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Abstract Single crystal silicon is extensively used in the semiconductor industry. Even

though most of the steps during processing involve somehow thermo-mechanical treat-

ment of silicon, we will focus on two main domains where these properties play a major

role: cleaving techniques used to obtain a thin silicon layer for photovoltaic applica-

tions and MEMS. The evolution and validation of these new processes often rely on

numerical simulations. The accuracy of these simulations, however, requires accurate

input data for a wide temperature range. Numerous studies have been performed, and

most of the needed parameters are generally available in the literature but unfortu-

nately, some discrepancies are observed in terms of measured data regarding fracture

mechanics parameters. The aim of this paper is to gather all these data and discuss the

validity of these properties between room temperature and 1273 K. Particular atten-

tion is given to silicon fracture properties depending on crystallographic orientations,

and to the brittle-ductile temperature transition which can strongly affect the quality

of silicon layers.

Keywords Single Crystal Silicon · Thermo-mechanical properties · Fracture

properties · Anisotropic fracture · Brittle-Ductile transition.

1 Introduction

Nowadays silicon is the most employed material in semiconductor industry. Integrated

circuits, solar cells and Micro-ElectroMechanical Systems (MEMS) industries exten-

sively use this material both as single crystal silicon (also called monocrystalline sili-

con), which consists of silicon where the crystal lattice of the entire solid is continuous,

with no misorientation, and polycrystalline, which consists of a collection of grains
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of single-crystal silicon separated by grains boundaries. Because of its wide use, sili-

con properties have been thoroughly investigated in the past from an electrical and

mechanical point of view.

In the last decades, thermo-mechanical properties of single crystal silicon have

gained more and more interest due to its use in solar cell and MEMS industries. Com-

mon processes in these industries involve very high temperatures and an assessment of

both stresses induced in silicon during these processes and the residual stresses after the

processes is paramount to analyze the feasibility of these processes without breaking

the sample. MEMS are sensors and actuators where sensing or actuating parts consist

of micrometers-scaled structures, e.g. cantilevers, bridges and plates, usually made of

silicon. The mechanical properties of these microstructures have to be tailored and

the residual stresses after the fabrication have to be assessed to design MEMS with

certain properties. A considerable number of papers have been published on the design

of MEMS which cover a wide range of MEMS, such as microphones, accelerometers,

pressure sensors, switches and micro-grippers. In the solar cell industry, mechanical

properties of silicon are important to estimate the final bowing of very thin wafers af-

ter the contact formation. Further interest in mechanical properties of silicon and, more

precisely, in its post-elastic behavior at very different temperature is due to the cleav-

ing technology to manufacture thin silicon foils. Various new experimental techniques

have been proposed to produce such thin silicon wafers without kerf loss [1].

Applications exist where the thermo-mechanical and fracture properties of silicon

are changed in order to obtain a weak layer, such as [2,3]. Since the presence of such

weak layers inherently changes the thermo-mechanical properties of bulk silicon they

will not be reviewed in this paper.

The first work reported in literature about cleaving silicon wafer by using pure

thermo-mechanical properties dates from 1975 [4]. This patent describes an idea on

how to control the propagation of a crack in crystalline materials to produce thin

wafers. The first step is to introduce a preselected stress concentration into the crystal,

e.g. by means of a notch or a scribe line. Subsequently an internal tensile stress, acting

in normal direction, may be accomplished by tensile, compressive, shear forces or by

a bending or torsional moment. Finally, the fracture can be achieved e.g. by a wedge,

expanding material in the notch, a stress wave, and impact load.

Later, at the beginning of the eighties, Wilkes [5] proposed a process for cleaving

boules of single crystal material by creating an inward-directed radial stress concentra-

tion completely around a boule which intersects its crystallographic plane of minimum

bond strength. Then, triggering the cleavage via a shock wave applied.

