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Microstructure-induced hotspots in the thermal and elastic responses of granular

media
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This work is a combined analytical and numerical study of the extreme values of the thermal

and elastic fields occurring in a propellant composite material, a granular medium containing dense

self-assembled spheroidal grains embedded in a matrix. First, a 3D microtomography image of a

representative sample is segmented using morphological operators. Second, the local temperature and

heat flux in the quasi-static thermal response is computed numerically, making use of the segmented

microstructure and of experimental values of the heat conductivity in each phase. Such fields are

readily derived by means of a Fast Fourier Transform method. Emphasis is put on the maximum

values of the local fields: even at low contrast of properties between the grain and the matrix, the heat

flux patterns is made of hot-spot zones located in-between grains that are close to each other with

preferential directions. Third, the local extrema of the fields are investigated in the context of linear

elasticity. Finally, analytical approximations are examined at low and high contrast of properties,

on a simple hard-core model of cylinders, which is tantamount to a 2D granular microstructure.

PACS numbers: 46.04.+b, 46.15.-x, 46.65.+g. Keywords: Homogenization; Thermal conductivity; Repre-

sentative volume element; Hard-core models; Linear elasticity; Random media

I. INTRODUCTION

It is common to study the physical behaviour of com-
posite materials from the point of view of homogeniza-
tion, to predict the apparent properties from the mi-
crostructure and from the local properties. However it
may be crucial to study the impact of the microstructure
on local extremal properties of the fields, when they can
destroy the integrity of the material. This is the case
for instance of damage initiation in heterogeneous mate-
rials, due to strain or stress concentrations, as studied in
a mortar material [8]. In the case of energetic materi-
als like propellants, the role of possible hot spots in the
material was studied mainly in the presence of shocks [7]
or friction [5]. More recently, the structure of local hot-
spots has been studied numerically in highly-contrasted
composite materials [20].

In other nonlinear contexts, the microstructure is
known to induce strong local interactions, such as in
visco-plastic polycrystals [29, 30] or elastic-plastic hard-
ening in Boolean microstructures [15]. Additionally, the
influence of geometrical parameters such as inclusion as-
pect ratio and mutual distances was studied numerically
and experimentally in simple (periodic) microstructures.
The latter are of special importance in optical properties,
where resonances depend on nano-structural details [12].

The temperature and heat flux, or equivalently the
electric potential and electric vector field, in the inner re-
gion in-between two closely touching, perfectly conduct-
ing spheres was studied by Jeffrey [13]. In its work, Jef-
frey expands the potential in terms of multipoles. This
approach allowed McPhedran et al. [21, 22, 28], using
an asymptotic perturbation method, to draw connections
with a square array of cylinders. In this respect, earlier
works by Keller [18] showed that the effective conduc-

tivities of a square lattice of highly-conducting touching
spheres is determined by the singularities in the inner re-
gion between spheres. More recently, significant progress
has been achieved analytically in two-dimensional com-
posites [31] (see also [23] and references therein); how-
ever, problems involving random granular media gen-
erally requires numerical computations. In the present
paper, we study the initiation of hot spots in the mi-
crostructure of a propellant material, by application of a
macroscopic thermal gradient or of a macroscopic strain
loading. This work combines 3D image segmentation of
a large size microtomography obtained on a propellant
material, FFT calculation of thermal and elastic fields on
the segmented image, image analysis of the fields, and ap-
proximate semi-analytical solutions for the fields. Specif-
ically, the article is organized as follows: segmentation
techniques are presented in Sec. II, the effective behav-
ior as predicted numerically is discussed in Secs. III and
IV, the local fields are investigated in Sec. V, analytical
results relevant for the fields maxima at low contrast of
properties are given in Sec. VI, and finally the local fields
properties at high contrasts are investigated in Secs. VII
and VIII.

II. GRANULAR MICROSTRUCTURE AND

IMAGE SEGMENTATION

A. Microtomography image

A granular medium known as butalite propellant ma-
terial is made of self-assembled spheroidal grains densely
embedded in a matrix, as seen in Fig. (1). This cut of a
3D microtomography image shows a sample with cylin-
drical shape of diameter about 7.4mm and height 2.6mm.
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It is discretized along 1500× 1500× 477 greylevel points,
or equivalently, voxels, with a resolution of 5.6µm per
voxel. The large image size ensures both the representa-
tivness of the grains packing structure as well as good-
enough resolution, as shown in a detail of the image in
Fig. (2a). A close inspection of the image shows that
each inclusion diameter is about 70 voxels long. The av-
erage diameter of the grains in the propellant composite
is known to be about 400 microns which is consistent
with the microtomography in Fig. (1), where the high
density of the tightly packed grains is conspicuous. The
volume fraction of the grains is about 65%. Such mi-
crostructure is reminiscent of other man-made materials
such as concrete or mortar [8] where self-assembled grav-
els arrange in closely packed structures upon mixing for
sufficiently long time. Intuitively, the high density some-
what constrains the number of possible configurations of
the grains. The size of the typical length scale repre-
sentative of the heterogeneous material is larger than the
grains average diameter or of the same order depending in
particular in the presence or absence of long-range corre-
lations in the grains packing structure. The segmentation
of the grains with respect to the matrix is required to an-
swer such questions, and will be examined in more details
in Sec. (IV). Furthermore, no macroscopic anisotropy is
visible in the granular microstructure, i.e. although the
grains shapes are anisotropic, no privileged direction ap-
pears. This point will likewise be investigated later when
a segmented image is available.
As a pre-processing, a crop of size 926 × 926 × 463

voxels is extracted from the middle of the cylinder in the
original image, so as to remove the background entirely.
The subsequent segmentation process described below is
applied to this cropped image.

