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ABSTRACT 

The solar position algorithm (SPA) is a very accurate but slow algorithm for the computation of the 

Sun position with respect to an observer at ground surface. We compare the results of three fast 

algorithms to the SPA and establish their performances. We propose a new algorithm SG2 that is 

faster than the three others and offers the same level of accuracy than the most accurate, i.e., maximum 

error in solar vector of order of 10'', for a multi-decadal time period, with an example of a 50-year 

period: 1980-2030. This performance is achieved by devising approximations of the original equations 

of the SPA to decrease the number of operations. This yields a decrease in accuracy that is controlled 

and bounded. The mathematical tools permitting to determine these approximations with a selected 

uncertainty level are described.  

Keywords: Sun position; Solar azimuth angle; Solar zenithal angle; Declination; Universal Time; 

Solar radiation. 

1. NOMENCLATURE AND ABREVIATIONS 

Time references 

TT Terrestrial Time (s) 

TAI International Atomic Time (TAI: Temps Atomique International) (s) 

UT Universal time (s). Also called UT1 

UTC Coordinated universal time (s) 

TT Difference between TT and UT (s) 

jTT Terrestrial julian date (decimal day, d) 

jUT Universal julian date (d) 
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j
*

TT Modified terrestrial julian date, defined from 1980-01-01T00:00:00 TT(d) 

j
*

UT Modified universal julian date, defined from 1980-01-01T00:00:00 UT (d) 

Solar radiation 

ESC Solar constant, set to 1367 W m
-2

 

E0 Irradiance at top of atmosphere received by a surface constantly facing the Sun 

(W m
-2

) 

Heliocentric coordinates of the Earth  

AU Astronomical unit is a unit of length equal to 149597870691 m ± 6 m (McCarthy et Petit, 

2003), corresponding to the yearly mean of the Earth–Sun distance. 

R Earth heliocentric radius (AU) 

L Earth heliocentric longitude (rad)  

B Earth heliocentric latitude (rad)  

Geocentric coordinates of the Sun  

a  Apparent Sun geocentric longitude (rad) 

  Stellar aberration correction (rad) 

  Nutation in Sun geocentric longitude (rad) 

  True Earth obliquity (rad) 

gr  Sun geocentric right ascension (rad) 

g  Sun geocentric declination (rad) 

g  Geocentric hour angle (rad) 

Quantities related to a local observer on Earth 

  Geographical latitude of the observer (rad). It refers to a reference geographical 

ellipsoid of the Earth  

  Geographical longitude of the observer (rad). It refers to a reference geographical 

ellipsoid of the Earth 

h Altitude or elevation of the local observer above the reference geographical 

ellipsoid (m) 

a Semi-major axis of the reference geographical ellipsoid, or equatorial axis (m) 

f Earth flattening of the reference geographical ellipsoid (unitless) 

T
 

Annual average of local air temperature (°C) 

P
 

Annual average of local air pressure (hPa) 

  Equatorial horizontal parallax of the Sun (rad) 
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r  Parallax effects in the Sun right ascension (rad) 

  Sun topocentric declination (rad) 

  Topocentric hour angle (rad) 

0S  Sun topocentric elevation angle without atmospheric refraction correction (rad) 

S  Sun topocentric elevation angle with atmospheric refraction correction (rad) 

S  Sun topocentric zenith angle with atmospheric refraction correction (rad) 

S  Sun topocentric azimuth, measured eastward from North (rad) 


 

Surface azimuth rotation angle, measured eastward from North (rad) 


 

Slope of the surface measured from the horizontal plane (rad) 

 ,I  
 

Incidence angle for a surface oriented in direction ( ,  ) (rad) 

 

Algorithms for Sun position 

SPA Sun Position Algorithm from the National Renewable Energy Laboratory (NREL) 

(Reda, Andreas 2003, 2004) 

SG Algorithm Solar Geometry from the European Solar Radiation Atlas (ESRA, 2000; 

Wald, 2007) 

ENEA Algorithm from Italian National Agency for New Technologies, Energy and 

Sustainable Economic Development (ENEA) (Grena, 2008) 

MICH Algorithm from (Michalsky, 1988) 

  

Statistical quantities for comparison 

  

MBE Mean Bias Error 

RMSE  Root Mean Square Error 

MAXE Maximum of Absolute Error 

2. INTRODUCTION 

At any time, the Earth intercepts approximately 18010
6
 GW of the power emitted by the Sun. The 

amount of power received at a given geographical site at the Earth surface varies in time: between day-

night due to the Earth’s rotation and between seasons because of the Earth’s orbit and Earth’s axis 

inclination. At a given time it also varies in space, because of the changes in the obliquity of the solar 

rays with longitude and latitude. Accordingly, the amount of power received at a given location, plan 

orientation and time depends upon the relative position of the Sun and the Earth. This is why both 

Sun-Earth geometry and time play an important role in solar energy conversion and photo-energy 

systems.  
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Technological advances and increasing deployment of such systems result in an increasing demand for 

more accurate knowledge on the position of the Sun with respect to a system. The demand may be 

direct, e.g., for pointing a concentrating device or a measuring instrument (Blanco-Muriel et al., 2001; 

Stafford et al., 2009), or indirect, e.g., for computing radiation quantities by models and exploitation 

of satellite images (Espinar et al., 2009; Perez et al., 2002; Rigollier et al., 2004). 

