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Abstract

In this paper, we use known camera motion associated to a video
sequence of a static scene in order to estimate and incrementally refine
the surrounding depth field. We exploit the SO(3)-invariance of bright-
ness and depth fields dynamics to customize standard image processing
techniques. Inspired by the Horn-Schunck method, we propose a SO(3)-
invariant cost to estimate the depth field. At each time step, this provides
a diffusion equation on the unit Riemannian sphere that is numerically
solved to obtain a real time depth field estimation of the entire field of
view. Two asymptotic observers are derived from the governing equations
of dynamics, respectively based on optical flow and depth estimations: im-
plemented on noisy sequences of synthetic images as well as on real data,
they perform a more robust and accurate depth estimation. This approach
is complementary to most methods employing state observers for range
estimation, which uniquely concern single or isolated feature points.

1 Introduction

Many vision applications are aimed at assisting in interacting with the environ-
ment. In military as well as in civilian applications, moving in an environment
requires topographical knowledge: either in order to avoid obstacles or to engage
targets. Since this information is often inaccessible in advance, the real-time
computation of a 3D map is a goal that has kept the research community busy

∗Nadège Zarrouati is with DGA, 7-9 rue des Mathurins, 92220 Bagneux, France,

PHD candidate at Mines-ParisTech, Centre Automatique et Systèmes, Unité
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for many years. For example, environment reconstruction is tightly related to
the SLAM problem [1], which is addressed by nonlinear filtering of observed
key feature locations (e.g. [2, 3]), or by bundle adjustment [4, 5]. However,
estimating a sparse point cloud is often insufficient, yet the transition between
a discrete local distribution of 3D locations to a continuous depth estimation
of the surroundings is an ongoing research topic. Dynamical systems provide
interesting means for incrementally estimating depth information based on the
output of vision sensors, since only the current estimates are required, and image
batch processing is avoided.

For our work, we are interested in recovering in real-time the depth field
around the carrier under the assumptions of known camera motion and known
projection model for the onboard monocular camera. The problem of designing
an observer to estimate the depth of single or isolated keypoints has raised a
lot of interest, specifically in the case where the relative motion of the carrier
is described by constant known [6, 7], constant unknown [8] or time-varying
known [9, 10, 11, 12, 13] affine dynamics. From a different perspective, the
seminal paper of [14] performs incremental depth field refining for the whole
field of view via iconic (pixel-wise) Kalman filtering. Video systems, typically
found on autonomous vehicles, have successfully used this approach for refining
the disparity values obtained by stereo cameras in order to estimate the free
space ahead [15]. Average optical flow estimations over planar surfaces have
also been used for terrain following, in order to stabilize the carrier at a certain
pseudo-distance [16]. Yet, none of these methods provide an accurate dense
depth estimation in a general setting concerning the environment and the camera
dynamics.

We propose a novel frame of methods relying on a system of partial dif-
ferential equations describing the SO(3)-invariant dynamics of the brightness
perceived by the camera and of the depth field of the environment. Based on
this invariant kinematic model and the knowledge of the camera motion, these
methods provide dense estimations of the depth field at each time-step and
exploit such SO(3)-invariance.

The present paper is structured as follows. The invariant equations governing
the dynamics of the brightness and depth fields are recalled in section 2 and
their formulation in pinhole coordinates is given. In section 3, we adapt the
Horn-Schunck algorithm to a variational method providing depth estimation.
In section 4, we propose two asymptotic observers for depth field estimations:
the first one is based on standard optical flow measures and the second one
enables the refinement of rough or inaccurate depth estimations; we prove their
convergence under geometric assumptions concerning the camera dynamics and
the environment. In section 5, we test these methods on synthetic data and
compare their accuracy, their robustness to noise and their convergence rate;
tested on real data, this approach gives promising results.



2 The SO(3)-invariant model

2.1 The partial differential system on S
2

The model is based on geometric assumptions introduced in [17]. We consider
a spherical camera, whose motion is known. Linear and angular velocities v(t)
and ω(t) are expressed in the camera frame. Position of the optical center in
the reference frame R is denoted by C(t). Orientation versus R is given by the
quaternion q(t): any vector ς in the camera frame corresponds to the vector
qςq∗ in the reference frame R using the identification of vectors as imaginary
quaternions. We have thus: d

dtq = 1
2qω. A pixel is labeled by the unit vector

η in the camera frame: η belongs to the sphere S
2 and receives the brightness

y(t, η). Thus at each time t, the image produced by the camera is described by
the scalar field S