B. Image segmentation

Segmenting the image consists in first separating grains
and matrix so as to obtain a binary representation of the
composite at the level of the voxel. In this well contrasted
image, this is straightforward by maximization of the in-
terclass variance [27]. More precisely, the distribution of
voxel intensities in the original image allows for an au-
tomatic thresholding as done in [8] in a similar context;
the result is shown in Fig. 2b. The resulting segmenta-
tion might however not be sufficient for the purpose of
this work, i.e. the computation of the local physical re-
sponse of the material. The latter possibly necessitates
a description of the microstructure that is consitent with
the connectivity of each grain, i.e. where grains are sepa-
rated. In this respect, the information in the image itself
is insufficient, as the gaps between neighboring grains
are often smaller than the image resolution, leading to
a more involved treatment. This second, possibly more
accurate representation of the microstructure is derived
from the original image by making each grain a connected
component of the image, and separating them from their

neighbours, as explained below.

FIG. 1. 2D section of a 3D X-ray microtomography image of
a sample of propellant butalite material .

(a) (b)

FIG. 2. Detail of a 2D section of a X-ray microtomography
image of the granular material (a), and its corresponding seg-
mentation by maximization of the interclass variance (b).

C. Stochastic watersheds

So-called “stochastic watersheds” [1] are especially
suited to the segmentation of granular microstructures
of the type considered here, as they are aimed at un-
supervised segmentation [26]. This consists in using a
predefined number n of random markers to build a prob-
ability density function (PDF) of contours. In the case of
granular materials, n is simply the number of grains con-
tained in the image. In various applications, the latter
has been automatically estimated. In [9], for instance,
the covariance function together with the average radius
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of the grains and a Boolean model assumption [14] pro-
vides an estimate for n. The same method is used in the
present work; it is emphasized that although the value of
n is likely overestimated, as the grains do not interpene-
trate, this does not affect the resulting segmentation. It
should be noted that the original method introduced for
computing the stochastic watershed is based on a large
number of realizations of random markers to estimate a
PDF of contours. The random markers are generated
with a Poisson point process corresponding to a constant
intensity. In the case of granular materials, a constant
background marker, extracted by an automatic thresh-
olding, is added to each set of random markers. The
threshold is calculated via the maximization of the inter-
class variance [27] (“Otsu” method).
Full segmentation is, accordingly, achieved in the fol-

lowing way. For each set of markers, a constrained wa-
tershed is computed. Then, the Parzen window, made of
a Gaussian kernel in a convolution product to smoothen
the PDF field, is used to estimate the PDF of contours.
From the PDF, it is possible to obtain the segmentation.
The first approach used this PDF as a gradient for a new
watershed [1] whereas a more efficient method uses λ-flat
zones to overcome the fact that the estimated PDF is not
constant over each branch of contour [9]. Illustration of
the PDF of contours is shown in Fig. (3a).

(a) (b) (c)

FIG. 3. Probability density function (PDF) of contours esti-
mated with 50 realizations of a Poisson point process in 3D
(a), computed with a graph-based approach (b) and graph-
based stochastic watershed segmentation (c).

Although it provides good results, computing a large
number of watersheds from simulations is a slow process,
especially in 3D applications. A more efficient solution
consists in using a graph-based approach [16, 32]. In
the latter, the probability of boundaries is directly com-
puted with a good approximation without resorting to
realisations. More precisely, the method is as follows.
A first watershed is computed from the local minima of
the gradient, as is common in standard segmentation,
but the latter is restricted to the complementary set of
the background extracted by an automatic thresholding.
For this purpose, the background is used as a marker.
A very strong oversegmentation is obtained as a result
of the presence of noise. From this watershed, an ad-
jacency graph is built. Vertices of the graph are asso-
ciated to each basin of the watershed, connecting edges
between adjacent regions. A vertex is associated to the

background too. Values are given to the vertices corre-
sponding to the volumes of the regions. Each edge is la-
belled with the minimum of the gradient function on the
boundary between the corresponding regions. From this
valued graph, a minimum spanning tree is extracted [32].
Regions in the minimum spanning tree are afterward
merged, starting with the edge of lowest value. After
each merging, the probability p of the boundary between
two regions V1 and V2 is estimated using [16]:

p = 1−
(

1− V1

V

)n

−
(

1− V2

V

)n

+

(

1− V1 + V2

V

)n

,

(2.1)
i.e. it is set to the probability of obtaining at least one
random marker in each of the two regions, knowing the
volumes V1 and V2 of the two regions, the total volume
V of the image and the number of markers n. It is
seen from the equation above that the probability p
increases with the volume of the grain. This may result
in a bias towards largest grains if there exists a wide
distribution of sizes in the image. After the merging of
all the nodes in the original minimum spanning tree,
the probability of all the edges of the tree is known.
The result is projected from the tree on the graph and
from the graph on the image. This approach provides
uniform probability on each part of boundary between
two regions, as illustrated on Fig. (3b). Therefore, a
simple threshold can be used for the final segmentation
as shown in Fig. (3c). The segmentation method
was validated in a previous study on similar granular
media [9]. In the present case, an additional validation
is obtained by visual comparison of the rough image and
of the detection.

