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Design and Stability of Discrete-Time Quantum Filters with Measurement Imperfections

This work considers the theory underlying a discrete-time quantum filter recently used in a quantum feedback experiment. It proves that this filter taking into account decoherence and measurement errors is optimal and stable. We present the general framework underlying this filter and show that it corresponds to a recursive expression of the least-square optimal estimation of the density operator in the presence of measurement imperfections. By measurement imperfections, we mean in a very general sense unread measurement performed by the environment (decoherence) and active measurement performed by non-ideal detectors. However, we assume to know precisely all the Kraus operators and also the detection error rates. Such recursive expressions combine well known methods from quantum filtering theory and classical probability theory (Bayes' law). We then demonstrate that such a recursive filter is always stable with respect to its initial condition: the fidelity between the optimal filter state (when the initial filter state coincides with the real quantum state) and the filter state (when the initial filter state is arbitrary) is a sub-martingale.

I. INTRODUCTION

). The theory of quantum filtering was independently developed in the physics community, particularly in the context of quantum optics, under the name of Quantum Measurement Theory [8], [12],

.

Most of this theory has been developed for continuous-time systems and little emphasis has been given to measurement imprecisions and their explicit impact on the filter design

and time-recursive equations. To our knowledge, the problem of designing a quantum filter in the presence of classical measurement imperfections has not been examined in the discrete time setting. In this paper, we focus on this issue and propose a systematic method to derive quantum filters taking into account several detection error rates.

In [11, Sec. 2.2.2], the authors discuss how the state of a quantum system evolves after a single imprecise measurement. In [START_REF] Dotsenko | Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states[END_REF], a recursive quantum state estimation with measurement imperfections has been considered. In [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF], such a quantum state estimate has been used in a quantum feedback experiment that stabilizes photon-number states of a quantized field mode, trapped in a super-conducting cavity. We prove here that such estimates are in fact optimal since they coincide with the conditional expectation of the quantum state (density matrix) knowing the past detections, the error rates and the initial quantum state.

Section II describes the structure of a genuine quantum measurement model including detection error rates which is a straightforward generalization of the models considered in [START_REF] Gardiner | Quantum Noise[END_REF], [START_REF] Dotsenko | Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states[END_REF], [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF]. This model may be used in situations with partial knowledge of all the quantum jumps and also measurement errors of the jumps that are detected. However, they assume to know precisely all the Kraus operators and also the detection error rates.

Section III is devoted to the first result in this paper summarized in Theorem III.1: the conditional expectation of the quantum state knowing the past detections and the initial state obeys a recursive equation in each discrete time-step. This recursive equation is given in [START_REF] Belavkin | Nondemolition stochastic calculus in fock space and nonlinear filtering and control in quantum systems[END_REF] and depends explicitly on the error rates. The proof of Theorem III.1 shows that such recursive equation may be derived by a simple application of Bayes' law.

In section IV, we prove that the quantum filter defined in Theorem III.1 is stable versus its initial conditions: the fidelity between the optimal estimate conditioned on the initial state of the system being known and a second estimate in which the initial state is unknown is a sub-martingale. This stability result combines Theorem III.1 and [START_REF] Rouchon | Fidelity is a sub-martingale for discrete-time quantum filters[END_REF]. Note that stability does not imply convergence, in general. For convergence results in the continuous-time case see, e.g., [START_REF] Van Handel | The stability of quantum markov filters[END_REF] and the references therein.

In section V, we describe in detail the Kraus operators and error rates modeling the discrete-time quantum system considered in the quantum feedback experiment [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF]: the quantum filter used in the feedback loop corresponds precisely to the recursive equation [START_REF] Belavkin | Nondemolition stochastic calculus in fock space and nonlinear filtering and control in quantum systems[END_REF] given by Theorem III.1; according to Theorem IV.1, this filter tends to forget its initial condition.

The authors thank Michel Brune, Serge Haroche, Mazyar Mirrahimi and Jean-Michel Raimond for useful discussions and advices.

II. MEASUREMENT MODEL

In this section we discuss the model describing repeated and imperfect measurements on a quantum system. Such modeling including decoherence-induced quantum jumps and measurement errors is a direct generalization of the one proposed in [START_REF] Dotsenko | Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states[END_REF] and used in real-time for the quantum feedback experiments reported in [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF] (also see [START_REF] Gardiner | Quantum Noise[END_REF]). We initially consider the case of a single ideal measurement and then develop the model to consider imperfect and repeated measurements. The final model is described in Subsection II-C.