The major rationale of our work on solar position takes place in the development of the HelioClim 

family of satellite-based surface solar irradiation databases, but without being limited to them. The 

HelioClim databases are initiatives of MINES ParisTech to increasing knowledge on downwards solar 

irradiance at surface (surface solar irradiance, SSI) for any site, any instant within a large geographical 

area and large period of time (Blanc et al., 2011; Cros et al., 2004, Diabate et al., 1989). The databases 

HelioClim cover Europe, Africa and the Atlantic Ocean. They are widely used by companies and 

practitioners (Gschwind et al., 2006). The database HelioClim-1 contains daily values of SSI for the 

period 1985-2005 and has been discussed in this journal by Lefèvre et al. (2007). It has been created 

from archives of images of the Meteosat First Generation, series of geostationary satellites. The 

database HelioClim-3 represents a step forward regarding spatial and time resolution, uncertainty on 

SSI and time to access to recent data (Blanc et al., 2011). It exploits the enhanced capabilities of the 

series of satellites Meteosat Second Generation to offer values of SSI every 15 min and every 3 km.  

Building upon the experience gained with the previous Meteosat (Diabaté et al., 1989), MINES 

ParisTech has a Meteosat Second Generation receiving station since 2003, and set up a routine 

operation for converting Meteosat data into global SSI on horizontal plane, in quasi-real time. Other 

parameters such as the different components of SSI received by a tilted plane are computed from the 

into global SSI on horizontal plane using, for example, the algorithms adopted by the European Solar 

Radiation Atlas (ESRA, 2000). These real-time operations creating 1-min averaged time series of SSI 

require computation of solar positions for each second within the minute. Accordingly, the 

requirements set on the algorithm for computing the solar position are:  

 an accuracy better than 0.005° (~ 18''); 

 a period of validity from 1980 to 2030 covering, with a margin, the planned periods of the 

HelioClim databases; 

 a computational speed fast enough so that it can be used to process rapidly an image of 

9 million pixels that requires approximately 1 millions of sun positions calculated in less than 

1 min. 

These requirements for sun position calculation are not only for HelioClim. They may stand for other 

application as mentioned earlier for irradiation data processing such as quality control, global-to-direct 

conversion or solar-tracking devices. 
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Accurate knowledge of Sun-Earth geometry and of time is one of the results reached in astronomy 

(Bretagnon, Francou, 1988; Meeus, 1999). Algorithms implementing this knowledge for solar 

radiation applications exist and have been published (Reda, Andreas, 2003, 2004). Their 

implementation is meant to calculate solar zenith and azimuth angles – and other related parameters – 

in the period from -2000 to 6000 with standard deviation of 0.0003° (1''). In practice, time requested 

for computation may be excessive. Approximately 2300 floating operations and more than 300 direct 

and inverse trigonometric functions are used for one solar position calculation at a given location and 

time. In order to speed up computations, approximations of these equations are made, aiming at 

reducing the number of floating operations. Several articles have been published in the solar energy 

domain, documenting algorithms for computing the solar position with respect to an observer at a 

given location on the Earth (Blanco-Muriel et al., 2001; ESRA, 2000; Grena, 2008; Kambezidis, 

Tsangrassoulis, 1993; Michalsky, 1988; Pitman and Vant-Hull, 1978; Walraven, 1978). These 

algorithms differ in the attained accuracy, in their period of validity: from a few years to several 

thousands of years, and in the computation cost. Various strategies exist to reduce operations, such as 

reducing the period of validity still keeping a high accuracy (Blanco-Muriel et al., 2001; Grena, 2008; 

Kambezidis, Tsangrassoulis, 1993), or keeping a large period and reducing the accuracy (ESRA, 2000; 

Michalsky, 1988).  

None of the proposed algorithms meets the requirements expressed above as discussed in next section. 

After having studied the possibilities of extending or enhancing the published algorithms, we have 

opted for a new algorithm whose description is one of the aims of this article. Another aim is to 

describe the mathematical tools permitting to determine the various approximations requested to 

achieve a given uncertainty level for a given time period. These tools should permit further 

development of other algorithms on Sun position meeting other requirements than those of HelioClim. 

Libraries in Matlab and C are proposed on the web to this purpose, and a Web service has been 

implemented. 

3. AVAILABLE ALGORITHMS AND THEIR PERFORMANCES 

Reda, Andreas (2003, 2004) propose the solar position algorithm, called SPA, for solar radiation 

applications. It is based on the VSOP87 solutions to planetary theories (Bretagnon and Francou, 1988) 

and the equations proposed by Meeus (1999). The uncertainty, in terms of standard deviation of solar 

azimuth and elevation angles is stated to be within 5 µrad (0.0003 °, or 1'') for a very large period from 

-2000 to 6000. Libraries in C, Matlab and Python that implement the SPA algorithm are available 

(respectively at: rredc.nrel.gov/solar/codesandalgorithms/spa, 

www.mathworks.com/matlabcentral/fileexchange/4605 and www.pysolar.org). The number of 

operations required for one computation of the solar position is approximately 1000 additions, 1300 
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multiplications and 300 calls of direct or inverse trigonometric functions. This algorithm is not fast 

enough for our purpose: an implementation in C of SPA on a 8-CPU machine would take 

approximately 2 h for the computation of the solar position every second within 15 min for the 9 

millions of usable pixel of the HelioClim-3 database. Nevertheless, its accuracy is very high and we 

have selected the SPA as a reference against which three other algorithms are tested. The SPA 

constitutes the reference on which our approximations are constructed as well. 