In the rest of this work, the resulting “Otsu” and
“watershed” segmentations are respectively refered to as
“connected” and “unconnected microstructures” (Fig. 4).
In the former, the grains volume density is f = 61.3% on
the sample, whereas in the latter f = 53.7%.

(a) (b)

FIG. 4. Corresponding detail of 2D sections of the “con-
nected” (a) and “unconnected” (b) microstructures.
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III. THERMAL AND ELASTIC

CONSTITUTIVE LAWS

The thermal and linear elastic response of the propel-
lant composite are investigated, under the classical as-
sumption of quasi-static regime and small deformation:

qi(x) = −λ(x)∂iT (x), ∂iqi(x) ≡ 0, (3.1)

σij(x) = Lij,kl(x)εkl(x), ∂iσij(x) ≡ 0, (3.2)

εij(x) =
∂iuj(x) + ∂jui(x)

2
(3.3)

where q is the heat flux vector, T is the temperature,
σ, ε and u are the stress and strain symmetric second-
order tensors and the displacement vector, respectively.
Furthermore, the local heat conductivity λ and elasticity
tensor L are given by

λ(x) =

{

0.150 (matrix)
0.609 (grains)

(3.4)

Lij,kl(x) = Lmat
ij,kl ×

{

1 (matrix)
2 (grains)

(3.5)

where L
mat is the fourth-order elasticity tensor in the

matrix. Values for the heat conductivity, expressed in
J/(mKs), have been obtained experimentally, at a room
temperature of 293K, whereas the elastic tensor Lmat is
arbitrarily fixed. In order to explore different Poisson
ratios two sets of values are chosen for the shear and
bulk moduli of L

mat: (i) µ = 1/2, κ = 1/3 and (ii)
µ = 1/2, κ = 2/3. These choices correspond respectively
to a Lamé parameter ℓ and Poisson’s ratio ν equal to
(i) ℓ = ν = 0 and (ii) ℓ = 1/3, ν = 0.2. For both the
elasticity and heat conductivity problems, the contrast
of properties between grains and matrix is small, and of
the same order. Accordingly, the elasticity problem acts
as the mechanical counterpart of heat conductivity. It is
emphasized that the two problems are uncoupled.
Periodic boundary conditions are considered to close

the problems. For instance the heat flux and force act-
ing along the faces between two unit cells q · n and
σ · n, where n is the normal directed outwards, are anti-
periodic. Equivalently, the segmented microstructure is
used as the unit cell Ω of a periodic infinite medium over
which a macroscopic field is applied. The microstructure
along opposite faces of the unit cell obviously will not
match, however the resulting border effects are known
to be less than for classical static or kinematic boundary
conditions [17]. Periodic boundary conditions include an
average macroscopic field. Hereafter, a macroscopic tem-
perature gradient ∆T (0) is considered

〈∂iT (x)〉 = ∆T (0)δij , j = 1, 2, 3, (3.6)

where δij is the Kronecker symbol. Likewise hydrostatic
or shear strain loadings are applied so that either

〈εij(x)〉 = ε(0)δij , (3.7)

〈εij(x)〉 = ε(0)(δikδjl + δilδjk), (3.8)

〈εij(x)〉 = ε(0)(δikδjk − δilδjl), (3.9)

with (k, l) = (1, 2), (1, 3), (2, 3). In turn, the effective
properties of the composite, with arbitrary anisotropy,
are defined by :

〈qi(x)〉 = −λ
(0)
ij 〈∂jT (x)〉, 〈σij(x)〉 = L

(0)
ij,kl〈εkl(x)〉.

(3.10)
Full-field solutions are readily computed using the Fast

Fourier Transform method [24, 35], for both connected
and unconnected composite structures. The convergence
criterion is the maximum of the absolute value of the
divergence of the heat field or stress tensor field. At
low contrast of properties, convergence up to machine
precision (i.e. maxx |divJ(x)|, maxx |divσ(x)| / 10−12)
is achieved after a dozen iterations.

IV. REPRESENTATIVE VOLUME ELEMENT

AND EFFECTIVE PROPERTIES

The representative volume element (RVE) as well as
the effective properties are investigated below for the con-
nected microstructure. Results for the unconnected mi-
crostructures are very similar and are not repeated here.
Regarding heat conductivity, the material is found to be
macroscopically isotropic. FFT results for the apparent
properties of the microstructure give:

λ
(0)
11 = 0.3888, λ

(0)
22 = 0.3877, λ

(0)
33 = 0.3864, (4.1)

whereas |λ(0)
ij | < 10−2 whenever i 6= j. Accordingly

λ
(0)
ij ≈ λδij with λ ≈ 0.387± 0.0015. Hashin-Shtrikman’s

bounds indicate 0.368 < λ < 0.415 and the self-consistent
scheme built on the Hashin-Shtrikman’s variational for-
mulation gives λ

