercubes with edges orthogonal to directions given
by (±1,±1, ...,±1). When p → ∞ we get the L∞ metric, for which balls
are hypercubes with edges parallel to the coordinates system. For p = 1
and p = ∞, the separations are parallel to the faces of the corresponding
hypercubes.

2.4 Tesselations defined from local metrics

To simulate locally anisotropic growth and local growth rates, it is interest-
ing to start with a field of metrics depending on the location x. Depending
on variations of the metric in space, tesselations with oriented cells following
a field of orientations will be produced. This approach is followed by [4] in
the context of meshing, using local euclidean metrics, but no probabilistic
properties is given.

2.4.1 Tesselations defined with a local euclidean metric

We will now attach to every Poisson point xk the euclidean metric defined
by the matrix Mk. In general the matrices corresponding to different germs
will be correlated.

The definition of the tesselation (1) becomes:

Definition 2 The local Poisson Voronoï tesselation in the Euclidean space
Rn is defined from zones of influence of Poisson points, using the euclidean
distance dk for point xk. The class Ck of the tesselation containing point xk
is defined by

Ck = {x ∈ Rn, dk(x, xk) < dl(x, xl), xk ∈ P, xl ∈ P, l 6= k} (4)

The separation between cells Ck and Cl is given by the equation

(Xt −Xt
k)Mk(X −Xk) = (Xt −Xt

l )Ml(X −Xl) (5)

Rearranging the terms in equation 5, we get

Xt(Mk −Ml)X − 2Xt(MkXk −MlXl) +Xt
kMkXk −Xt

lMlXl = 0 (6)

The separations of cells are made of portions of quadrics, and the edges
are therefore portions of conics. Note that the cells Ck are not necessarily
connected.
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2.4.2 Tesselations defined with a local Lp metric

We will now consider attached to each germ xk a local Lp metric defined on
a basis obtained from the orthonormal basis of Rn by a rotation matrix Rk
and a system of positive weights aki. In this basis, the coordinates of point
x become X ′ = RX and expression 3 becomes

dpk(x, xk) =

i=n∑
i=1

aki
∣∣x′i − x′ki∣∣p (7)

The definition of the tesselation (1) becomes:

Definition 3 The local Poisson Voronoï tesselation in the Euclidean space
Rn is defined from zones of influence of Poisson points, using the Lp metric
dk for point xk. The class Ck of the tesselation containing point xk is defined
by

Ck = {x ∈ Rn, dpk(x, xk) < dpl (x, xl), xk ∈ P, xl ∈ P, l 6= k} (8)

As before, cells Ck are not necessarily connected. Their separations are
made of portions of hypersurfaces of degree p, and the edges are portions of
curves of degree p.

2.5 Calculation of the probability P (K)

2.5.1 Voronoï tesselation with a constant metric Lp

Consider a compact set K. General expressions of the probability P (K) =
P (K ⊂ Ck) can be derived for the Voronoi models defined from a Poisson
point process with intensity θ(x), by generalization of the results of Gilbert
[3]. We note B(x, r) the ball with center x and radius r, defined from the
metric Lp. We have B(x, r) = {y, dp(x, y) ≤ rp}

Theorem 4 Consider a Voronoi tesselation of space defined from the Pois-
son point process with intensity θ(x), and the metric Lp. The probability
P (K) = P (K ⊂ Ck) is given by

P (K) =

∫
Rn
θ(dy) exp−θ(F (K, y)) (9)

where θ(F (K, y)) =
∫
Rn θ(dx)1F (K,y)(x) is the measure of

F (K, y) = ∪x∈KB(x, d(x, y). In the stationary case, for a constant intensity
θ, equation 9 becomes

P (K) = θ

∫
Rn

exp−θµn(F (K, y))dy

µn being the Lebesgue measure in R
n.

4



Proof. We haveK ⊂ Ck ⇐⇒ ∀x ∈ K, ∀l 6= k, d(x, xk) ≤ d(x, xl)⇔ the ball
with center x ∈ K and radius d(x, xk) contains no point of the Poisson point
process. Calling F (K, y) = ∪x∈KB(x, d(x, y)) the flower of K with center
y, we have K ⊂ Ck ⇔ F (K,xk) contains no point of the process, with
probability exp−θ(F (K,xk)). Equation 9 is obtained by randomization
of the point xk, θ(dy) being the probability that the element of volume dy
contains a point of the process.