In 1986, Tanielian et al. [6] proposed a method to produce foils by sputtering depo-

sition of a layer of metal onto a single crystal substrate. Then, the assembly is treated

to stress the metal layer which then can peel off with a part of the single crystal sub-

strate still attached. Free standing foils thus produced have typical thicknesses in the

order of tens of micrometers.

A few years later, Owens [7,8] and Takeguchi [9] invented a tool to cleave brittle

materials into thin sections using the same principle of the aforementioned Hillberry

[4], namely the use of a wedge to induce a pure opening mode into the crystal.

Almost two decades later, Yamaguchi [10] re-proposed to cleave a wafer from an

ingot in a two step approach: generation of a line defect on the surface by means of ion

beam along a direction defined by crystal axes and then cleaving the ingot applying a

shock in the same point by means of a knife-edge. A few years later, Baer [11] chose a

two-step process where the first is the creation of a notch at a given depth. The crack
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is propagated then by applying light at a wavelength absorbed at the same given depth

of a notch. The heat generated by absorption of such light, which is scanned along the

desired direction, is claimed to be sufficient to propagate the crack.

In 2007, Dross et al. [12,13,14] presented the SLIM-Cut process, which consists in

inducing a tensile stress in the silicon substrate in order to initiate [15] and to propagate

a crack at a given depth . In order to generate such a tensile stress field, a metallic stress-

inducing layer is deposited and the system brought at high temperature. During the

cooling stage, the mismatch between the Coefficient of Thermal Expansion (CTE) of

the metal and the silicon induces a tensile stress field that can be high enough to initiate

and propagate a crack all along the silicon substrate [16]. The temperature range in

which lift-off occurs in the SLIM-Cut process, may include the silicon brittle-ductile

transition temperature: specific attention to this brittle-ductile temperature transition

must be paid if one wants to obtain sound defect-free silicon layer after fracture [17,18].

Alternatively, the stress-inducing layer can also be a polymer-based material, where the

process involves a much lower thermal budget and peak temperatures, assuring brittle

crack propagation [19].

A company [20,21] is marketing solar cells using the same principle meanwhile also

IBM [22,23,24] claims being able to produce multiple high quality thin silicon layers

from a single substrate.

The set up and optimization of the aforementioned manufacturing processes imply

the use of numerical modeling, which in turns requires accurate input data in terms

of thermo-mechanical behavior of silicon. A considerable number of papers have been

published about thermo-mechanical properties and fracture properties of silicon, but

they are spread all over the literature and they sometimes contradict each other. In

this paper, the mechanical properties of single crystal silicon between 293 K and 1273

K will be firstly presented and discussed, a second section will focus on its thermal

properties in the same temperature range, while a third section will discuss about the

fracture properties of single crystal silicon.

2 Mechanical properties of single crystal silicon

Silicon, like carbon and germanium, crystallizes at common pressures in a diamond

cubic crystal structure with a density of 2.329 g·cm-3 at 298 K. Therefore, silicon is an

anisotropic material whose properties depend on its relative orientation to the crystal

lattice as well as an orthotropic material, i. e. a crystal with at least two orthogonal

planes of symmetry. Silicon is a brittle material at room temperature, which means

that its behavior is purely elastic until failure.

2.1 Elastic constants

In an anisotropic material, Hooke’s law involves a fourth rank tensor (either the stiffness

C or the compliance S) to describe the elastic relationship between the second rank

stress σ and strain ǫ tensors:

σij = Cijklεij and εij = Sijklσkl (1)

In silicon, the combination of cubic symmetry and the equivalence of the shear

conditions enable specifying the fourth rank tensor with only three independent elastic
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constants. These tensors are given with respect to a specific basis, which in the case of

the cubic structure of silicon is commonly given for the <100> directions.