SC ≈ 0.4036. The small difference

1 − λ
SC

/λ = 0.04 is an obvious consequence of the
low contrast of properties, as the effective properties be-
come microstructure independent in the limiting case of
a infinitesimal contrast. One can notice that the effec-
tive conductivity is close to the lower Hashin-Shtrikman
bound, as expected for granular media where the matrix
percolates.
The integral range and representative volume ele-

ment [17, 34] of the heat flux fields are readily determined
from the numerical FFT solutions. When the overall vol-
ume Ω is subjected to a macroscopic temperature gradi-
ent, the variance of the heat flux field scales as:

D2
q1
(V ) ≃

D2
q1
A3

|V | , (4.2)

where A3 is the integral range and D2
q1

is the point vari-

ance of the field q1(x). In turn, the variance D2
q1
(Ω)

determines the absolute and relative precision on λ. The
scaling law for D2

q1
(V ) is as predicted (Fig. 5). It is

found that A3 ≈ 133 voxels, D2
q1

≈ 0.23 and that the

relative error on λ is ǫrela = δλ/λ ≈ 0.4%. The latter

value is consistent with the variation observed on λ
(0)
11 ,
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λ
(0)
22 and λ

(0)
33 . Similar conclusions are taken for the un-

connected microstructure with effective conductivity of
about λ

u ≈ 0.3306± 0.002. The effective properties are
accordingly not sensitive to the connectivity properties of
adjacent grains, the observed differences being almost ex-
actly proportional to the volume fraction difference that
results from the disconnection. This is due to the low
contrast of conductivity between the grains and the ma-
trix.

1 10
2

10
4

10
6

10
8
|V|

10
-4

10
-3

10
-2

10
-1

1

D
2

q
1
(V)/D

2

q
1

FIG. 5. Variance D2
q1
(V ) of the heat flux field q1(x) over a

subvolume V , as a function of the volume size |V | in log-log
scale (black points). The macroscopic gradient 〈∂iT (x)〉 =

∆T (0)δi1 is enforced over the whole volume Ω. The variance
D2

q1
(V ) is normalized by the point variance D2

q1
; the ratio

behaves as ≃ A3/|V | (blue curve) when |V | is much larger
than the integral range A3.

Regarding linear elasticity, numerical computations
are likewise consistent with a macroscopically isotropic
material. FFT results indicate µ(0) = 0.6534 and κ(0) =
0.4455 for the shear and bulk moduli, respectively, for
case (i) corresponding to Poisson’s ratio ν = 0, in good
agreement with Hashin-Shtrikman’s bounds. They read
as 0.6457 < µ(0) < 0.6581 and 0.4404 < κ(0) < 0.4482.

V. MAPS OF THE LOCAL THERMAL AND

ELASTIC FIELDS

A. Thermal response

In this section, the local extrema of the heat and tem-
perature fields are investigated using numerical full-fields
computations on the whole sample. Although the effec-
tive properties of the composite are not sensitive to the
microstructure in the present case, such may not be the
case for the maximum value of the local fields. As shown
in Fig. (6), the local heat flux exhibits hot spots located
in-between touching or almost touching grains. Such lo-
cal maxima are also visible in the map of the temperature
gradient (Fig. 7), albeit local hot spots are restricted to

the matrix phase. To investigate this property, 2D maps
of the temperature gradient first component ∂1T (x) are
represented in Fig. (8). This component is parallel to
the applied field, i.e. 〈∂iT (x)〉 = ∆T (0)δi1. Hot spots
zones where the ∂1T field is at least two times higher
than λ(m)∆T (0) are observed in the matrix, in-between
touching or almost touching inclusions, both for the con-
nected (a) and unconnected microstructures (b). It is
emphasized that such concentration zones are not the
consequence of numerical artefacts due to the Fourier
representation (i.e. Gibbs phenomenon). Indeed, as seen
in Fig. (9), the hot spots locations are unaffected by low-
ering the resolution by a factor 2, where cubes of 2×2×2
voxels are replaced by its top-left voxel.
As seen in Fig. 8, hot spot zones appear in the matrix

along gaps located in-between closely-packed grains with
particular orientations. More precisely, the macroscopic
applied field, oriented vertically in Fig. 8, is normal to
the two grain boundaries delimiting hot spot zones. Fur-
thermore, the hot spot intensity is smaller on the un-
connected microstructure, suggesting it is highest when
the distance between grains is minimal. To quantify such
phenomenon, the hot spots of the q1(x) component are
extracted by thresholding from the full-field map in Fig.
(10). The threshold is readily determined using the vari-
ance of the field probability distribution P∂1T (t) in the
matrix (Fig. 11). It is set to 2λ(m)∆T (0), i.e. 2 times the
field average in the whole volume. As seen in Fig. 11,
the pdf of the temperature gradient in the matrix shows
a long tail for high values (up to seven times the aver-
age value). To get more details on the location of hot
spots, morphological erosions of the matrix by spheres
of increasing diameter d are performed, and the volume
V (d) of hot spots after an erosion of size d is estimated.
The ratio V (d)/V (0) is used to compute the proportion
of hot spots in volume in the eroded matrix compared
to the initial volume of hot spots, or equivalently the
proportion of points that belong to a hot spot at a dis-
tance larger than d of the matrix/grain boundary. It
is shown in Fig. 12 for both the connected and uncon-
nected microstructures. The sharp decrease shows that,
according to the maps, hot spots are located in-between
spheres that nearly touch grains. In this respect, a re-
cent study [8] of the elastic response of a mortar with
multiscale granulometry indicates that stress concentra-
tion zones are located preferentially inside cement, when
gravels behave as quasi-rigid inclusions compared to ce-
ment.