A. Ideal Case

Let H be the system's Hilbert space with ρ 1 a density matrix denoting the initial state of the system at step k = 1. We consider the evolution ρ 1 → ρ 2 of such a quantum system under discrete-time quantum jumps (see e.g. [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF]Ch. 4] or [START_REF] Gardiner | Quantum Noise[END_REF]Ch. 2]).

Consider a set of Kraus operators M q : H → H, q ∈ {1, 2 . . . , m id } that satisfy

m id q=1 M † q M q = I.
Here we assume that there are m id ∈ N possible quantum jumps and I is the identity operator on H. The superscript id stands for an abbreviation of ideal. Consider an ideal world with full access to all quantum jumps via a complete and ideal set of jump detectors. When the quantum jump indexed by q is detected, the state of the system changes to

ρ 2 = M q (ρ 1 ) M q ρ 1 M † q P[q] . (1) 
Moreover,

P[q] = Tr M q ρ 1 M † q (2)
is the probability to detect jump q, knowing the state ρ 1 . We now consider the case of realistic experiments with possible measurement errors.

B. Realistic Case (with imprecise measurements)

We consider that the ideal detection of the jump q corresponds to an ideal measure outcome µ id = q. We denote by random variable µ id ∈ {1, 2, . . . , m id } this outcome provided by ideal sensors. We assume that realistic sensors provide an outcome µ rl that is a random variable in the set {1, 2, . . . , m rl }.

We assume that, with a known probability, an ideal measurement outcome µ id occurs effectively whereas the realistic sensors detect an outcome µ rl . The correlations between the events µ id = q and µ rl = p are modeled by classical probabilities through a stochastic matrix η ∈ R m rl ×m id :

η p,q = P[µ rl = p|µ id = q].
It gives the probability that the real sensors detect µ rl = p given the ideal sensors would detect µ id = q, for p ∈ {1, . . . , m rl }, q ∈ {1, . . . , m id }. Since η p,q ≥ 0 and for each q, m rl p=1 η p,q = 1, the matrix η = (η p,q ) is a left stochastic matrix.

C. Realistic Experiment with Repeated Measurements

Consider the case of a sequence of discrete-time measurements. We denote by ρ k the state of the system at discrete time-step k. Also suppose M q;k is the Kraus operator corresponding to the k th ideal measurement for q ∈ {1, 2, . . . , m id }. Note that we allow for a different set of Kraus operators M •;k for different time-steps k. One can also consider m id and m rl be dependent on k.

Similar to the previous subsection, we denote by µ rl k ∈ {1, . . . , m rl } and µ id k ∈ {1, . . . , m id }, the random variables corresponding to the k th realistic and ideal outcomes, respectively. Therefore,

E[ρ k+1 |ρ k , µ id k = q] = M q;k (ρ k ) M q;k ρ k M † q;k Tr M q;k ρ k M † q;k
and P µ id k = q ρ k = Tr M q;k ρ k M † q;k . Also, we assume η k ∈ R m rl ×m id , the stochastic matrix determining the probability of error, can depend on the discretetime step k. In particular, we have

P[µ rl k = p|µ id k = q] = η k p,q ,
for p ∈ {1, . . . , m rl }, q ∈ {1, . . . , m id }.

III. RECURSIVE EQUATION FOR THE OPTIMAL FILTER

We wish to obtain a recursive equation for the optimal estimate ρk+1 of the state ρ k+1 knowing initial value ρ 1 and real measurement outcomes µ rl 1 , . . . , µ rl k . This optimal estimate ρk is defined as

ρk = E[ρ k |ρ 1 , µ rl 1 , . . . , µ rl k-1 ].
The following theorem says that we can ignore the original state ρ k and only consider ρk that is shown to be the state of a Markov process.

Theorem III.1. The optimal estimate ρk satisfies the following recursive equation

ρk+1 = m id q=1 η k p k ,q M q;k ρk M † q;k Tr m id q=1 η k p k ,q M q;k ρk M † q;k , ( 3 
)
if µ rl k = p k . Moreover, we have P µ rl k = p k ρ 1 , µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 = Tr    m id q=1 η k p k ,q M q;k ρk M † q;k    . ( 4 
)
Remark III.1. The division in (3) by the R.H.S of (4) could appear problematic when this denominator vanishes.