σii = C11εii + C12(εjj + εkk) (2)

σij = C44εij

The tensor can then be easily rotated in the orientation of interest. Up to now, the

best measurement of the elastic constant is achieved using acoustic waves propagation

in the solid. Even if the values from Mason [25] are often cited in the literature, the

measurement performed a decade later by Hall [26] reports slightly better accuracy

(Table1):

C11 C12 C44 S11 S12 S44
165.64 63.94 79.51 7.69 -2.14 12.6

Table 1 Elastic constants of silicon at 298K (C: 109Pa, S: 10-12Pa)

In the context of orthotropic materials, as for silicon, it is possible to give, for

the axes of interest, the elastic properties in terms of orthotropic material constants

involving the Young’s modulus E, the Poisson’s ratio n and the shear modulus G.

The Young’s modulus is a parameter to characterize the stiffness of an elastic

material. It can be measured from the slope of the linear portion of the stress-strain

curve recorded from an experiment where the specimen undergoes to a uniaxial load.

Otherwise the Young’s modulus E can be calculated from the general formulae for

cubic crystal [27] :

1

Ehkl
= S11 − 2

[

S11 − S12 − 1

2
S44

]

(

m2n2 + p2n2 +m2p2
)

(3)

where m, n, p are the “direction cosines” i. e. the cosine of the angle between the [hkl ]

direction and the 3 basis axes (the <100> directions). For a better understanding, three

different cases, at room temperature, are illustrated in the Table 2 where a classical

[110] direction is assumed for the primary flat. The first column corresponds to the

case where the used basis is equal to the <100> directions and so, for each subscript

x, y or z, two of the “direction cosines” are null. Therefore,

Ex = Ey = Ez = 1/S11 ≈ 130GPa (4)

For the second column, the subscript x (resp. y) corresponds to the [110] (resp.[1̄10])
directions. Therefore,

Ex = Ey =

(

S11 − 2

(

S11 − S12 − 1

2
S44

)(

1√
2

)2(
1√
2

)2
)−1

(5)

= 2

(

S11 + S12 +
1

2
S44

)−1

≈ 169GPa

Ez = 1/S11 ≈ 130GPa (6)
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Same methodology can be used for the third column in the context of a (111)-wafer.

Brantley et al. [28] reports maximum and minimum values of Young’s modulus for

other directions lying in important crystal planes. Concerning Poisson’s ratio and shear

modulus, the cubic crystal configuration allows also using the following formulae:

υαβ =
S12 +

[

S11 − S12 − 1
2S44

] (

m2
αm

2
β + n2

αn
2
β + p2αp

2
β

)

S11 − 2
[

S11 − S12 − 1
2S44

]

(m2
αn2

α + p2αn2
α +m2

αp2α)
(7)

Gij = 1/Sij (8)

with a and b two orthogonal directions and m
g

, n
g

, p
g

, the “direction cosines” of

the angle between the g direction and the basis axes.

Finally, the bulk modulus B can be also obtained from:

B =
C11 + 2C12

3
(9)

At room temperature (298 K), these formula leads to a bulk modulus B of 0.9781·1011Pa

(therefore a compressibility K of 1.0221·10-11Pa-1), which is in very good agreement

with B ∼0.995 ± 0.005·1011Pa measured in real experiments [29,30]. The values of

the Poisson’s ratio and shear modulus for the different configurations considered are

summarized in Table 2.

wafer (100) (111)

in GPa
Ex 130 169 174
Ey 130 169 174
Ez 130 130 188
nyz 0.278 0.362 0.166
nzx 0.278 0.362 0.166
nxy 0.278 0.064 0.241
Gyz 79.6 79.6 60.5
Gzx 79.6 79.6 60.5
Gxy 79.6 50.9 70.0

Table 2 Approximate values of elasticity in the reference frame of standard silicon wafers

For simplified analyses, or analytic expressions, a single isotropic elasticity value

may be used. To insure accuracy, the choice of this value must depend on the orien-

tation and loading of the structure. Since the crystal structure of silicon has a cubic

symmetry, computations in configurations presenting orthogonal shapes and loads will

be reasonably accurate, as long as the appropriate elasticity value for the direction

family is used. But for more complex cases with off-axis orientations or non-rectilinear

structures, the use of the full orthotropic description will have significant benefits for

the accuracy of the results.
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2.2 Hardness