B. Elastic response

As per the linear elastic response, 2D sections of the
local mean strain field εm(x) = (1/3)εkk(x) as well as
of ε12(x) are represented in Fig. (13), with applied hy-
drostatic and shear strain loading, respectively. The two
fields have non-zero average strain components. The lo-
cal strain fields εm obtained with Poisson’s ratios ν = 0
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FIG. 6. 2D section of the heat flux component q1 occur-
ring in the granular microstructure with blue and red zones
corresponding to the local minima and maxima, respectively
(bottom right: enlarged detail). Direction 1 is oriented hori-
zontaly on the map. A macroscopic temperature gradient is
applied along (1, 0, 0), i.e. 〈∂iT (x)〉 = ∆T (0)δi1. The min-
imum and maximum values are −2.1 and 7.4 respectively,
when ∆T (0) = 1.

and ν = 0.2 are shown in maps (a) and (b) respectively.
For the strain field ε12, results obtained with the two
Poisson’s ratios are almost the same, and only one map
is shown (c). When hydrostatic strain loading is applied,
local hot spots are present in-between touching or al-
most grains, as in the thermal case. The local and av-
erage strains in each phase varies with Poisson’s ratio
(maps (a) and (b) resp.) but the field maxima are lo-
cated at the same places. More importantly, contrary to
the thermal problem, maxima are not driven by any spe-
cific orientation and, accordingly, occur more frequently
in the microstructure than for the temperature gradient.
They also are much less pronounced than in thermal case.
This is in agreement with results in [34, 35] where it was
found that the typical sizes of the representative volume
element is smaller in the mechanical problem than it is
for conductivity, due to a lower variability of the fields
in the elastic case. Finally, when shear loading is ap-
plied, as shown in Fig. (13c), the situation is much more
involved. Although, the strain field is maximum along
matrix/grain boundaries, the location of the extrema de-
pends on both the local orientation and shape of the in-
clusions.

FIG. 7. 2D section of the temperature gradient component
∂1T occurring in the granular microstructure with black and
white zones corresponding to the local minima and maxima,
respectively. Direction 1 is oriented horizontaly on the map.
A macroscopic temperature gradient is applied along (1, 0, 0),

i.e. 〈∂iT (x)〉 = ∆T (0)δi1.

(a) (b)

FIG. 8. Maps of the temperature gradient component ∂1T (x)
along a 2D section x3 = cste with x1 and x2 directed down-
ward and rightward, respectively, for the connected (a) and
unconnected (b) microstructures. The component ∂1T (x) is

parallel to the applied field, i.e. 〈∂iT (x)〉 = ∆T (0)δi1.

VI. SMALL CONTRAST OF PROPERTIES

A. Local extrema

The limiting case of an infinitesimaly small contrast
of properties is investigated in order to assess the ob-
served properties of the thermal fields extrema. Consider
a microstructure made of two phases of heat conductiv-
ity λ(x) = λ(m) in a “matrix” and λ(x) = (1 + h)λ(m)

in “inclusions”, with h ≪ 1. A macroscopic temperature
gradient ∆T (0)δi1 is applied along axis 1. The local tem-
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FIG. 9. Maps of the temperature gradient component ∂1T (x)
in the connected microstructure as in Fig. (8b) with resolution
divided by 2. The component ∂1T (x) is parallel to the applied

field, i.e. 〈∂iT (x)〉 = ∆T (0)δi1.

FIG. 10. 3D representation of hot spots found in the con-
nected microstructure, obtained by thresholding.

0 1 2 3 4t
0

1

2

3

P∂
1
T
(t)

matrix (unconn.)

grains (unconn.)

matrix (conn.)

grains (conn.)

FIG. 11. Probability distribution P∂1T (t) of the values of
the temperature gradient component ∂1T (x) in the grains
and in the matrix (blue and black, respectively), for the con-
nected and unconnected microstructures (labelled conn. and
unconn., respectively). The component ∂1T (x) is parallel to

the applied field, i.e. 〈∂iT (x)〉 = ∆T (0)δi1 with ∆T (0) = 1

0 1 2 3 4 5 6d

10
-4

10
-3

10
-2

10
-1

1..
W(d)

(conn.)

(unconn.)

FIG. 12. Volume W (d) of hot spots left in the matrix after
an erosion of length d voxels, for the connected (conn.) and
unconnected (unconn.) microstructures, as a function of d.