Currently, the HelioClim process exploits the solar position algorithm of the European Solar Radiation 

Atlas (ESRA, 2000; Wald, 2007). This algorithm, called hereinafter SG (Solar Geometry), is defined 

for the time period starting from 1980 and is considered as a fast solar position algorithm: it requires, 

for one solar position at one location and one time, approximately 25 additions, 35 multiplications and 

25 calls of direct or inverse trigonometric functions. The time for the computation of the solar 

positions every second within 15 min for the 9 millions of usable pixels of the HelioClim-3 database is 

less than 8 minutes, compared to the 2 h needed for SPA. 

We have tested two other fast algorithms. The algorithm of Michalsky (1988), called hereafter MICH, 

offers an uncertainty of approximately 0.01° (~ 40'') in term of root mean square error, for the period 

1950 to 2050. It requires approximately 20 additions, 35 multiplications and 25 calls of direct or 

inverse trigonometric functions. The fast algorithm proposed by Grena (2008), called hereafter ENEA, 

offers an uncertainty of 0.001° (~ 4''), for the period 2003-2022. It requires approximately 40 

additions, 40 multiplications and 25 calls of direct or inverse trigonometric functions. We have not 

retained that of Muriel-Blanco et al. (2001) because the uncertainty is close to that of MICH, but for a 

more restricted period: 1999 to 2015. In term of computation time, these two fast algorithms are more 

than 20 times faster than SPA. 

To assess the performances in accuracy and precision of each algorithm in the time period 1980 to 

2030, we have considered the SPA as a reference, and have computed the differences between the 

SPA and each of the three others, for 20000 dates randomly sampled between 1980 and 2030, for 

daylight time, at location 45°N and longitude 0°, at sea level. The solar position errors are computed 

for the solar azimuth S and the solar zenithal angle S, as well as for the solar vector VS defined 

by Grena (2008) as: 

  
22 sins S S SV      (1) 

The errors are then summarized by a few statistical quantities: mean bias error (MBE), root mean 

square error (RMSE) and maximum of absolute error (MAXE), for each algorithm and each solar 

position errors (Table 1). 
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Algorithm Errors MBE RMSE MAXE 

SG 

1980-2030 

Azimuth S 68.0'' (0.02°) 592.7'' (0.16°) 1501.3'' (0.42°) 

Zenithal angle S 466.8'' (0.13°) 516.8'' (0.14°) 848.3'' (0.24°) 

Solar vector VS 652.3'' (0.18°) 674.5'' (0.19°) 1101.3'' (0.31°) 

MICH 

1980-2030 

Azimuth S -4.9'' 24.8'' 99.4'' 

Zenithal angle S 7.9'' 26.0'' 60.1'' 

Solar vector VS 28.7'' 31.4'' 61.8'' 

ENEA 

2003-2022 

Azimuth S -0.0'' 2.9'' 10.6'' 

Zenithal angle S -0.0'' 1.5'' 6.3'' 

Solar vector VS 2.3'' 2.7'' 8.0'' 

Table 1. Errors of three available fast solar position algorithms (SG, MICH, ENEA) for the 

computation of solar azimuth, solar zenithal angle, and solar vector at the geo-location (45°N, 0°E), 

for 20000 instants during daylight randomly sampled in the period 1980 to 2030 (except for ENEA 

whose time period of validity is 2003-2022). The algorithm SPA is used as reference. 

We observe in Table 1 and Fig. 1 that SG is less accurate than MICH by one order of magnitude for 

these three quantities. Performances of ENEA are excellent for the period 2003-2022, for which it has 

been optimized. ENEA is more accurate than MICH by one order of magnitude for this period; errors 

are very low. Fig. 1 shows that performances of ENEA are worse than MICH outside its time period of 

validity: prior to 2000 and after 2025; they are even worse than SG prior to 1995. This illustrates the 

complexity of the trade-off between accuracy, covered period, complexity in implementation and 

computational speed. 
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Figure 1. Errors on the solar vector predictions for the three fast algorithms (SG, MICH, and ENEA) 

during the reference time period 1980 to 2030, for the 20000 random sampled instants, at the geo-

location (45°N, 0°E). 

We have also assessed the performances of each algorithm for computing time of sunrise and daily 

beam normal irradiation from beam horizontal irradiation, taking as reference the sun positions given 

by SPA. For this example, the computations were made arbitrarily for the date 2009-12-15, the 

longitude 0° and three latitudes: 0°, 45°N, 65°N. Sampling time for computing sun positions and 

Riemann sums was 1 s.  

The sunrise predicted by a solar position algorithm, for a given day, corresponds to the minimum time 

when the Sun elevation angle is greater to 0. Therefore, the error SRt for the time of sunrise predicted 

by the tested solar position algorithm X is defined by: 

         min / 0 min / 0X SPA

SR S St t t t t       (2) 

where 
X

S is the sun zenith angle predicted by the algorithm X and 
SPA

S is the sun zenith angle 

predicted by the reference solar position algorithm SPA. 

The direct or beam horizontal component B of the irradiation at ground level is often assessed for the 

global horizontal irradiation using a solar processing splitting the global into direct and diffuse 

components (ESRA, 2000). In this example, we assume that the extinction K of the beam irradiance 

and the normal irradiance at the top of atmosphere E0 are both constant over the day: 

    0 cos SPA

sB t E K t   (3) 

Of particular interest to thermodynamic or photovoltaic concentrated solar energy conversion systems 

is the beam component in normal incidence, noted BNI: 
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  
 

 0 cos 0SPA
s

NI t
B t E K t

 
   (4) 

where  C t is the indicator function for the condition C(t). 