2 ∋ η 7→ y(t, η) ∈ R.
The scene is modeled as a closed, C1 and convex surface Σ of R3, diffeomor-

phic to S
2. The camera is inside the domain Ω ⊂ R

3 delimited by Σ = ∂Ω. To a
point M ∈ Σ corresponds one and only one camera pixel: if the points of Σ are
labeled by s ∈ S

2, for each time t, a continuous and invertible transformation
S
2 ∋ s 7→ φ(t, s) ∈ S

2 enables to express η as a function of s: η = φ(t, s).
The density of light emitted by a point M(s) ∈ Σ does not depend on the

direction of emission (Σ is a Lambertian surface) and is independent of t (the
scene is static). This means that y(t, η) depends only on s: thus y can be seen
either as a function of (t, η) or, via the transformation φ, as a function of s.
The distance C(t)M(s) between the optical center and the object seen in the
direction η = φ(t, s) is denoted by D(t, η), and its inverse by Γ = 1/D. Fig.1
illustrates the model and the notations. We assume that s 7→ y(s) is a C1

function. For each t, s 7→ D(t, s) is C1 since Σ is a C1 surface of R3.

Figure 1: Model and notations of a spherical camera in a static environment.



Under these assumptions, we first have:

∂y

∂t

∣∣∣∣
s

= 0,
∂Γ

∂t

∣∣∣∣
s

= Γ2v · η (1)

then

∂h

∂t

∣∣∣∣
s

=
∂h

∂t

∣∣∣∣
η

+
∂h

∂η

∣∣∣∣
t

∂η

∂t

∣∣∣∣
s

=
∂h

∂t

∣∣∣∣
η

+ ∇h ·
∂η

∂t

∣∣∣∣
s

where h is any scalar field defined on S
2 and ∇h its gradient with respect to

the Riemannian metric on S
2. The value of ∇h at η ∈ S

2 is identified with a
vector of R3 tangent to the sphere at the point η also identified to a unitary
vector of R3 in the camera moving frame. The Euclidean scalar product of two
vectors a and b in R

3 is denoted by a · b and their wedge product by a× b. By

differentiation, the identity qηq∗ =
−−−−−−→
C(t)M(s)

||C(t)M(s)|| , where
∗ denotes conjugation and

η is identified to an imaginary quaternion, yields

∂η

∂t

∣∣∣∣
s

= η × (ω + Γη × v) (2)

since the vector η × ω corresponds to the imaginary quaternion (ωη − ηω)/2.
Therefore, the intensity y(t, η) and the inverse depth Γ(t, η) satisfy the following
equations:

∂y

∂t
= −∇y · (η × (ω + Γη × v)) (3)

∂Γ

∂t
= −∇Γ · (η × (ω + Γη × v)) + Γ2v · η (4)

Equations (3) and (4) are SO(3)-invariant: they remain unchanged by any rota-
tion described by the quaternion σ and changing (η, ω, v) to (σησ∗, σωσ∗, σvσ∗).
Equation (3) is the well-known optical flow equation that can be found under
different forms in numerous papers (see [18] or [13] for example), while (4) is
less standard (see e.g., [17]).

2.2 The system in pinhole coordinates

To use this model with camera data, one needs to write the invariant equa-
tions (3) and (4) with local coordinates on S

2 corresponding to a rectangular
grid of pixels. One popular solution is to use the pinhole camera model, where
the pixel of coordinates (z1, z2) corresponds to the unit vector η ∈ S

2 of co-

ordinates in R
3:
(
1 + z21 + z22

)−1/2
(z1, z2, 1)

T . The optical camera axis (pixel
(z1, z2) = (0, 0)) corresponds here to the direction z3. Directions 1 and 2 corre-
spond respectively to the horizontal axis from left to right and to the vertical
axis from top to bottom on the image frame.

The gradients ∇y and ∇Γ must be expressed with respect to z1 and z2. Let
us detail this derivation for y. Firstly, ∇y is tangent to S

2, thus ∇y · η = 0.