Hardness may be defined as the resistance of a material to permanent penetration by

another material. The most important and comprehensive work about nanoidentation

experiments to measure silicon hardness was performed by Bhushan et al. [31,32]. Even

though hardness values are dependent on the normal load, the indentation depth and

crystallographic orientation, a value of 12±1 GPa could be considered as average for

all the cases. The only exception is a p-type silicon, boron-doped: it is shown that the

doping using thermal diffusion with boron ions softened the silicon surface down to

∼7 GPa [32] .

2.3 Temperature effects on elastic constants

The silicon Young’s modulus evolves with temperature. This thermal dependency is

traditionally described for each elastic constant C11, C12, S11, . . . with the Thermal

Coefficient of Elasticity (TCE) of the considered elastic constant. More precisely, for

each of these constants C, its thermal variation between T0 and T can be described

via a power series of coefficients TCE(C)k:

C (T ) = C (T0)



1 +
∑

k≥1

TCE(C)k (T − T0)
k



 (10)

Several different measurements of TCE are reported in the literature [33,34,35] for

the first order temperature coefficients, and so, their values cannot be given definitively.

However, as recently reported by Hopcroft et al. [36], the results given by Bourgeois

et al. [35] seem to come from the most carefully performed experiments as the values

proposed include the second order temperature coefficients (see Table 3).

TCE
p-type n-type p-type n-type

(4 W;cm, B) (0.05 W;cm, P) (4 W;cm, B) (0.05 W;cm, P)
First-order (x 10-6/K) Second-order (x 10-6/K2)

TCES11 64.73 ± 0.29 63.60 ± 0.60 61.19 ± 1.1 60.51 ± 0.35
TCES12 51.48 ± 1.5 45.79 ± 2.8 72.26 ± 5.1 75.70 ± 6.1
TCES44 60.14 ± 0.20 57.96 ± 0.17 54.90 ± 1.7 57.31 ± 1.4
TCEC11 -73.25 ± 0.49 -74.87 ± 0.99 -49.26 ± 4.8 -45.14 ± 1.4
TCEC12 -91.59 ± 1.5 -99.46 ± 3.5 -32.70 ± 10.1 -20.59 ± 11.0
TCEC44 -60.14 ± 0.20 -57.96 ± 0.17 -51.28 ± 1.9 -53.95 ± 1.8

Table 3 Temperature coefficients of the elastic constants

2.4 Macroscopic mechanical behavior at high temperature

As stated before, beyond the elastic regime, silicon is a brittle material for low tem-

peratures, but exhibits viscoplastic behavior before ductile failure above the brittle-

ductile temperature TBD. This viscoplastic behavior strongly depends on strain rate

and temperature. At high temperature, the stress-strain curve of silicon shows two
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yield regions. Indeed after elastic domain, and between the upper yield stress and the

lower yield stress, silicon exhibits a transient softening effect due to a drastic increase

of dislocation density. Then, after the lower yield point, small and then strong work-

hardening are observed (stage I and II). This behavior is classically modeled in the

crystal plasticity framework, accounting for the discrete nature of plastic slip in crystal

as in [37,38], or in a more standard isotropic formulation of plastic flow as in [39,40].