Nevertheless, if we assume that the real measurements are

µ rl 1 = p 1 , . . . , µ rl k = p k , then P µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 ρ 1 > 0 and P µ rl 1 = p 1 , . . . , µ rl k = p k ρ 1 > 0
(otherwise such measurement outcomes are not possible). Consequently,

P µ rl k = p k ρ 1 , µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 = P µ rl 1 =p1,...,µ rl k-1 =p k-1 ,µ rl k =p k ρ1 P µ rl 1 =p1,...,µ rl k-1 =p k-1 ρ1
cannot vanish. Thus recurrence (3) is always well defined because we have (4).

Remark III.2 (Markov property of the filter). Equations ( 3) and (4) tell us that the joint-process (µ rl k , ρk ) is a Markov process and therefore the statistics of the measurement process µ rl k may be determined using ρk . This in particular implies that we may use Monte Carlo methods to simulate the observation process µ rl k only using ρk independent of the actual state ρ k and measurement history µ rl 1 , . . . , µ rl k-1 . Proof: In this proof we use the following notation for ease of presentation: we use µ id ι = q ι and µ rl ι = p ι to denote the set of events {µ id

1 = q 1 , µ id 2 = q 2 , . . . , µ id k = q k } and {µ rl 1 = p 1 , µ rl 2 = p 2 , . . . , µ rl k = p k }, respectively.
For instance, using this notation, we have

P µ id ι = qι ρ1, µ rl ι = pι P µ id 1 = q1, . . . , µ id k = q k ρ1, µ rl 1 = p1, . . . , µ rl k = p k .
Assume that the values measured by the real detector are p 1 = µ rl 1 , . . . , p k = µ rl k . Then we have the optimal estimate ρk+1 =

m id q 1 ,...,q k =1 P µ id ι = qι ρ1, µ rl ι = pι M q k ;k (. . . (Mq 1 ;1(ρ1)) . . .), (5) 
where

M q k ;k (• • • (M q1;1 (ρ 1 )) • • • ) = M q k ;k • • • M q1;1 ρ 1 M † q1;1 • • • M † q k ;k Tr M q k ;k • • • M q1;1 ρ 1 M † q1;1 • • • M † q k ;k . (6) 
Using Bayes law, we have for each (q 1 , . . . , q k ),

P µ id ι = q ι ρ 1 , µ rl ι = p ι P µ rl ι = p ι ρ 1 = P µ rl ι = p ι ρ 1 , µ id ι = q ι P µ id ι = q ι ρ 1 , (7) 
where

P µ id ι = q ι ρ 1 = Tr M q k ;k . . . M q1;1 ρ 1 M † q1;1 . . . M † q k ;k and P µ rl ι = p ι ρ 1 , µ id ι = q ι = P µ rl ι = p ι µ id ι = q ι = η 1 p1,q1 • • • η k p k ,q k .
Summing (7) over all (q 1 , . . . , q k ) gives:

P µ rl ι = p ι ρ 1 = m id s1,...,s k =1 η 1 p1,s1 . . . η k p k ,s k × Tr M s k ;k . . . M s1;1 ρ 1 M † s1;1 . . . M † s k ;k . (8)
Consequently, we have

P µ id ι = qι ρ1, µ rl ι = pι = η 1 p 1 ,q 1 . . . η k p k ,q k Tr M q k ;k . . . Mq 1 ;1ρ1 M † q 1 ;1 . . . M † q k ;k Tr m id s 1 ,...,s k =1 η 1 p 1 ,s 1 . . . η k p k ,s k M s k ;k . . . Ms 1 ;1ρ1 M † s 1 ;1 . . . M † s k ;k .
Injecting the above relation into ( 5) and using (6) yields

ρk+1 = q 1 ,...,q k η 1 p 1 ,q 1 . . . η k p k ,q k M q k ;k • • • Mq 1 ;1ρ1 M † q 1 ;1 • • • M † q k ;k Tr q 1 ,...,q k η 1 p 1 ,q 1 . . . η k p k ,q k M q k ;k • • • Mq 1 ;1ρ1 M † q 1 ;1 . . . M † q k ;k . (9) 
It is then clear that ρk+1 can be calculated from ρ 1 in a recursive manner according to