Secondly, the differential dy corresponds to ∇y · dη and to ∂y
∂z1

dz1 +
∂y
∂z2

dz2. By

identification, we get the Cartesian coordinates of ∇y in R
3. Similarly we get

the three coordinates of ∇Γ. Injecting these expressions in (3) and (4), we get
the following partial differential equations (PDE) corresponding to (3) and (4)
in local pinhole coordinates:

∂y

∂t
=−

∂y

∂z1

[
z1z2ω1 − (1 + z1

2)ω2 + z2ω3

+Γ
√
1 + z21 + z22(−v1 + z1v3)

]

−
∂y

∂z2

[
(1 + z2

2)ω1 − z1z2ω2 − z1ω3

+Γ
√
1 + z21 + z22(−v2 + z2v3)

]

∂Γ

∂t
=−

∂Γ

∂z1

[
z1z2ω1 − (1 + z1

2)ω2 + z2ω3

+Γ
√
1 + z21 + z22(−v1 + z1v3)

]

−
∂Γ

∂z2

[
(1 + z2

2)ω1 − z1z2ω2 − z1ω3

+Γ
√
1 + z21 + z22(−v2 + z2v3)

]

+ Γ2(z1v1 + z2v2 + v3)

where v1, v2, v3, ω1, ω2, ω3 are the components of linear and angular velocities
in the camera frame.

3 Depth estimation inspired by Horn-Schunck

method

3.1 The Horn-Schunck variational method

In [19], Horn and Schunck described a method to compute the optical flow,
defined as ”the distribution of apparent velocities of movement of brightness
patterns in an image”. The entire method is based on the optical flow constraint
written in the compact form

∂y

∂t
+ V1

∂y

∂z1
+ V2

∂y

∂z2
= 0 (5)

Identification with (5) yields

V1(t, z) = f1(z, ω(t)) + Γ(t, z)g1(z, v(t))

V2(t, z) = f2(z, ω(t)) + Γ(t, z)g2(z, v(t))
(6)

with

f1(z, ω) = z1z2ω1 − (1 + z1
2)ω2 + z2ω3

g1(z, v) =
√
1 + z21 + z22(−v1 + z1v3)

f2(z, ω) = (1 + z2
2)ω1 − z1z2ω2 − z1ω3

g2(z, v) =
√
1 + z21 + z22(−v2 + z2v3).

(7)



For each time t, the apparent velocity field V = V1
∂

∂z1
+V2

∂
∂z2

is then estimated

by minimizing versus W = W1
∂

∂z1
+W2

∂
∂z2

the following cost (the image I is a

rectangle of R2 here)

I(W ) =

∫∫

I

((∂y
∂t

+W1
∂y

∂z1
+W2

∂y

∂z2

)2

+ α2(∇W1
2 +∇W2

2)

)
dz1dz2 (8)

where ∇ is the gradient operator in the Euclidian plane (z1, z2), α > 0 is a
regularization parameter and the partial derivatives ∂y

∂t ,
∂y
∂z1

and ∂y
∂z2

are assumed
to be known.

Such Horn-Schunk estimation of V at time t is denoted by

VHS(t, z) = VHS1(t, z)
∂

∂z1
+ VHS2(t, z)

∂

∂z2
.

For each time t, usual calculus of variation yields the following PDE’s for VHS:

(
∂y

∂z1

)2

VHS1 +
∂y

∂z1

∂y

∂z2
VHS2 = α2∆VHS1 −

∂y

∂z1

∂y

∂t

∂y

∂z1

∂y

∂z2
VHS1 +

(
∂y

∂z2

)2

VHS2 = α2∆VHS2 −
∂y

∂z2

∂y

∂t

with boundary conditions ∂VHS1

∂n = ∂VHS2

∂n = 0 (n the normal to ∂I). Here ∆ is
the Laplacian operator in the Euclidian space (z1, z2). The numerical resolution
is usually based on

• computations of ∂y
∂z1

, ∂y
∂z2

and ∂y
∂t via differentiation filters (Sobel filtering)

directly from the image data at different times around t.

• approximation of ∆VHS1 and ∆VHS2 by the difference between the weighted
mean ¯VHS1 and V̄HS2 of VHS1 and VHS2 on the neighboring pixels and their
values at the current pixel;

• iterative resolution (Jacobi scheme) of the resulting linear system in VHS1

and VHS2.

The convergence of this numerical method of resolution was proven in [20].
Three parameters have a direct impact on the speed of convergence and on
the precision: the regularization parameter α, the number of iterations for the
Jacobi scheme and the initial values of VHS1 and VHS2 at the beginning of this
iteration step. To be specific, α should neither be too small in order to filter
noise appearing in differentiation filters applied on y, nor too large in order to
have VHS close to V when ∇V 6= 0.