When using the solar position algorithm X, the beam normal irradiance from the beam component on 

horizontal surface is actually computed as follows: 

  
   

   
 0 cos 0

cos

cos cos
X
s

SPA

SX

NI X X t
S S

B t t
B t E K t

t 



  
    (5) 

The relative error NI  in the daily beam normal irradiation is defined: 

 
   

 

cos 0 cos 0

cos 0

X SPA
S S

SPA
S

X SPA

NI NI

NI
SPA

NI

B t dt B t dt

B t dt

 






 



 



  (6) 

where the integrals are computed with Riemann sums with a sampling period of 1 s. 

We report in Table 2 the error SRt  in astronomical sunrise as well the relative error NI :  

Algorithm Latitude SRt (s) NI (%) 

SG 

1980-2030 

0° 19 0.4 

45° -23 -2.0 

65° -194 -15.6 

MICH 

1980-2030 

0° -7 0.3 

45° -19 -0.4 

65° -69 -5.8 

ENEA 

2003-2022 

0° 0 0.0 

45° 0 0.0 

65° 1 0.1 

Table 2. Differences between SPA and each of the three algorithms for the astronomical sunrise time 

and the relative error in daily beam normal irradiation. 

One can see that the errors presented in Table 2, for all solar position algorithms, increase with 

latitude. The magnitude of error depends on the algorithm. The errors for ENEA are close to zero: it is 

very accurate. Those for SG are large; an error larger than 1 min is observed on sunrise at the latitude 
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65°N. Furthermore, the relative error due only to the Sun position can amount up to 15.6 % in the case 

of computation of beam normal irradiation from beam horizontal irradiation. 

At latitude 65°N, MICH performs better than SG. Nevertheless, error in Sunrise may amount to 69 s. 

Relative error can be greater than 5.8 % for computation of daily beam normal irradiation. The figures 

indicated here are valid for the selected day only and are given for illustration; no conclusion should 

be drawn for other days. 

Table 2 demonstrates that an accurate assessment of the position of the Sun is needed for the accurate 

assessment of the SSI. Together with Table 1, it also demonstrates that none of the proposed 

algorithms meets our requirements. After having contemplated the extension or enhancement of the 

three algorithms, we have opted for a new algorithm SG2, which is described now. The target for SG2 

is the accuracy achieved by ENEA but extended to the period 1980-2030, instead of 2003-2022.  

4. TIME SYSTEMS 

Various time references should be considered. The International Atomic Time (TAI) is the basis of the 

definition of the second, under the responsibility of the Bureau International des Poids et Mesures 

(BIPM, www.bipm.org). The terrestrial time TT is equal to the TAI plus 32.184 s, and is the time scale 

of ephemerides for Earth heliocentric position. The daily rotation of the Earth about itself determines 

daytime and nighttime. A day is the time duration for one rotation; a day is divided into 24 h of 60 min 

each as an average (mean solar day). The Universal Time (UT), also noted UT1, corresponds to a 

fraction of the mean solar day; it is equal to 0 at midnight for longitude 0°. This time is not plainly 

regular due to irregularities in Earth rotation (Markov et al., 2010; Mendes Cerveira et al., 2009). The 

standard time is Coordinated Universal Time, abbreviated UTC. It is the basis of legal time and is 

derived from International Atomic Time. The difference between UT and UTC is kept less than 1 s. 

Therefore, the difference between UTC and TAI varies with the years and is under the responsibility 

of the International Earth Rotation Service (McCarthy, Petit, 2003), which issues every June and 

December a "Bulletin C'' message (ftp://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat), which reports the 

introduction or not of a leap second, in order to guarantee |UT-UTC| < 1 s. Algorithms for Sun 

position, including the one presented in this paper, usually require UT: to avoid small but systematic 

angular errors related to the use of such algorithms in UTC time, one should refer to the "Bulletin D" 

message at ftp://hpiers.obspm.fr/iers/bul/buld to get updated (bulltetind.dat) and previous (bulletind.*) 

values of UT-UTC. 

Of particular interest is the difference between the time TT and UT, TT: 

 TT = TT – UT (7) 

ftp://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat
ftp://hpiers.obspm.fr/iers/bul/buld/bulletind.dat
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Values of TT are derived from observations only. The United States Naval Observatory (USNO) 

provides monthly values of TT updated every 4 months, and a prediction of quarterly values for the 

next seven years. The SPA also needs such values as an input parameter to correct for the Earth 

irregular rotation (Reda and Andreas, 2004).  

Analytical approximation of TT offers advantage in implementation and operation of the algorithm 

and in prediction. Morrison and Stephenson (2004) proposed polynomial approximations for three 

different periods: 1961-1986, 1986-2005, 2005-2050. Espenak and Meeus (2009) brought corrections 

to these approximations. The last approximation was established in 2005 and has not yet been updated.  

We propose to adopt these approximations whose piece-wise form per period permits to add new 

approximations to the existing ones to account for measures and 9-year predictions of TT issued every 

4 months by the USNO respectively at the web addresses http://maia.usno.navy.mil/ser7/deltat.data 

and http://maia.usno.navy.mil/ser7/deltat.preds. 