(a) (b)

(c)

FIG. 13. Maps of the mean and shear strain components
εm (a, b) and ε12 (c), with applied hydrostatic strain load-

ing 〈εij(x)〉 = ε(0)δij and shear along 1, 2 i.e. 〈εij(x)〉 =

ε(0)(δi1δj2 + δi2δj1), respectively. In maps (a) and (b), the
Poisson ratios in the matrix and inclusions is ν = 0 and
ν = 0.2 resp., whereas ν = 0 in (c). The local fields max-
ima are shown in red, with smallest values in blue.

perature gradient and heat flux fields are expanded with
respect to h, when h ≪ 1, as

∂iT (x) = A
(0)
i (x) + hA(1)(x) +O(h2), (6.1)

qi(x) = B
(0)
i (x) + hB

(1)
i (x) +O(h2). (6.2)

Expanding λ(x)∂iT (x) in terms of h, it is found that,
assuming sufficient conditions of regularity for the terms
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in O(h2)

A
(0)
i (x) = B

(0)
i (x)/λ(m) ≡ ∆T (0)δi1, (6.3)

B
(1)
i (x) = λ(m)χ(x)∆T (0)δi1 + λ(m)A

(1)
i (x) (6.4)

where χ(x) is the characteristic function of the inclusions.
Furthermore, under conditions of regularity for the terms
in O(h2) in Eq. (6.2), the fields A(1) and B(1) satisfy the
admissibility and equilibrium conditions, i.e. we have
curlA(1) = 0 and divB(1) = 0. The fields A(1) and B(1)

also satisfy periodic boundary conditions, together with

the macroscopic condition 〈A(1)
i 〉 = 0. Hence, their solu-

tions are given by the Lippmann-Schwinger equations

A
(1)
i (x) = −λ(m)∆T (0)

∫

dd x′(m)G
(0)
i1 (x′ − x)χ(x′),

(6.5)
whereG(0) is the second-order Green operator associated
to λ(m). Not surprisingly, the above equation is “linear”
in terms of the microstructure, i.e. it is linear in χ(x).
Accordingly, the local temperature gradient field is, at
first order in h, the sum of the applied macroscopic field
∆T (0)δi1 and of the perturbations induced by all inclu-
sions separately, neglecting pairs and other higher-order
interactions. It is noted that, for a single sphere of radius
1 and center at coordinates 0 in an infinite medium, the
heat flux outside the inclusion reads:

q
(sphere)
i (x) = λ(m)∆T (0)

[

δi1 −
h

3 + h

1

r3
(δi1 − 3n1ni)

]

,

(6.6)

where r = |x| =
√

x2
1 + x2

2 + x2
3 and ni = xi/r. In-

side the inclusion (r ≤ 1) the heat flux is constant with

q
(sphere)
i (x) = 3(1+h)/(3+h)λ(m)∆T (0)δi1. Accordingly,
the perturbating heat flux component q1 generated by
two closely packed inclusions add up when their centers
are oriented in the direction of the applied field (see Fig.
14), whereas they cancel if they are oriented in a direction
normal to it. In the two spheres model, the maximum of
the heat flux is located along the matrix/inclusion bound-
ary. In the limiting case of touching spheres, the field is
constant and maximum in the gap between the two inclu-

sions, with heat flux value q
(max)
1 = λ(m)∆T (0)(1+4h/3)

at first order in h. Additionally, in the two-spheres solu-
tion at low contrast, the minimum of the heat field com-
ponent q1 occurs in the gap in-between the two spheres
when the applied macroscopic field is normal to the line
joining the sphere centers. For such configuration, the

minimum heat field is q
(min)
1 = λ(m)∆T (0)(1 − 2h/3) at

first order in h. This is indeed seen in the map of Fig.
(6), although such “cold spots” are, accordingly to the
analytical formula, less visible than hot spots.

B. Trial field

As shown above, the fields fluctuations in two-phase
microstructures are given by the first-order corrections

FIG. 14. Heat flux component q1(x1, x2) (blue curve) along
the line x2 ≡ 0 passing through the centers of two closely-
packed spheres (dotted line, top-right) as a function of the
coordinate x1. A macroscopic heat flux is applied far from
the spheres so that 〈qi(x1, x2)〉 = δi1 and the contrast of
conductivity between the spheres and the matrix is small:
λinc/λ(m) = 1.1 Points (x1, x2) = (−1.005, 0), (1.005, 0) and
(0, 0) refer to the two sphere centers and to the center be-
tween the two spheres, respectively, i.e. the spheres radius is
1 and the distance between the spheres is 0.01. Shown in red
and brown are the contributions of each sphere, equal to the
heat flux component q1 if it was alone in the matrix.

A(1)(x) and B(1)(x) in the limiting case of a very small
contrast of properties h ≪ 1. In this section, A(1) and
B(1) are used to build simple trial fields to better rep-
resent the local fields at small but not infinitesimal con-
trasts h. The following trial temperature gradient field
is introduced:

E∗(x; t) = ∆T (0)δi1 + tA(1)(x), (6.7)

where the admissibility condition E∗ = gradT ∗ and av-
erage 〈E∗〉 = ∆T (0) is fullfilled for any scalar t, because
A is admissible and of zero average. Accordingly, E∗

is optimized on t so as to minimize the energy density
W (t) = 1

2 〈λ(x) [E∗

i (x)]
2〉; it is found that

t = −∆T (0) 〈λ(x)A(1)
1 (x)〉

〈λ(x)A(1)
i (x)A

(1)
i (x)〉

. (6.8)

To investigate the range of validity in terms of h of the
above approximation of the local fields, formula (6.7) and
(6.8) are applied to a 2D Boolean model of cylinders. The
maximum of the heat flux field sup

x
q1(x) is computed

at increasing contrasts h, and compared with exact FFT
results (Fig. 15). Results corresponding to the choice
t = h, instead of Eq. (6.8), are likewise shown. It is not
surprising that at low contrast h ≪ 1, Eq. (6.8) reduces
to t ≈ h, accordingly to Sec. (VIA), so the two methods
give the same result. At moderate contrasts however the
choice of Eq. (6.8) for t is somewhat better. Indeed the
maximum of the local heat flux is correctly approximated
when using the trial field E∗ with Eq. (6.8) up to h ≈ 10
(where the error on the maximum is less than 4%, see
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Fig. 15). With the choice t = h, the range of validity
is smaller (about 0 ≤ h < 2 for the same error). It is
noted that at infinite contrasts, the scalar t tends to a
finite value resulting in a finite limit for the maximum of
the temperature gradient E∗(x; t) (not shown), but to an
infinite value for the maximum of the heat flux, contrary
to FFT results.