3.2 Adaptation to depth estimation

Instead of minimizing the cost I given by (8) with respect to any W1 and W2,
let us define a new invariant cost J ,

J(Υ) =

∫∫

J

((
∂y

∂t
+∇y · (η × (ω +Υη × v))

)2

+ α2∇Υ2

)
dση (9)

and minimize it with respect to any depth profile J ∋ η 7→ Υ(t, η) ∈ R. The
time t is fixed here and dση is the Riemannian infinitesimal surface element on
S
2. J ⊂ S

2 is the domain where y is measured and α > 0 is the regularization
parameter.

The first order stationary condition of J with respect to any variation of Υ
yields the following invariant PDE characterizing the resulting estimation ΓHS

of Γ:

α2∆ΓHS =

(
∂y

∂t
+∇y · (η × (ω + ΓHSη × v))

)
. . .

. . . (∇y · (η × (η × v))) on J (10)

∂ΓHS

∂n
= 0 on ∂J (11)

where ∆ΓHS is the Laplacian of ΓHS on the Riemannian sphere S2 and ∂J is the
boundary of J , assumed to be piece-wise smooth and with unit normal vector
n.

In pinhole coordinates (z1, z2), we have

dση =
(
1 + z21 + z22

)−3/2
dz1dz2

∇Υ2 =
(
1 + z21 + z22

)( ∂Υ

∂z1

2

+
∂Υ

∂z2

2

+ (z1
∂Υ

∂z1
+ z2

∂Υ

∂z2
)2
)

(
∂y

∂t
+∇y · (η × (ω +Υη × v))

)2

= (F +ΥG)2

where

F =
∂y

∂t
+ f1(z, ω)

∂y

∂z1
+ f2(z, ω)

∂y

∂z2

G = g1(z, v)
∂y

∂z1
+ g2(z, v)

∂y

∂z2
.

(12)

Consequently, the first order stationary condition (10) reads in (z1, z2) coordi-



nates:

ΓHSG
2 + FG =α2

[
∂

z1

(
1 + z21√

1 + z21 + z22

∂ΓHS

∂z1

)

+
∂

z2

(
1 + z22√

1 + z21 + z22

∂ΓHS

∂z2

)

+
∂

z2

(
z1z2√

1 + z21 + z22

∂ΓHS

∂z1

)

+
∂

z1

(
z1z2√

1 + z21 + z22

∂ΓHS

∂z2

)]

(13)

on the rectangular domain I = [−z̄1, z̄1]× [−z̄2, z̄2] (z̄1, z̄2 > 0 with z̄21+ z̄22 < 1).
The right term of (13) corresponds to the Laplacian operator on the Rie-

mannian sphere S
2 in pinhole coordinates. The numerical resolution of this

scalar diffusion providing the estimation ΓHS of Γ is similar to the one used
for the Horn-Schunck estimation VHS of V . The functional I(W ) defined in (8)
is minimized with respect to two varying parameters W1 and W2 while there
is really only one unknown function in this problem: the depth field Γ. On
the contrary, the functional J(Υ) takes full advantage of the knowledge of the
camera dynamics since the only varying parameter here is Υ.

4 Depth estimation via asymptotic observers

4.1 Asymptotic observer based on optical flow measures
(V

HS
)

From any optical flow estimation, such as VHS, it is reasonable to assume that
we have access for each time t, to the components in pinhole coordinates of the
vector field

̟t : S
2 ∋ η 7→ ̟t(η) = η × (ω + Γη × v) ∈ TηS

2 (14)

appearing in (4). This vector field can be considered as a measured output
for (4), expressed as ̟t(η) = ft(η)+Γ(t, η)gt(η), where ft and gt are the vector
fields

ft : S
2 ∋ η 7→ ft(η) = η × ω ∈ TηS

2 (15)

gt : S
2 ∋ η 7→ gt(η) = η × (η × v) ∈ TηS

2. (16)

This enables us to propose the following asymptotic observer for D = 1/Γ since
it obeys to ∂D

∂t = −∇D ·̟t − v · η:

∂D̂

∂t
= −∇D̂ ·̟t − v · η + kgt · (D̂ft + gt − D̟̂t) (17)



where ̟t, ft and gt are known time-varying vector fields on S
2 and k > 0 is

a tuning parameter. This observer is trivially SO(3) invariant and reads in
pinhole coordinates:

∂D̂

∂t
= −

∂D̂

∂z1
V1 −

∂D̂

∂z2
V2 − (z1v1 + z2v2 + v3)

+ k
(
g1(D̂f1 + g1 − D̂V1) + g2(D̂f2 + g2 − D̂V2)

) (18)

where V is given by any optical flow estimation and (f1, f2, g1, g2) are defined
by (7).