When K is a connected compact set, P (K) gives the probability for K
to be included in a single connected component of the cell.

2.5.2 Tesselations defined with a local Lp metric

We consider now random tesselations with local Lp metrics d
p
k and d

p
l ,attached

to germs xk and xl. These random metrics, defined by a set of random coef-
ficients and a rotation, are independent for separate germs. They are char-
acterized by some multivariate distribution function noted ϕ(k). We note
Bl(x, r) the ball with center x and radius r, defined from the metric dpl . We
have Bl(x, r) = {y, dpl (x, y) ≤ rp}. We call Flk(K, y) = ∪x∈KBl(x, dk(x, y))
the flower of K with center xk, and metric d

p
l .

Theorem 5 Consider a random tesselation of space with local Lp metrics,
defined from the Poisson point process with intensity θ(x). The probability
P (K) = P (K ⊂ Ck) is given by

P (K) =

∫
Rn
ϕ(l)dlϕ(k)dkθ(dy) exp−θ(Flk(K, y)) (10)

In the stationary case, for a constant intensity θ, equation 10 becomes

P (K) = θ

∫
Rn
ϕ(l)dlϕ(k)dk exp−θµn(Flk(K, y))dy

Proof. Conditionally to the metrics dpk and d
p
l , and to the location of a

Poisson point xk, we haveK ⊂ Ck⇐⇒ ∀x ∈ K, ∀l 6= k, dk(x, xk) ≤ dl(x, xl).
Therefore, for every point x of K, the ball Bl(x, dk(x, xk)) contains no point
of the process, and finally Flk(K,xk) contains no point of the process, with
probability exp−θ(Flk(K,xk)). Equation 10 is obtained by randomization
of the point xk, followed by a randomization of the choice of metrics d

p
k and

dpl .
It is possible to replace the deterministic intensity θ(x) by a realization

of a positive random function, replacing the Poisson point process by a Cox
process. In that case, we obtain Cox based random tesselations. Their
corresponding moments P (K) are deduced from equations (9,10) by taking
their expectation with respect to the random intensity.
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3 Extension to Johnson-Mehl and to Laguerre ran-
dom tesselation

The Johnson-Mehl tesselation [7] is obtained by combining germination
(through a sequential intensity θ(t)) and growth (with growth rate α(t)).
The usual model is based on constant (with respect to time) germination
(with intensity θ) and growth (with intensity α) rates. During the time
sequence, germs falling inside growing crystals are deleted. Considering the
sequence of Poisson germs {xk, tk}, we have:

Ck = {x ∈ Rn, d(x, (xk, tk)) + α(tk)tk < d(x, (xl, tl)) + α(tl)tl, (11)

xk ∈ P, xl ∈ P, l 6= k}

Extensions of this model are obtained by means of a Lp metric, instead
of the euclidean distance. We can also use a local metric in the process, to
generate anisotropic growth:

Ck = {x ∈ Rn, dk(x, (xk, tk)) + α(tk)tk < dl(x, (xl, tl)) + α(tl)tl, (12)

xk ∈ P, xl ∈ P, l 6= k}

The Laguerre tesselation [5, 6] is a generalization of the Voronoi tessela-
tion, where to each Poisson point xk is attached a random radius Rk. The
cell is now defined from the power P (x, xk) = d2(x, xk)−R2k. We have:

Ck = {x ∈ Rn, P (x, xk) < P (x, xl), xk ∈ P, xl ∈ P, l 6= k} (13)

Some germs xl generate empty cells, depending on the values of R2k and on
the distance to other germs. Cells are bounded by portions of hyperplanes.
New random tesselations can be defined, based on the Lp metric, replacing
in equation (13) P (x, xk) by dp(x, xk)−Rpk. In general, non planar cell sep-
arations will be generated. An extension of the construction (8) to the local
metric case is obtained if P (x, xk) and P (x, xl) are replaced by d

p
k(x, xk)−R

p
k

and dpl (x, xk)−R
p
l in equation (13).

4 Random tesselations and Boolean random func-
tions

The previous constructions can be obtained as characteristics of some Boolean
random functions, re-interpreting the definition of Ck in terms of distance
function.