ρk+1 = q η k p k ,q M q;k ρk M † q;k Tr{ q η k p k ,q M q;k ρk M † q;k } , . . . ρ2 = q η 1 p 1 ,q Mq;1 ρ1M † q;1 Tr{ q η 1 p 1 ,q Mq;1 ρ1M † q;1 }
, where the intermediate states correspond to optimal estimates from step 2 to k: ρj = E[ρ j |ρ 1 , µ rl 1 = p 1 , . . . , µ rl j-1 = p j-1 ], j = 2, . . . , k. The recursive relation (3) is thus proved.

We now prove (4). In the following, we set ordered product

M j M qj ;j • • • M q2;2 • M q1;1 for j = 1, . . . , k.
We have

P µ rl k = p k ρ 1 , µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 = P µ rl 1 =p1,...,µ rl k =p k ρ1 P µ rl 1 =p1,...,µ rl k-1 =p k-1 ρ1
.

This fraction can be computed using (8):

P µ rl k = p k ρ1, µ rl 1 = p1, . . . , µ rl k-1 = p k-1 = q 1 ,...,q k η 1 p 1 ,q 1 . . . η k p k ,q k Tr M k ρ1 M † k ×   q 1 ,...,q k-1 η 1 p 1 ,q 1 . . . η k-1 p k-1 ,q k-1 Tr M k-1 ρ1 M † k-1   -1
.

According to [START_REF] Davies | Quantum Theory of Open Systems[END_REF] with k -1 instead of k, we have ρk = q 1 ,...,q k-1

η 1 p 1 ,q 1 . . . η k p k-1 ,q k-1 M k-1 ρ1 M † k-1 × Tr    q 1 ,...,q k-1 η 1 p 1 ,q 1 . . . η k-1 p k-1 ,q k-1 Tr M k-1 ρ1 M † k-1    -1 . Since q 1 ,...,q k η 1 p 1 ,q 1 . . . η k p k ,q k Tr M k ρ1 M † k = q k η k p k ,q k × Tr    M q k ;k   q 1 ,...,q k-1 η 1 p 1 ,q 1 . . . η k-1 p k-1 ,q k-1 M k-1 ρ1 M † k-1   M † q k ;k    ,
we get finally (4).

IV. STABILITY WITH RESPECT TO INITIAL CONDITIONS

Assume that we do not have access to the real initial state ρ 1 . We cannot compute the optimal estimate ρk . We can still use the recurrence formula (3) based on the real measurement outcomes (µ rl j = p j ) j=1,...,k-1 to propose an estimation ρ e k of ρ k . We will prove below that this estimation procedure is stable in the sense that the fidelity between ρk and ρ e k is nondecreasing in average whatever the initial condition ρ e 1 is. For ease of notation we set

M p,q;k = η k p,q M q;k , M p;k (ρ) = m id q=1 M p,q;k ρM † p,q;k m id q=1 Tr M p,q;k ρM † p,q;k (10) 
for any k ≥ 1, p ∈ {1, . . . , m rl } and q ∈ {1, . . . , m id }. The sets S p;k {M p,1;k , . . . , M p,m id ;k } for p = 1, . . . , m rl form a partition of S k {M p,q;k | p = 1, . . . , m rl , q = 1, . . . , m id }.

Using this notation, the recursive Equation (3) defines a coarse-grained Markov chain in the sense of [START_REF] Rouchon | Fidelity is a sub-martingale for discrete-time quantum filters[END_REF].