10
-2

10
-1 1 10

1
10

2
10

3

h
1

4

16

64

256

sup q
1
(x)

FFT

   trial
field (1)

   trial
field (2)

Boolean (2D)

FIG. 15. Maximum of component 1 of the heat flux q1(x) in
the matrix and inclusions as a function of the contrast h in
log-log scale, for a Boolean set of cylinders of concentration
30%: comparison between FFT results and estimates given by
the trial fields E∗ from Eq. (6.7) with the choice t = h (trial
field 1, magenta) or t as in Eq. (6.8) (trial field 2, blue). A
macroscopic temperature gradient is applied in direction 1 so
that 〈∂iT (x)〉 = ∂i1∆T (0) with ∆T (0) = 1. When h is small,
the maximum of the heat flux q1(x) behaves as ≈ 1 + 1.4h,
close to the trial fields prediction, and tends to the finite value
∼ 181 when h = +∞, whereas the trial field estimates predict
an infinite value.

VII. HARD-CORE MODEL OF CYLINDERS

In the following section, a hard-core model of cylin-
ders (Fig. 16) is considered. The choice of a 2D model
is necessary to get accurate FFT results on large im-
age size and high resolution of gaps in-between closely
packed grains. For the purpose of this study, the dis-
tribution of distances between neighboring inclusions in
the hard-core model should not be concentrated around a
few values but, ideally, close to a uniform distribution be-
tween 0 and a maximum. To achieve this, the procedure
for adding cylinders is as follows. The first cylinders are
placed randomly as long as no interpenetration occurs,
this process being repeated until 15 of them have been
included in the image. Subsequent cylinders are added
in the following way. Additional cylinders are initially
placed randomly. If no interpenetration occurs with the
other cylinders, the cylinder is moved in a random direc-
tion until it touches a cylinder, and, finally, moved back

in the opposite direction by a random length taken uni-
formly between 0 and a maximum value (hereafter called
maximum repulsion length). If on the contrary interpen-
etration occurs with the other cylinders, the cylinder is
moved in a random direction until it is completely in-
cluded in the matrix, then moved again in the same di-
rection by a random length taken uniformly between 0
and a maximum value. At the end of this process, it is
checked if the cylinder intersects an already placed cylin-
der in its final position. The cylinder is finally kept if
no interpenetration occurs. It is noted that the result-
ing distribution of gaps is not uniform, as the procedure
does not take into account situations where the cylin-
der is close to several other cylinders in different direc-
tions. Although such situations become frequent when
the cylinder density is high, the procedure nevertheless
results in a distribution of gaps where all distance values
are represented. A 2D image containing 317 cylinders
with 62% surface fraction is generated, corresponding to
a maximum repulsion length equal to 1/5 of the cylinders
radius.

FIG. 16. Hard-core model of cylinders with gaps between
neighboring inclusions shown in red. In this image, pairs of
cylinders are selected when the distance between the two is
less than the cylinders radius.

VIII. NETWORK APPROXIMATION AT

INFINITE CONTRAST

Although several analytical methods have been pro-
posed to compute the full-field thermal response of a pair
of interacting spheres [13, 28], such solutions are gener-
ally expressed in terms of infinite series. However, as the
contrast of properties increase and the distance betwen
inclusions tends to 0, the number of terms in the series
that are necessary to compute the local fields tends to
infinity. In the limiting case of touching inclusions, the
boundaries of the two cylinders delimiting the gap are
quasi parallel planes. Accordingly, the heat flux is tanta-
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mount to that found in a laminate material and the heat
flux field is directed along the normal of the boundaries.
Furthermore, it does not depend on the coordinate along
the normal of the boundary, but only to the transverse
coordinate. Thus, the local heat flux may be written as
qi(x) = [qj(x−x·n)nj(x)]ni(x) with qj(x)nj(x) = qn(xt)
where qn is the component of the heat flux in the direc-
tion normal to the boundary, directed from inclusion 1
to 2, and xt is the coordinate along the direction par-
allel to the boundary. Minimizing the energy density
(1/2)

∫

qi∂iT results in the following form

qn(x) =
λ(m)

[

T (1) − T (2)
]

δ + 2
(

a−
√

a2 − x2
t

) , (8.1)

if T (1) and T (2) are the temperatures of the inclusions,
δ and a are the distance between inclusions and radius
disks, respectively. A very good match (up to the dis-
cretisation employed for the disks boundary) is found
with numerical FFT computations (see Fig. 17 and 18).
Integrating the heat flux along the gap results in the fol-
lowing form:

q(1,2) = Λ(1,2)(T (1) − T (2)), (8.2)

Λ(1,2) =
λ(m)