As assumed in the first paragraphs of subsection 2.1, for each time t, there
is a one to one smooth mapping between η ∈ S

2 attached to the camera pixel
and the scene point M(s) corresponding to this pixel. This means that, for any
t ≥ 0, the flow φ(t, s) defined by

∂φ

∂t

∣∣∣∣
(t,s)

= ̟t(φ(t, s)), φ(0, s) = s ∈ S
2 (19)

defines a time varying diffeomorphism on S
2. Let us denote by φ−1 the inverse

diffeomorphism: φ(t, φ−1(t, η)) ≡ η. Assume that Γ(t, η) > 0, v(t) and ω(t)
are uniformly bounded for t ≥ 0 and η ∈ S

2. This means that the trajectory
of the camera center C(t) remains strictly inside the convex surface Σ with
minimal distance to Σ. These considerations motivate the assumptions used in
the following theorem.

Theorem 1. Consider Γ(t, η) associated to the motion of the camera inside the
domain Ω delimited by the scene Σ, a C1, convex and closed surface as explained
in sub-section 2.1. Assume that exist v̄ > 0, ω̄ > 0, γ̄ > 0 and Γ̄ > 0 such that

∀t ≥ 0, ∀η ∈ S
2, |v(t)| ≤ v̄, |ω(t)| ≤ ω̄, γ̄ ≤ Γ(t, η) ≤ Γ̄.

Then, for t ≥ 0, Γ(t, η) is a C1 solution of (4). Consider the observer (17)

with a C1 initial condition versus η, D̂(0, η). Then we have the following im-
plications:

• ∀t ≥ 0, the solution D̂(t, η) of (17) exists, is unique and remains C1

versus η. Moreover

t 7→ ‖D̂(t, )−D(t, )‖L∞ = max
η∈S2

∣∣∣D̂(t, η)−D(t, η)
∣∣∣

is decreasing (L∞ stability).

• if additionally for all s ∈ S
2,
∫ +∞

0 ‖gτ (φ(τ, s))‖
2dτ = +∞, then we have

for all p > 0,

lim
t7→+∞

∫

S2

∣∣D̂(t, η)−D(t, η)
∣∣pdση = 0

(convergence in any Lp topology)



• if additionally there is λ > 0 and T > 0 such that, for all t ≥ T and
s ∈ S

2,
∫ t

0 ‖gτ(φ(τ, s))‖
2dτ ≥ λt, then we have, for all t ≥ T ,

‖D̂(t, )−D(t, )‖L∞ ≤ e−kγ̄λt‖D̂(0, )−D(0, )‖L∞

(exponential convergence in L∞ topology).

Assumptions on
∫
‖gt(φ(t, s))‖

2dt can be seen as a condition of persistent
excitations. It should be satisfied for generic motions of the camera.

Proof. The facts that v, ω and Γ are bounded and that the scene surface Σ
is C1, closed and convex, ensure that the mapping η = φ(t, s) and its inverse
s = φ−1(t, η) are C1 diffeomorphism on S

2 with bounded derivatives versus
s and η for all time t > 0. Therefore, Γ is also a function of (t, s). Set
Γ(t, s) = Γ(t, φ(t, s)): in the (t, s) independent variables the partial differen-
tial equation (4) becomes a set of ordinary differential equations indexed by s:
∂Γ
∂t

∣∣∣
s
= Γ

2
v(t) · φ(t, s) that reads also ∂(D)

∂t

∣∣∣
s
= −v(t) · φ(t, s) with D = 1/Γ.

Thus D(t, s) −D(0, s) = −
∫ t

0 v(τ) · φ(τ, s) dτ . Consequently, Γ is C1 versus s
and thus Γ is C1 versus η.

Set D̂(t, s) = D̂(t, φ(t, s)). Then

∂D̂

∂t

∣∣∣∣∣
s

= −v(t) · φ(t, s)

+ k‖gt(φ(t, s))‖
2Γ(t, s)(D(t, s)− D̂(t, s)).

Set E = D̂ −D and E = D̂ −D. Then

∂E

∂t

∣∣∣∣
s

= −kΓ(t, s)‖gt(φ(t, s))‖
2E(t, s) (20)

Consequently, Ē is well defined for any t > 0 and C1 versus s. Thus E and
consequently D̂ = E +D are also well defined for all t > 0 and are C1 versus η.