If y denotes the year, in integer form, e.g., 2010, and m the month ranging from 1 to 12, the year y in 

decimal form is: 

 y = y + (m – 0.5)/12 (8) 

We propose an approximation, notes TT-SG2: 

    

   

   

   

5

1, 1

0

5

2, 2

0

3

2

3

, 3

0

 if y 1980,1986

 if y 1986,2005

 if y 2005,2030

k

k

k

TT

k

k

k

k

k

k

TT SG

a y y

a y y

a y y

y 










 




 


  


 









y  (9) 

The Table 3 provides the parameters yi and ai,k. These parameters are derived from Morrison and 

Stephenson (2005) including modifications proposed by Espenak and Meerus (2009). Parameters of 

the last third period 2005-2030 have been slightly modified to take into account USNO measurements 

up to May 2012. 

http://maia.usno.navy.mil/ser7/deltat.data
http://maia.usno.navy.mil/ser7/deltat.preds
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n Period yn an,0 an,1 an,2 an,3 an,4 an,5 

1 [1980, 1986] 1975 45.45 1.067 -1 / 260 -1 / 718 - - 

2 [1986, 2005] 2000 63.86 0.3345 -0.060374 0.0017275 6.51810
-4

 2.37410
-5

 

3 [2005, 2030] 2000 63.48 0.2040 0.005576 - - - 

Table 3. Parameters for TT-SG2. 

In astronomy, it is convenient to use Julian days. The Universal Time Julian day jUT corresponds to the 

decimal number of days starting from January 1, in the year -4712 at 12:00:00 UT. It is computed 

from the UT time, whereas the Julian Ephemeris Day, or terrestrial Julian Day, jTT, is computed from 

the terrestrial time TT. An algorithm to convert Julian days to current dates was described by Fliegel, 

Flandern (1968). A number of tools are available on the web or as basic functions in programming 

languages, e.g. php or Python, to convert dates into Julian days and conversely. 

Assume a given instant with year y greater than 1582, a month m, a day d, and a decimal UT decimal 

hour h. Then, let define interim quantities: 

 y' = y – 1 if m = 1 or 2, y’ = y otherwise  

 m’ = m + 12 if m = 1 or 2, m’ = m otherwise (10) 

then 

 
    

 

 INT 365.25 ' 4716 INT 30.6001 ' 1

/ 24 – '/100 -1522.5

UTj y m

d h INT y

   

 
 (11) 

where the function INT is the mathematical operator that rounds a decimal number to the nearest 

integers towards minus infinity (operator floor in C or Matlab). 

The following relationship holds: 

 TT= / 86400TT UTj j   (12) 

For the sake of simplicity in the following, we will define j
*

UT, respectively j
*

TT, the Julian day defined 

as being 0 at 1980-01-01T00:00:00 respectively UT and TT: 

 j
*
UT = jUT – 2444239.5  

 j
*
TT = jTT – 2444239.5 (13) 
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5. MAIN SUN PARAMETERS OF THE SUN FOR SOLAR ENERGY PURPOSES 

Let consider a local observer on Earth, located by its geographical latitude   (rad), longitude   (rad) 

and its elevation h (m) according to a given reference geographical ellipsoid. For this local observer, at 

the time j
*

UT, the Sun position can be defined by: 

 the Sun topocentric elevation angle
 
S: the angle formed by the direction of the Sun and the 

horizon. Its complementary angle, the Sun topocentric zenith angle, is noted S; 

 the Sun topocentric azimuth angle S: the angle formed by the projection of the direction of 

the Sun on the horizontal plane defined eastward from North, following the ISO 19115 

standard. 

 

Figure 2. Sun topocentric elevation angle S, zenith angle S and azimuth angle S. 

The cosine of the Sun incidence angle I for a tilted plane whose orientation is defined by the surface 

azimuth angle  also measured eastward from North and its slope  is given by: 

    cos , cos cos sin sin cosI S S S            (14) 

The most significant source of temporal variation of the broadband extraterrestrial irradiance on 

normal incidence E0 is due to the temporal variation of the Earth-Sun distance. The broadband solar 

constant ESC is the average of E0 over a year and corresponds to E0 for a distance of 1 AU: 

 
2

0 SCE E R  (15) 

where R is the Earth heliocentric radius expressed in AU and is discussed later. 
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The value of the broadband solar constant Esc is set to 1367 W/m
2
: the typical day-to-day relative 

variations of ESC due to solar activity are less than 0.15% and are considered negligible in the field of 

solar energy (Schatten and Orosz, 1990; Wald, 2007). 

These Sun parameters S, S, S, cosI and E0 are commonly used for solar energy studies as they 

enable for example the computations of the extraterrestrial surface solar irradiance on a tilted plan, the 

sunrise and sunset times or the shadow effects due to local horizon.  
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6. COMPUTATION PROCEDURE 

The main Sun parameters S, cosS, S, I and E0 are computed following the sequence of equations 

given by the Table 4.  

1. Heliocentric coordinates    

 Sun heliocentric radius R see sub-section 6.1, Eq. (25)
 

 

 Sun heliocentric longitude L see sub-section 6.1, Eq. (26)  

2.  Geocentric parameters    

 Stellar aberration correction  
 

see sub-section 6.2, Eq. (27)  

 Sun equatorial horizontal parallax   see sub-section 6.2, Eq. (28)  

 Nutation in the Sun geocentric 

longitude 


 
see sub-section 6.2, Eq. (29)

 
 

 True Earth obliquity   see sub-section 6.2, Eq. (30)  

 Apparent Sun geocentric longitude  
a

 
L    

 
(16) 

 Sun Geocentric declination  g
  asin sin sina   (17) 

 Sun Geocentric right ascension  gr   atan 2 sin cos , cosa a  
 

(18) 

3. Sidereal time    

 Mean sidereal time 
0  see sub-section 6.4, Eq. (31)

 
 

4. Topocentric parameters    

 Parallax effects in the sun topocentric 

right ascension 
r  see sub-section 6.3, eq. (33)  

 Sun topocentric declination  see sub-section 6.3, eq. (35)  

 Sun topocentric hour angle  
0 cos gr r        

 
(19) 

 Sun topocentric azimuth 
S  

 atan2 sin , cos sin tan cos      
 

(20) 

 Sun topocentric elevation angle 

without atmospheric refraction 

correction 

S0  asin sin sin cos cos cos      (21) 

 Atmospheric refraction correction term  S see sub-section 6.1, Eqs. (36), (37)  

 Sun topocentric elevation angle S 0S S   (22) 

Table 4. Formulas used for the computation procedure. 