If µ rl k = p, we define ρ e k recursively for k ≥ 1 as follows

ρ e k+1 = M p;k ρ e k . (11) 
Such a recursive formula is valid as soon as q Tr M p,q;k ρ e k M † p,q;k > 0, which is automatically satisfied when ρ e k is of full rank. ρ e k+1 is indeterminate when q Tr M p,q;k ρ e k M † p,q;k = 0. But using the continuity arguments developed at the end of the appendix we can give a value for ρ e k+1 in the following way: for each ρ e k , consider the set of density operators M p;k ρ e k,ǫ p=1,...,m rl , where ǫ > 0 and ρ e k,ǫ = (ρ e k + ǫI)/Tr {ρ e k + ǫI}. Since ρ e k,ǫ is positive definite, M p;k ρ e k,ǫ p=1,...,m rl are well defined and admit a limit point when ǫ tends to 0 + (H is of finite dimension here). Take for each ρ e k such a limit point (ρ e k+1,p ) p=1,...,m rl . Set ρ e k+1 = ρ e k+1,p when µ rl k = p. If q Tr M p,q;k ρ e k M † p,q;k > 0 then ρ e k+1,p coincides necessarily with M p;k ρ e k and we recover [START_REF] Gardiner | Quantum Noise[END_REF]. During the proof of Theorem IV.1, we will use only recurrence [START_REF] Gardiner | Quantum Noise[END_REF] having in mind that, when q Tr M p,q;k ρ e k M † p,q;k = 0 we have to use ρ e k+1 = ρ e k+1,p . If the initial state of the system ρ e 1 coincides with ρ 1 , then ρ e k coincides with the optimal estimate ρk of the state ρ k from Theorem III.1. In fact, once the initial states ρ1 and ρ e 1 are given, the process (ρ k ) and (ρ e k ) are driven by the same stochastic process (µ rl k-1 ), itself driven by the combination of the original quantum process of state (ρ k ) with the classical process associated to the left stochastic matrices (η k ) governing detection errors.

The following theorem shows that the fidelity between ρk and ρ e k is non-decreasing in average. Theorem IV. 

= E F k+1 ρ1 , ρ e 1 , µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 = m rl p=1 P µ rl k = p ρ1 , ρ e 1 , µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 × E F k+1 ρ1 , ρ e 1 , µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 , µ rl k = p .
The conditional probabilities appearing in this sum are given by ( 4) and the conditional expectations read

E F k+1 ρ1 , ρ e 1 , µ rl 1 = p 1 , . . . , µ rl k-1 = p k-1 , µ rl k = p = F (M p;k (ρ k ) , M p;k (ρ e k ))
since, once ρ1 and ρ e 1 and µ rl Tr M p,q;k ρk M † p,q;k × F q M p,q;k ρk M † p,q;k q Tr{M p,q;k ρk M † p,q;k } , q M p,q;k ρ e k M † p,q;k q Tr{M p,q;k ρ e k M † p,q;k } .

The fact that E F k+1 ρ1 , . . . , ρk , ρ e 1 , . . . , ρ e k ≥ F k is then a direct consequence of equation [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF] given in appendix with r = m rl , s = m rl m id , index j corresponding to p, index i to (p, q), operators L i to M p,q;k , density operators ρ and σ to ρk and ρ e k , respectively.

V. EXAMPLE: QUANTUM FILTER FOR THE PHOTON-BOX This section considers, as a key illustration, the quantum filter design in [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF] to estimate in real-time the state ρ of a quantized electro-magnetic field. Since this filter admits exactly the recursive form of Theorem III.1, Theorem IV.1 applies and thus, this filter is proved here to be stable versus its initial condition.

The actual experiment under consideration uses quantum non-demolition measurements [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF] to estimate the state of the quantized field trapped in a superconducting microwave cavity. Circular Rydberg atoms are sent at discrete time intervals to perform partial measurements of the photon number. Atoms are subsequently detected either in their excited (e) or ground (g) state. The outcomes of these measurements are then used to estimate the state of the cavity field, thanks to the quantum filter described below. This estimation is eventually used to calculate the amplitude of classical fields injected in the cavity in order to bring the field closer to a predefined target state. The interested reader is directed to [START_REF] Dotsenko | Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states[END_REF] and [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF] for further details of the experimental setup and results obtained.

The Hilbert space H of the cavity is, up to some finite photon number truncation (around 10), the Fock space with basis {|n } n≥0 , each |n being the Fock state associated to exactly n photons (photon-number state). The annihilation operator a : H → H is defined by a |n = √ n |n -1 for n ≥ 1 and a |0 = 0. Its Hermitian conjugate a † is the creation operator satisfying a |n = √ n + 1 |n + 1 , for all n ≥ 0. The photon-number operator (energy operator) is N = a † a which satisfies N |n = n |n , for all n ≥ 0. Recall the commutation [a, a † ] = I.