2

∫

xt

dxt

δ/2 + a−
√
a2 − x2

, (8.3)

where q(1,2) is the total heat flux going from inclusion 1
to 2 and Λ(1,2) is an equivalent gap conductivity. When
δ → 0 the formula Λ(1,2) = π/

√

δ/a is recovered. Accord-
ingly, the set of closely packed disks may be replaced by
an equivalent network where vertices are gaps between in-
clusions, and inclusions are nodes. The vertices conduc-
tivity is given by Eq. (8.3) and the equilibrium condition
at each node is used to compute the temperature in each
inclusion. Equivalent network mappings have been con-
sidered for similar microstructure models and extensively
studied [2, 10, 19], however the validity of such models
has been recently questioned by Chen et al. [6]. It should
be noted that the derivation of the local fields in the
gap undertaken here gives information on the local ex-
trema inside the gaps occurring at xt = 0, where indeed,

qn(x) = q
(max)
n = λ(m)(T (1) − T (2))/δ. In Fig. (19) the

periodic part of the temperature field, where variations
are most noticeable are shown. Comparisons are made
between the fields predicted by the network mapping and
full-fields FFT computations. The local extrema of the
field computed by means of FFT requires very high res-
olution and stabilizes only for microstructures of sizes
larger than 10, 0002 voxels (the heat field maxima is 29.5
and 30.2 for resolution 10, 0002 and 50, 0002). Although
the two field maps in Fig. (19) are similar, small differ-
ences occur at certain places, which are, in turn, respon-
sible for high differences between the maxima of the heat
field as predicted by the network mapping and full-field
FFT computations. More precisely, the maximum value
is overestimated by a factor 4 with the network map-
ping. Accordingly, even though the temperature field is

well predicted by the network mapping, on average, no
such conclusion is drawn for the heat field extreme val-
ues. The hypothesis of infinitesimal gaps in the network
mapping may be insufficient when handling a dispersion
of the gap widths, although additional studies are needed
to investigate the model.

(a) (b)

FIG. 17. Transverse (a) and normal (b) components of the
heat flux vector occurring in a gap located in-between two
randomly oriented, closely-packed infinitely-conducting inclu-
sions. The transverse component in (a), orthogonal to the in-
clusion frontiers in the gap, is close to 0 (brown) whereas the
normal component in (b), parallel to the inclusion frontiers,
is close to a field that, in the matrix, depends solely on the
transverse coordinate (in yellow-red colors).

-0.4 -0.2 0.0 0.2 0.4 x
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FIG. 18. Behavior of the heat flux component qn normal
to the boundaries of two closely-packed perfectly-conducting
discs of radius a, as a function of the coordinate xt parallel
to the boundaries, as observed in Fig. (17b): comparison be-
tween analytical results in Eq. (8.1) (dotted lines) and FFT
computations (solid lines), for varying normalized distances
δ/a = 310−3, 4 10−3, 10−2 and 2 10−2. The “stair-shaped”
solid curves are an effect of the disc discretization when δ/a
is small and xt is close to 0.

IX. CONCLUSIONS

In this work, thresholding by means of the “Otsu” and
stochastic watershed method were used to succesfully
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(a) (b)

FIG. 19. Periodic part of the temperature field T (x)−∆T
(0)
i xi

in the hard-core Boolean model with infinitely-conducting
cylinders. Comparison between FFT exact results (a) and the
“network model” (b), with highest and lowest values shown
in white and red, respectively.

segment and separate the grains in a large, 3D micro-
tomography image of a granular microstructure. At low
contrast of properties, the effective thermal and elastic
properties of the composite have been readily computed
by means of FFT computations, with a high precision
of less than 0.4%. Accordingly, the image is a very ac-
ceptable representative volume element. The local heat
field computed numerically includes hot spots (as well as
cold spots) where the heat flux attains a local extremum
(respectively a minimum). Along these hot spots, the
field local fluctuations are much larger than that of the
mean field fluctuations, and proportional to the contrast
of properties between the grains and the matrix. These
hot spots, present even for a low contrast of proper-

ties between the grains and the matrix, are induced by
the microstructure; more precisely, they occur in gaps
located in-between closely packed spheroidal inclusions.
The latter are a local phenomenon, in the sense that they
are driven by the two nearby inclusions and not by the
packing structure at larger length scales. In the thermal
problem, hot spots appear along boundaries where the
macroscopic applied field is normal to the boundaries.
Additionally, the maximum value of the heat field in the
hot spot increases when the distance between inclusion
decreases (see e.g. [12] for a similar study in the context
of electrostatic and a periodic structure). Such results
are generalized in the case of linear elasticity with hy-
drostatic strain loading, but not when shear loading is
applied. In the former, however, the stress maximum
value are located in-between closely packed grains, irre-
spective of their orientations, and the hot spots are com-
paratively softened. Analytical derivations and network
based mappings are useful to determine the behavior of
the local field extrema for varying contrasts of proper-
ties. In the infinitely contrasted media, the situation is
much more sensitive to the microstructure and no an-
alytical or semi-analytical method proved to give good
estimates. In the presence of friction, hot spots such
as the ones described in this study could initiate uncon-
trolled explosion in propergol materials from local igni-
tion [4, 7, 11, 25, 33]. These hot spots are prone to appear
in a thermal gradient, even in the absence of shock [3].
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