Since for any s and t2 > t1 ≥ 0 we have |E(t2, s)| ≤ |E(t1, s)|, we have also

|E(t2, s)| ≤ max
σ

|E(t1, σ)| = ‖D̂(t1, )−D(t1, )‖L∞ .

Thus, taking the max versus s, we get

‖D̂(t2, )−D(t2, )‖L∞ ≤ ‖D̂(t1, )−D(t1, )‖L∞ .

Since

E(t, s) = E(0, s)e−k
∫

t

0

(
Γ(τ,s)‖gτ (φ(τ,s))‖

2

)
dτ

we have (φ(0, s) ≡ s).

|E(t, s)| ≤ |E(0, s)|e−kγ̄
∫

t

0
‖gτ (φ(τ,s))‖

2 dτ .



Take p > 0. Then

∫

S2

∣∣E(t, η)
∣∣pdση =

∫

S2

∣∣E(t, s)
∣∣p det

(
∂φ

∂s
(t, s)

)
dσs.

By assumption ∂φ
∂s is bounded. Thus exists C > 0 such that

‖E(t, )‖Lp =

∫

S2

∣∣E(t, η)
∣∣pdση ≤ C

∫

S2

∣∣E(t, s)
∣∣pdσs.

When
∫ +∞

0
‖gτ (φ(τ, s))‖

2dτ = +∞, for each s we have limt7→+∞ E(t, s) =

0. Moreover |E(t, s)| is uniformly bounded by the L∞ function E(0, s). By
Lebesgue dominate convergence theorem limt7→+∞ ‖E(t, )‖Lp = 0. Previous
inequality leads to limt7→+∞ ‖E(t, )‖Lp = 0.

When, for t > T ,
∫ T

0 ‖gτ(φ(τ, s))‖
2dτ ≥ λt, we have, for all s ∈ S

2,

|E(t, s)| ≤ |E(0, s)|e−kγ̄λt. Thus, for all s ∈ S
2 we get |E(t, s)| ≤ ‖E(0, )‖L∞ .

Since η 7→ φ−1(t, η) is a diffeomorphism of S2, we get finally, for all η ∈ S
2,

|E(t, η)| ≤ ‖E(0, )‖L∞e−kγ̄λt. This proves ‖E(t, )‖L∞ ≤ ‖E(0, )‖L∞e−kγ̄λt.

4.2 Asymptotic observer based on rough depth estimation
(Γ

HS
)

Instead of relying the observer on estimation VHS, we can base it on ΓHS.
Then (17) becomes (k > 0)

∂D̂

∂t
= −∇D̂ · (ft + ΓHSgt)− v · η + k(1− D̂ΓHS) (21)

that reads in pinhole coordinates

∂D̂

∂t
= −

∂D̂

∂z1
(f1 + ΓHSg1)−

∂D̂

∂z2
(f2 + ΓHSg2)

− (z1v1 + z2v2 + v3) + k(1− D̂ΓHS). (22)

For this observer we have the following convergence result.

Theorem 2. Take assumptions of theorem 1 concerning the scene surface Σ,
Γ = 1/D, v and ω. Consider the observer (21) where ΓHS coincides with Γ and

where the initial condition is C1 versus η. Then ∀t ≥ 0, the solution D̂(t, η)
of (21) exists, is unique, remains C1 versus η and

‖D̂(t, )−D(t, )‖L∞ ≤ e−kγ̄t‖D̂(0, )−D(0, )‖L∞

(exponential convergence in L∞ topology)

The proof, similar to the one of theorem 1, is left to the reader.



5 Simulations and numerical implementations

5.1 Sequence of synthetic images and method of compar-
ison

The non-linear asymptotic observers described in section 4 are tested on a se-
quence of synthetic images characterized by the following:

• virtual camera: the size of each image is 640 by 480 pixels, the frame rate
of the sequence is 60 Hz and the field of view is 50 deg by 40 deg;

• motion of the virtual camera: it consists of two combined translations in
a vertical plane (v3 = ω1 = ω2 = ω3 = 0), and the velocity profiles are
sinusoids with magnitude 1 m.s−1, and different pulsations (π for v1 and
3π for v2);

• virtual scene: it consists of a 4 m2-plane placed at 3 m and tipped of an
angle of 0.3 rad with respect to the plane of camera motion; the observed
plane is virtually painted with a gray pattern, whose intensity varies in
horizontal and vertical directions as a sinusoid function;

• generation of the images : each pixel of an image has an integer value
varying from 1 to 256, directly depending on the intensity of the observed
surface in the direction indexed by the pixel, to which a normally dis-
tributed noise varying with mean 0 and standard deviation σ is added.