These equations come from Reda and Andreas (2004, corrigendum 2007), except for: 

 the Earth heliocentric radius R and longitude L, the true Earth obliquity  the nutation in the 

Sun geocentric longitude  and the mean sidereal time 0 for which approximations based on 

1-order polynomial and truncated sinusoidal series are proposed. 
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 the Sun equatorial horizontal parallax  and the stellar aberration correction  for which 

constant values are proposed ; 

 the parallax effects in the sun topocentric right ascension r and Sun topocentric 

declination  for which approximations based on simple 1-order Taylor expansion are 

proposed ; 

 the atmospheric refraction correction s for which we propose to use an extended version for 

low negative Sun topocentric elevation angle ; 

6.1. Heliocentric coordinates R and L 

We have used sinusoidal series to approximate the Earth heliocentric coordinates R and L on the 

reference period 1980-2030. The parametric function for these sinusoidal approximations is made up 

of an affine function defined by two parameters a and b, and N sinus functions, each defined by a 

frequency fk, a phase k and a module k :  

  * *

1

cos 2
N

k k TT k TT

k

f j a j b


      (23) 

For each quantities to approximate, the frequencies fk are first determined by a Fourier analysis of the 

discrete vector calculated with SPA on the reference period 1980-2030, with a time sampling of 1 hour 

(i.e. 447 072 discrete values). This analysis consists in sorting, in descending order, the complex 

modulus of local maxima of the Fourier coefficients, for positive frequencies. Then the first N 

corresponding frequencies are selected. The number N of selected frequencies depends on the level of 

required precision of the approximation. Once these N frequencies are selected, the 2N+2 parameters 

a, b, 1 1cos  , 1 1sin  , …, cosN N   and sinN N   of Eq. (23) are determined by a linear mean 

square regression. All these parameters, including the frequencies, are then refined by the Levensberg-

Marquardt non-linear least-square method (Marquardt, 1963). 

Approximation of the Earth heliocentric radius R 

The approximation of the Earth heliocentric radius R should be accurate enough to be able to predict 

the eccentricity correction term with a relative accuracy  better than 0.1 %. This accuracy threshold 

comes from the negligible order of magnitude due to solar activity. The 0-order Taylor-Lagrange 

formula applied to the eccentricity correction term shows that the absolute value of the Earth 

heliocentric radius error R should observe the following inequality relationship: 

 
 

 

3

4

2

min
4.60 10 AU

2max

R
R

R
      (24) 
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With N = 1 and the parameters shown in Table 5, the approximation of the Earth heliocentric radius 

RSG2 is better than 42.3 10 AU for the reference time period: 

  * *

2 cos 2R R R R R

SG TT TTR R f j a j b        (25) 

 

a
R
 b

R
  f

R
 ρ

R
 R

 

0 1.000140  1/365.254902 0.016704 -3.091159 

Table 5. Parameters for the approximation RSG2 of the Earth heliocentric radius, for the reference 

period 1980-2030. 

Although this approximation RSG2 is fast to compute with only one sinus function, we have studied the 

possibility of using a pre-computed sampled table of RSG2, combined with nearest or linear 

interpolation between the temporal nodes of the table.  

Upper bounds of nearest or linear interpolation errors, computed using equations A2, A3 in annex, 

have assessed the errors yielded by both interpolations when applied to a sampled pre-computed table 

of RSG2, for different time sampling expressed in number of days. Considering the required overall 

accuracy of Earth heliocentric radius prediction and the accuracy of the approximation function RSG2 

itself, the interpolation should not yield errors greater than 42.3 10  AU. 

Figure 3. Upper bounds of nearest () and linear () interpolation errors of RSG2 for different time 

sampling time j, compared to the accuracy target (green) of 2.3e-4 AU. 
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Fig. 3 depicts the upper bounds of nearest and linear interpolation errors of RSG2 for different time 

sampling. Linear interpolation always fits the accuracy requirement even with a pre-computed table of 

RSG2 sampled every 10 days. As for the nearest interpolation, at least to a daily pre-computed table 

should be sampled to fit the accuracy requirement.  

Nearest interpolation applied on daily pre-computed table of RSG2 has been finally chosen for SG2, as 

it requires only 2 floating operations per interpolation request, instead of 7 floating operations for the 

linear interpolation. 