We will attach to every Poisson point xk a primary random function
Z ′k(x) defined according to the distance used in various definitions (4, 8,
11, 12, 13). For instance, for the standard Voronoi model, the primary
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function is an increasing paraboloid of revolution, while for the extension
to the local euclidean metric, it is an increasing paraboloid with general
ellipsoidal sections in Rn. For the Johnson-Mehl model, primary functions
are cones (with ellipsoidal section in the local case for the euclidean metric);
for germ {xk, tk}, the primary function is translated upward by addition of
the constant α(tk)tk. Models based on the Lp metric make use of functions
defined in Rn by Z ′k(x) =

∑i=n
i=1 aki |x′i|

p. The distance function associated
to a model built from Poisson germs is given by

Z(x) = ∧kZ ′k(x− xk) (14)

By definition the random function Z(x) is an Infimum Boolean random
function [1]. For the Johnson-Mehl model, the primary function becomes
Z ′k(x−xk)+α(tk)tk. For the Laguerre tesselation model, it becomes α(tk)tk−
Rpk.

Sections of primary functions at level z are balls defined by the corre-
sponding metric. Define

B′k(z) = {x, Z ′k(x) < z}

From equation (14) we have

B(z) = {x, Z(x) < z} = ∪xkB′k(z)xk (15)

By construction equation (15) B(z) is a Boolean random set with convex
primary grains B′k(z). Consider a compact set K and the infimum Z∧(K) =
∧y∈K{Z(y)}. We have

P{Z∧(K) ≥ z} = exp−{E(θ(B′k(z)⊕ Ǩ))}

and for the stationary case

P{Z∧(K) ≥ z} = exp−{θE(µn(B′k(z)⊕ Ǩ))}

For the simulation of random tesselations, we just need to simulate re-
alizations of the Boolean random function with primary functions Z ′k corre-
sponding to the model. The boundaries of the tesselation are provided by
the crest lines of the random functions, obtained by the watershed of the
random function using as markers apparent markers defined below. By con-
struction of the Boolean random functions, the location of crest lines, and
therefore the boundaries of the classes of the resulting tesselation are invari-
ant by a non decreasing transformation Φ (anamorphosis) of the values of
Z ′k(x) (for instance using Z ′pk (x) instead of Z ′k(x)), that is compatible with
the order relationship, namely such that z1 < z2 implies Φ(z1) < Φ(z2).

An alternative extraction of classes is given by their labels Ck. Starting
from the simulation, and from the germs xk, we generate in each point x a
set of labels L(x):
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L(x) = {k, Z(x) = Z ′k(x− xk)}
Points x with the single label k generate the interior of cell Ck. Points

with two labels k and l are on the boundaries between cells Ck and Cl. In
R3, points with three labels are on the edges of the tesselation, and points
with four labels are its vertices.

This is illustrated in Figure 1 by a simulation in R, where a non con-
nected class Ck is generated by the point xk. In Figure 2 is shown a re-
alization of a Boolean random function BRF where the primary functions
are doublets of elliptical cones with two orthogonal directions and the same
minima. Figure 3 shows the corresponding local L2 Voronoï random tessel-
lation obtained from the watershed of the BRF. A simulation of a Boolean
random function with elliptical cones having different minima is given in
Figure 4. Its watershed in Figure 5 generates a realization of a local L2
Johnson-Mehl random tessellation.

More general random tesselations can be generated by the same process,
starting from Boolean random functions with any primary random function
with simply connected compact sections B′k(z), such that B

′
k(z1) ⊂ B′k(z2)

for z2 > z1. For instance, local anisotropy can be obtained by the euclidean
distance function to segments with different orientations. In that case, point
Poisson germs are replaced by segment germs.

This generalization extends the type of random tesselations that can be
simulated, and gives more flexibility to model complex real microstructures.
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Figure 1 : Example of simulation of a random tesselation in R by means of a 

Boolean random function with different primary functions. The class Ck , 

generated by germ xk , is not connected. 

 

Figure 2: Example of simulation of a Boolean random function with elliptical 

cones doublets in two orthogonal directions (image 800 x 800) 

 



 

Figure 3: Local L2 Voronoï random tessellation generated by the realization of 

the Boolean random function of Figure 2 (image 800 x 800). The classes of the 

tessellation are obtained as the attraction zones of the minima of the BRF.  



 

Figure 4: Example of simulation of a Boolean random function with elliptical 

cones in two orthogonal directions. The primary functions start from different 

values  (image 256 x 256). 

 

 

Figure 5: Local L2 Johnson-Mehl random tessellation generated by the 

realization of the Boolean random function of Figure 4 (image 256 x 256). The 

classes of the tessellation are obtained from the watershed of the BRF.  

 

 