The virtual setup used to generate the sequence of images is represented in
Fig.2.

To compare the performances of both methods, we use the global error rate
in the estimation of D, defined as

E =

∫

I

|D̂(t,η)−D(t,η)|
D(t,η) dση /

∫

I

dση (23)

where D is the true value of the depth field, D̂ is the estimation computed by
any of the proposed methods and I is the image frame.

5.2 Implementation of the depth estimation based on op-
tical flow measures (V

HS
)

We test on the sequence described in 5.1 the depth estimation characterized
by the partial differential equation (13). The optical flow input VHS (V1 and
V2 components) is computed by a classical Horn-Schunck method. Note that
convergence theorem 1 assumes that the domain of definition of the image was
the entire unit sphere S2. Here the field of view of our virtual camera limits this
domain to a portion of the sphere I. However, the motion of our virtual camera
ensures that most of the points of the scene appearing in the first image stay in
the field of view of the camera during the whole sequence. The convergence of



Figure 2: Virtual setup used to generate the sequence of images processed in 5

the method is only ensured for these points, and Neumann boundary conditions
are chosen at the borders where optical flow points toward the inside of the
image:

∂D̂

∂n
= 0 if n · VHS < 0 (24)

The observer gain k > 0 is chosen in accordance with scaling considerations.
Setting k = 500 s.m−2 provides a rapid convergence rate: we see on Fig. 3
that after a few frames, the initial relative error (blue curve) is reduced by 1/3.
Setting k = 50 s.m−2 is more reasonable when dealing with noisy data: on
Fig. 4 initial relative error is reduced by 1/3 after around 20 frames.

More precisely, the standard deviation σ of the noise added to the synthetic
sequence of images is 1. The gains k = 500 and k = 100 are successively tested,
and the associated error rates for D̂ are plotted in Fig. 3. As expected, the
convergence is more rapid for a larger gain but at convergence, i.e., after 40
frames, the relative errors are similar and below 1.5%.

To test robustness when dealing with noisy data, the standard deviation σ is
magnified by 20. The correction gain is tuned to k = 50 s.m−2. The converged
errors after 40 frames significantly increases and yet stays between 12 and 14
%. Note that such permanent errors can not decrease since such noise level
first affects the optical flow estimation VHS that feeds the asymptotic observer.
Compared to its true value V , the error level for VHS is about 15 %. These
results underline the fact that this approach is sensitive to input optical flow



Figure 3: Relative estimation errors of the depth field D estimated by the
asymptotic observer (18) filtering the optical flow input VHS obtained by Horn-
Schunck method, for different correction gains k. The noise corrupting the image
data is normally distributed, with mean µ = 0 and standard deviation σ = 1.



measures, but not directly to noise corrupting the image data.

Figure 4: Relative estimation errors of the depth field D estimated by the
asymptotic observer (18) filtering the optical flow input VHS obtained by Horn-
Schunck method.The noise corrupting the image data is normally distributed,
with mean µ = 0 and standard deviation σ = 20.

5.3 Implementation of the asymptotic observer based on
rough depth estimation (Γ

HS
)

Subsequently, the observer described by (22) was applied to the same sequence.
The input depth field ΓHS is obtained as the output of (13). To adapt the numer-
ical method to this model, we make the small-angle approximation by neglecting
the second order terms z (we neglect the curvature of S2 and consider that the
camera image corresponds to a small part of S2 that can be approximated by
a small Euclidean rectangle; the error of this approximation is smaller than 3%
for such rectangular image): (13) becomes

G2Γ + FG = α2

(
∂2Γ

∂z12
+

∂2Γ

∂z22

)
(25)

F and G are computed using angular and linear velocities, ω and v, and differ-
entiation (Sobel) filters directly applied on the image data y(t, z1, z2) . ∆Γ is



approximated by the difference between the weighted mean Γ̄ of Γ on the neigh-
boring pixels and its value at the current pixel. The resulting linear system in Γ
is solved by the Jacobi iterative scheme, with an initialization provided by the
previous estimation. The regularization parameter α is chosen accordingly to
scaling considerations and taking into account the magnitude of noise: α = 300
m.s−1 provides a convergence in about 5 or 6 frames for relatively clean image
data. As for the observer (22), the correction gain k = 50 s.m−1 enables a
convergence in around 20 frames.