Approximation of the Earth heliocentric longitude L 

In order to determine the required overall accuracy of the approximation, we have analysed the 

performance of the ENEA algorithm for the prediction of the Earth heliocentric longitude L. Over the 

period of validity of this algorithm, the root mean square of the prediction is 2.5'' with a maximum of 

absolute error of 8''. In order to limit the number of sinus functions, we have chosen, for the reference 

period, an accuracy target of 10'' for the maximum absolute error and 3'' for the root mean square 

error. The minimum number of sinus functions fitting this requirement is 10. The 32 parameters of this 

approximation functions LSG2 are given Table 6: 

  
10

* *

2

1

cos 2L L L L L

SG k k TT k TT

k

L L f j a j b


        (26) 

a
L
 b

L
  k fk

L
 ρk

L
 k

L
 

1/58.130101 1.742145  1 1/365.261278 3.40150810
-2

 1.600780 

   2 1/182.632412 3.48644010
-4

 1.662976 

   3 1/29.530634 3.13622710
-5

 -1.195905 

   4 1/399.529850 3.57897910
-5

 -1.042052 

   5 1/291.956812 2.67618510
-5

 2.012613 

   6 1/583.598201 2.33392510
-5

 -2.867714 

   7 1/4652.629372 1.22121410
-5

 1.225038 

   8 1/1450.236684 1.21794110
-5

 -0.828601 

   9 1/199.459709 1.34391410
-5

 -3.108253 

   10 1/365.355291 8.49947510
-4

 -2.353709 

Table 6. Parameters for the approximation LSG2 of the Earth heliocentric longitude with Eq. (36), for 

the reference period 1980-2030. 

The maximum absolute error of the prediction LSG2 of L is circa 9''. The analysis of the upper bound of 

interpolation errors shows that linear interpolation of daily pre-computed table of LSG2 yields absolute 
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errors less than 1''. Therefore, linear interpolation applied on daily pre-computed table of LSG2 has been 

finally chosen for the Earth heliocentric longitude in SG2. 

6.2. Geocentric parameters , ,  and  

The Sun equatorial horizontal parallax  and the stellar aberration correction  are inversely 

proportional to the Earth heliocentric radius. Following Grena (2008), we have chosen constant 

approximations of these correction terms, leading to negligible absolute errors, less than 0.4'': 

 5

2 9.933735 10 radSG       (27) 

 5

2 4.263521 10 radSG      (28) 

Following the same methodology used for the approximations of the heliocentric coordinates R and L, 

the nutation in the Sun geocentric longitude  and the true Earth obliquity  and can be 

approximated by the two followings sinusoidal functions, with parameters given in Tables 7 and 8: 

  *

2 cos 2SG TTf j           (29) 

 

 f


 ρ


  

 1/6791.164405 8.32909210
-5

 -2.052757 

Table 7. Parameters for the approximation SG2 of the nutation in the Sun geocentric longitude for 

the reference period 1980-2030. 

  * *

2 cos 2SG TT TTf j a j b              (30) 

 

a

 b


  f


 ρ


  

 

-6.21637410
-9

 4.09138310
-1

  1/6791.164405 4.45618310
-5

 2.660352 

Table 8. Parameters for the approximation SG2 of the true Earth obliquity for the reference period 

1980-2030. 

The errors in prediction of true Earth obliquity and the nutation in Sun geocentric longitude provided 

respectively by SG2 
and SG2 are both less than 2'', including nearest interpolations of daily pre-

computed tables. 

6.3. Sidereal time0 
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Reda and Andreas (2004) proposed a formulation of the mean sidereal time at Greenwich 0 based on 

a quintic function of universal Julian days. On the reference time period 1980-2030, a simple linear 

model is sufficient to provide an approximation with absolute errors less than 0.1'': 

 
*

0 0 2 6.3000388 1.742079SG UTj   
 

(31) 

6.4. Topocentric coordinates: approximations of r,  and s 

Let consider the following intermediate parameters related to the geographical position of the observer 

and the reference geographical ellipsoid: 

 

  

 

atan 1 tan

cos cos

1 sin sin

u f

h
x u

a

h
y f u

a

 

 

  







 (32) 

The reference geographical ellipsoid is generally described by the data of two of the following three 

parameters: the semi-major axis a, semi-minor axis b and flattening f. Table 9 gives the parameters 

used by Reda and Andreas (2004): 

a (m) b (m) 1/f 

6378140.0 6357014.436696 298.257282697 

Table 9. Parameters of the reference geographical ellipsoid used by Reda and Andreas (2004). 

Reda and Andreas (2004) proposed a formula to r with a call to the inverse trigonometric function 

atan2. By using the 1-order Taylor expansion of this formula with respect to the small value of r 

(~ 8'') we avoid this call: 

 2

sin

cos

g

SG g
r r x   


  


 (33) 

Grena (2008) proposed another approximation that leads to absolute errors less than 0.9'', whereas the 

proposed 1-order Taylor expansion leads to absolute errors less than 0.15''. 

From Reda and Andreas (2004, corrigendum 2007), the Sun topocentric declination   is given by: 

   atan2 sin sin cos ,cos sin cosg g gy r x          (34) 

The 1-order Taylor expansion of Eq. (34) with respect to the small values of the parallax correction 

r and the Sun equatorial horizontal parallax  yields the following approximation: 

  2 cos sin cosg g g g

SG x y           (35) 
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As for the parallax effects in the sun topocentric right ascension, Grena (2008) proposed another 

approximation that exhibits absolute errors less than 2.8'' whereas this 1-order Taylor expansion yields 

absolute errors less than 0.15'', with the same order of computational complexity. 

Reda and Andreas (2004) use the atmospheric refraction correction term of Meeus (1999), taking into 

account the yearly average local air pressure P expressed in hPa, the yearly average of local air 

temperature T expressed in °C and the Sun topocentric elevation angle.  