In [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF] the following imperfections have been considered:

• atomic preparation efficiency characterized by P a (n a ) ≥ 0, the probability to have n a ∈ {0, 1, 2} atom(s) interact with the cavity: P a (0) + P a (1) + P a (2) = 1. • detection efficiency characterized by ǫ d ∈ [0, 1], the probability that the detector detects an atom when it is present. • state detection error rate η g ∈ [0, 1] (resp. η e ) probability of erroneous state assignation to e (resp. g) when the atom collapses in g (resp. e).

The original state ρ is subject to m id = 3 × 7 possible quantum jumps and the available sensors (atomic detector) admits only m rl = 6 possibilities. We begin by introducing some operators that are used to describe these quantum jumps:

D α = e αa † -α * a , L no = P a (0) I, L g = P a (1) cos φ N , L e = P a (1) sin φ N , L gg = P a (2) cos 2 φ N , L ge = L eg = P a (2) cos φ N sin φ N , L ee = P a (2) sin 2 φ N , L o = 1 -ǫ(1+2n th ) 2 N -ǫn th 2 I, L + = ǫ(1 + n th )a, L -= √ ǫn th a † ,
where φ N = φ0(N+1/2)+φR 2 and 0 < ǫ, n th ≪ 1, φ 0 , φ R are real experimental parameters. The unitary displacement operator D α corresponds to the control input α ∈ C, depending on the sampling step k. The operators L o , L + and L -correspond to the interaction of the cavity-field with its environment (decoherence due to mirrors and thermal photons):

1) L o corresponds to no photon jump; 2) L + corresponds to the capture of one thermal photon by the cavity-field; 3) L -corresponds to one photon lost from the cavity-field. Since

L † o L o + L † + L + + L † -L -= I + O(ǫ 2
) and ǫ is small, we consider in the sequel that (L o , L + , L -) are associated to an effective Kraus map

L o ρL † o + L + ρL † + + L -ρL † -.
The operators L no , L g , L e , L gg , L ge , L eg and L ee correspond to the jump induced by the collapse of possible crossing atom(s) having interacted with the cavity-field:

1) L no -no atom in the atomic sample; 2) L g -one atom having interacted with the cavity-field and collapsed to the atomic ground state during the detection process; 3) L e -one atom having interacted with the cavity-field and collapsed to the atomic excited state during the detection process; 4) L gg -two atoms having interacted with the cavity-field, both having collapsed to g; 5) L ge -two atoms having interacted with the cavity-field, the first one having collapsed to g and the second to e; 6) L eg -two atoms having interacted with the cavity-field, the first one having collapsed to e and the second to g; 7) L ee -two atoms having interacted with the cavity-field, both having collapsed to e. For each control input α, we have a total of m id = 3 × 7 Kraus operators. The jumps are labeled by q = (q a , q c ) with q a ∈ {no, g, e, gg, ge, eg, ee} labeling atom related jumps and q c ∈ {o, +, -} cavity decoherence jumps. The Kraus operators associated to such q are M q = L q c D α L q a . So, for instance, with the control input α k at step k:

• the Kraus operator corresponding to one atom collapsing in ground state, q a = g, and one photon destroyed by mirrors, q c = -, reads M k (g,-) = L -D α k L g . • the Kraus operator corresponding to two atoms, the first one collapsing to g, the second one to e, q a = ge, and one thermal photon being caught between the two mirrors, q c = +, reads M k (ge,+) = L + D α k L ge . One can check that, for any value of α, these 21 operators define a Kraus map (using the assumption that

L † o L o +L † + L + + L † -L -≈ I).
p \ q (no, q c ) (g, q c ) (e, q c ) (gg, q c ) (ee, q c ) (ge, q c ) or (eg,