As in section 5.2, we test the observer (22) for different levels of noise cor-
rupting the image data. For σ = 1, the error rates associated to the input
depth ΓHS and to the estimated depth D̂ are plotted in Fig. 5. After only 6
images of the sequence, the error rate for ΓHS is smaller than 4% and stays below
this upper bound for the rest of the sequence. On the downside, the error rate
stays larger than 2.5%. On the contrary, the error rate associated to D̂ keeps
decreasing, and reaches the minimal value of 0.5 %.

Figure 5: Relative estimation error of ΓHS (blue), using the depth estimation
inspired by Horn-Schunck, described in 3.2 and of D (red) estimated by the
asymptotic observer (22) filtering ΓHS.The noise corrupting the image data is
normally distributed, with mean µ = 0 and standard deviation σ = 1.

For σ = 20, the error rates associated to the input depth ΓHS and to the
estimated depth D̂ are plotted in Fig. 6. For the computation of ΓHS, the



diffusion parameter α is increased to 1000 m.s−1 to take into account such
stronger noise. The observer filters the error associated to ΓHS (between 4 and
8 %) to provide a 3 % accuracy. The results show a good robustness to noise
for this observer.

Figure 6: Relative estimation error of ΓHS (blue), using the depth estimation
inspired by Horn-Schunck, described in 3.2 and of D (red) estimated by the
asymptotic observer (22) filtering ΓHS.The noise corrupting the image data is
normally distributed, with mean µ = 0 and standard deviation σ = 20.

5.4 Experiment on real data

To realize the experiments, a camera was fixed on a motorized trolley traveling
back and forth on a 2 meter-linear track in about 6 seconds. The resolution of the
encoder of the motor enables to know the position and the speed of the trolley
with a micrometric precision. The camera is a Flea2 - Point Grey Research
VGA video cameras (640 by 480 pixels) acquiring data at 20.83 fps, with a
Cinegon 1.8/4.8 C-mount lens, with an angular field of view of approximately
50 by 40 deg, and oriented orthogonally to the track. The scene is a static
work environment, with desks, tables, chairs, lamps, lit up by electric light
plugged on the mains, with frequency 50 Hz. The acquisition frame rate of
the cameras produces an aliasing phenomenon on the video data at 4.17 Hz.
In other words, the light intensity in the room is variable, at a frequency that
can not be easily ignored, which does not comply with the initial hypothesis



(3). However, the impact of this temporal dependence in the equations can be

reduced by a normalization of the intensity of the images such as y(x, y) = y(x,y)
ȳ

where x and y are the horizontal and vertical indexes of the pixels in the image,
y(x, y) is the intensity of this pixel and ȳ is the mean intensity on the entire
image.

The depth field was estimated via the asymptotic observer (18) based on
optical flow measures. The components of the optical flow were computed using
a high quality algorithm based on TV-L1 method (see [21] for more details).
The correction gain was tuned to k = 100 s.m−2. An example of image data
is shown in Fig.7, and the depth estimate associated to that image at the same
time t∗ is shown in Fig.8. At that specific time t⋆ ≈ 8 s, the trolley already
traveled once along the track and is on its way back toward its starting point.
Some specific estimates are extracted from the whole depth field (two tables,
two chairs, a screen, two walls) and highlighted in black; they are compared
to real measures taken in the experimental room (in red): the estimate depth

profile D̂(t⋆, ·) exhibits a strong correlation with these seven punctual reference
values of D(t⋆, ·); the global appearance of the depth field looks very realistic.

Figure 7: The static scene as seen by the camera



Figure 8: Estimation of the depth field associated with the image shown in
Fig.7. Depth is associated to a gray level, whose scale in meters is on the right.
Some estimates are extracted from the entire field (in black) and compared to
real measures (in red).



6 Conclusions and future works

In section 2, we recalled a system of partial differential equations, describing the
invariant dynamics of brightness and depth smooth fields under the assumptions
of a static and Lambertian environment. We proposed in section 3 an adaptation
of optical flow algorithms that take the best advantage of the SO(3)-invariance
of these equations and the knowledge of camera dynamics: it yielded an SO(3)-
invariant variational method to directly estimate the depth field. In section 4,
we proposed two asymptotic observers, respectively based on optical flow and on
depth estimates. We proved their convergence under geometric and persistent
excitation assumptions. On synthetic images, we showed in section 5 that the
variational method converges rapidly, but its performance is highly dependent
of the noise level whereas both asymptotic observers filter this noise. These
asymptotic obersevers based on image processing of the entire field of view of
the camera seems to be an interesting tool to dense range estimation and a
complement to methods based on feature tracking.
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