This correction, valid for S0 greater than -0.01 rad, is 

 
  S0 0.01

4

2 1

0 0

283 2.96706 10

1010 273 tan 0.0031376 0.089186
S S SG

S S

P

T
 

 




 


 

  
 (36) 

For S0 less than -0.01 rad, we use the correction term of Cornwall et al. (2011): 

 
2

S0 0.01

4

0

283 1.005516 10

1010 273 tanS SGS

S

P

T
 


 


 

  


 (37) 

7. PERFORMANCES OF THE SG2 ALGORITHM 

To assess the performances in accuracy and precision of the proposed fast algorithm SG2 in the time 

period 1980-2030, we have done the same test procedure as described in the section §3 for the already 

existing fast solar position algorithms, with the same randomly sampled 20 000 instants, between 1980 

and 2030, for daylight time, at location 45°N and longitude 0°, at sea level. Results are reported in 

Table 10 and Fig. 4. 

Algorithm Errors MBE RMSE MAXE 

SG2 

1980-2030 

Azimuth S 0.0'' 3.5'' 18.1'' 

Zenithal angle S -0.0'' 1.6'' 6.9'' 

Solar vector VS 2.4'' 2.8'' 8.9'' 

Table 10. Errors for the computation with SG2 of the solar azimuth, the solar zenithal angle, and the 

solar vector (SPA is the reference) at the geo-location (45°N, 0°E), for the same 20 000 instants during 

daylight randomly sampled in the period 1980-2030 as Table 1. 
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Figure 4. Errors on the solar vector predictions for the three fast algorithms (SG, MICH, and ENEA), 

compared to SG2, during the reference time period 1980-2030. 

Compared to Table 1 and Fig. 1, we observe in Table 10 and Fig. 4 that accuracy performances 

provided by SG2 in the time period 1980-2030 is close to those provided by ENEA (Grena, 2008) but 

only for its restricted time period of validity 2003-2022. 

In addition, without pre-computed tables of L, R,  and , the total numbers of additions (40), 

multiplications (46) and calls for direct (32) and inverse trigonometric functions (6) needed to 

calculate Sun topocentric position are slightly greater than those needed by the ENEA algorithm. The 

approximations with sinusoidal series of L, R,  and  enable the use of linear or nearest 

interpolations from pre-computed tables of these parameters with a controlled level uncertainty, thanks 

to the Eqs. (A3) and (A3). In this case, the total numbers of additions (20), multiplications (30) and 

calls for direct (17) and inverse trigonometric functions (6) needed to calculate Sun topocentric 

position are slightly less than those needed by the ENEA algorithm. 

Between the submission and the revision dates of this paper, Grena (2012) has published an article 

presenting five new algorithms for the computation of the sun position from 2010 to 2110, with 

different levels of accuracy and computational complexity. Over this period of 100 years, the most 

accurate algorithm (algorithm 5) provides topocentric sun elevation and azimuth angles with root 

mean square errors of respectively 1.8'' and 4.2'', with a computational complexity close to that of 

SG2. When extended to the 100-year period from 1980 to 2080, SG2 offers similar performances, with 

root mean square errors of 2.3'' and 4.2'' respectively for the topocentric sun elevation and azimuth 

angles. 

The time needed by SG2 for the computation of the solar positions every seconds within 15 min for 

the 9 millions usable pixels in a Meteosat SEVIRI image is less than 8 min, compared to the 2 h 

needed for SPA and to the 8 min needed for SG. For a given instant, optimization can be also done by 
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pre-computing tables for quantities not depending on the geographical coordinates, such as the sun 

geocentric positions. 

8. CONCLUSION 

The present article proposes a new algorithm SG2 which is fast and accurate: over the period 1980-

2030, the maximum error in the solar vector is less than 0.0025° (~ 9'') and the uncertainty of the Sun 

topocentric azimuth and elevation is c. 0.0015° (~ 5''). It is accurate enough for calibration of 

pyranometers and pointing devices (Reda and Andreas, 2003, 2004; Stafford et al., 2009). It is fast 

enough for its use in the HelioClim processing and post-processing chains and other similar 

computational chains. It is accurate enough so that the influence of the Sun position on the error 

budget of satellite-derived assessment of SSI is of second-order or negligible. 

Several approximations are made of the original equations of the SPA to decrease the number of 

operations. These approximations result in a decrease of accuracy compared to SPA and we have 

presented the mathematical tools permitting to determine these approximations with a selected 

uncertainty level. These tools will permit further development of other algorithms meeting other 

requirements than HelioClim. Like the ESRA algorithm, software libraries in C and Matlab are 

available on the Web (www.helioclim.org) and should help such developments. A Web service is also 

available at www.webservice-energy.org. It is an application that can be invoked via the Web. It could 

be used to check the correctness of implementation of the SG2 algorithm or can be used for the 

computation of the Sun position. 

ANNEX A – COMPUTATION OF UPPER BOUND OF ERROR IN 

INTERPOLATING A DISCRETE SINUSOIDAL SERIES 

Let consider a function s(t) defined by a truncated Fourier series and an affine function:  

    
1

cos 2
N

k k k

k

s t f t t


         (A1) 

st is a discrete signal resulting from the sampling of s(t) with a sampling period t, and an arbitrary 

sampling phase t0:  

    0ts k s k t t    (A2) 

The upper bounds of error when interpolating the discrete signal st by the nearest neighbor and linear 

interpolations are respectively noted UBN and UBL, and are given:  
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1

2

N

N k k

k

UB f t


 
  
 



     (A3) 

 
2 2 2

1

4
N

L k k

k

UB t f


      (A4) 
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