q c ) no 1 1 -ǫ d 1 -ǫ d (1 -ǫ d ) 2 (1 -ǫ d ) 2 (1 -ǫ d ) 2 g 0 ǫ d (1 -ηg ) ǫ d ηe 2ǫ d (1 -ǫ d )(1 -ηg ) 2ǫ d (1 -ǫ d )ηe ǫ d (1 -ǫ d )(1 -ηg + ηe) e 0 ǫ d ηg ǫ d (1 -ηe) 2ǫ d (1 -ǫ d )ηg 2ǫ d (1 -ǫ d )(1 -ηe) ǫ d (1 -ǫ d )(1 -ηe + ηg ) gg 0 0 0 ǫ 2 d (1 -ηg ) 2 ǫ 2 d η 2 e ǫ 2 d ηe(1 -ηg ) ge 0 0 0 2ǫ 2 d ηg(1 -ηg ) 2ǫ 2 d ηe(1 -ηe) ǫ 2 d ((1 -ηg)(1 -ηe) + ηg ηe) ee 0 0 0 ǫ 2 d η 2 g ǫ 2 d (1 -ηe) 2 ǫ 2 d ηg (1 -ηe) TABLE I STOCHASTIC MATRIX ηp,q .
We have only m rl = 6 real detection possibilities p ∈ {no, g, e, gg, ge, ee} corresponding respectively to no detection, a single detection in g, a single detection in e, a double detection both in g, a double detection one in g and the other in e, and a double detection both in e. A double detection does not distinguish two atoms. The entries η p,q of the stochastic matrix describing the imperfect detections corrupted by errors are independent of α and given by Table I. It relies on error rate parameters η g , η e and ǫ d in [0, 1] and assume no error correlation between atoms. So for instance the probability that there is a single atom in the sample, which collapses to the ground state and is in fact detected by the experimental sensors to be in the ground state is given by η g,(g,q c ) = ǫ d (1η g ). Note that each column in the table sums up to one, since η p,q is a left stochastic matrix.

VI. CONCLUSION

In this paper, we derive a recursive expression for the optimal estimate of a quantum system's state from imperfect, discrete-time measurements. The optimality of this recursive expression is proven by a simple application of Bayes' lemma and quantum measurement postulates. Such a filter is shown to satisfy a Markov property and thus can be used for quantum control as shown in [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF] or to run Monte Carlo simulations of the measurement trajectories. We also demonstrate that this filter is stable with respect to initial conditions in the sense of Theorem IV.1. In the future, the continuous-time version of these results will be investigated.

APPENDIX

Consider a set of s operators (L i ) i=1,...,s on the finite dimensional Hilbert space H, such that L i = 0 for all i and s i=1 L † i L i = I. Take a partition of {1, . . . , s} into r ≥ 1 non-empty sub-sets (P j ) j=1,...,r . Then, for any semi-definite positive operators ρ and σ on H with unit traces, the following inequality proved in [START_REF] Rouchon | Fidelity is a sub-martingale for discrete-time quantum filters[END_REF] 

where F (ρ, σ) = F (σ, ρ) is the fidelity between σ and ρ defined as

F (ρ, σ) = Tr √ σρ √ σ 2 .
When, in the above sum, a denominator Tr i∈Pj L i ρL † i depending on ρ vanishes, the sum remains still valid since the corresponding value of F is multiplied by the same vanishing factor and F is bounded since between 0 and 1. This is no more true when a denominator Tr i∈Pj L i σL † i depending on σ vanishes. In this case the above inequality should be interpreted in the following way relying on a continuity argument. For each σ, define

Z σ =    j Tr    i∈Pj L i σL † i    = 0    ⊂ {1, . . . , r}.
For almost all density operators σ, Z σ = ∅. Take ǫ > 0 and consider the positive definite density operator σ ǫ = σ+ǫI Tr{σ+ǫI} . For j ∈ {1, . . . , r}, Tr i∈Pj L i σ ǫ L † i > 0 since each L i = 0. In particular, the set of density operators Such continuity argument show that we can extend inequality [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF] via the accumulation value(s) σ + j when Z σ is not empty.

1 =

 1 p 1 ,. . . , µ rl k-1 = p k-1 and µ rl k = p are given, ρk+1 = M p;k (ρ k ) and ρ e k+1 = M p;k (ρ e k ). Thus we have E F k+1 ρ1 , . . . , ρk , ρ e 1 , . . . , ρ e k = m rl p=1 q

  Liσ ǫ L † i j∈Zσ admits at least an accumulation point when ǫ tends to 0 + (H of finite dimension implies that the set of density operators is compact). Denote by (σ + j ) j∈Zσ , such an accumulation point where each σ + j is a density operator. Since for any ǫ > 0, inequality[START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF] holds true for ρ and σ ǫ , F is continuous, and for any j / ∈ Z σ ,
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