In the latest model, the plastic strain rate produced by a crystal ( ˙̄γP ) is, in general,

determined by the Orowan equation [41]:

˙̄γP = ρmbν̄ (11)

where rm is the mobile dislocations density which corresponds to a part of the Sta-

tistically Stored Dislocations (SSDs) density [27,42], b is the Burgers vector magnitude,

and ν̄ is the average velocity of these dislocations. In accordance with experimental

measurement, the dislocation velocity ν̄ is a function of the temperature T (Arrhenius

factor) and of the effective shear stress teff (power law)

ν̄ = ν0

(

τeff
τ0

)1/m

exp

[

−Udis

kT

]

sign (τ) (12)

where n0 and t0 are reference values for the dislocation velocity and stress, m is

the stress exponent, k is the Botzmann’s constant and Udis is the activation energy

for dislocation velocity. The effective shear stress is the difference between the internal

stress tiand the applied stress t:

τeff = 〈|τ | − τi〉 ,with 〈x〉 = x+ |x|
2

(13)

Then, the different constitutive models available in the literature are traditionally

derived from the work of Alexander and Haasen [43], which is quite successful for initial

stages of deformation up to the lower yield point. After this point, more appropriate

models, like the ones proposed by Delaire [44] or Moon et al. [40] are needed. In the

Alexander and Haasen’s model, the mobile dislocations density rm is supposed to be

equal to the total dislocation density r, and the internal stress ti is given by the

following relation, where a is a constant and m is the shear modulus:

τi = τ0 + αµb
√
ρ (14)

The evolution equation for the dislocation density is finally described by the fol-

lowing equation, in which K is a material constant taken into account the creation and

annihilation of the SSDs:

ρ̇ =
K

b
τeff ˙̄γ

P (15)

Note that in the case of the Alexander-Haasen’s model, the temperature and strain

rate dependence of the upper τuyp and lower τlyp yield points are straightly described

by:

τuyp/lyp = Cuyp/lypγ̇
1/(2+m) exp

[

Udis

(2 +m) kT

]

(16)

where Cuyp/lyp are constants respectively associated to the upper and lower yield

points. The following values for the different models constants, in case of undoped

silicon, can be found in the literature:
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b ν0 τ0 Udis m α K

3,83e-10 m 4.3e-4 m/s 5.5 MPa 2.35 eV 0.91 0.3–2.0 2e-4 m/N

Table 4 Models constant values

3 Thermal properties of single crystal silicon

If thermal problems have to be faced, thermal conductivity (κ), diffusivity (D), specific

heat (Cp) and emissivity (e) of silicon have to be known for different temperatures.

If stresses induced by the change of temperature, i.e. thermal stresses, are of interest,

also the coefficient of thermal expansion (aT) must be evaluated.

3.1 Thermal conductivity, diffusivity and specific heat

Above 200 K, the thermal conductivity is largely independent from the particular

sample specification and the various reported data obtained through different methods

show a rather good agreement [45,46,47,48,49]. The following values are representative

measurements from Glassbrenner and Slack [46].

Concerning the thermal diffusivity D of single crystal silicon, the values in Table

5 were measured from room temperature up to 1400 K by Abeles et al. [45]. These

measurements were found in between those of Glassbrenner and Slack [46] and Shanks

et al. [50] which are within the order of 5% accurate below 1000 K, but less accurate

above. Specific heat recommended data reported by Hull [51] are also given in Table 5.

T (K) κ (W·cm-1·K-1) D (cm2·s-1) Cp (J·g-1·K-1)

200 2.66 0.557
300 1.56 0.86 0.713
400 1.05 0.52 0.785
500 0.80 0.37 0.832
600 0.64 0.29 0.849
700 0.52 0.24 0.866
800 0.43 0.19 0.883
900 0.356 0.16 0.899
1000 0.31 0.14 0.916
1100 0.28 0.13 0.933
1200 0.261 0.12 0.950
1300 0.248 0.12 0.967
1400 0.237 0.12 0.983
1500 0.227 1.000
1600 0.219 1.017

Table 5 Single crystal silicon thermal conductivity (κ), diffusivity (D) and specific heat (Cp)

From these previous experimental data, the conductivity can also be given by the

following [52]:

κ = κ0

[

1−B

(

T − T0

T

)A
]

,with

{

B = 1.093 andA = 0.7805 T < 1000K

B = 0.93795 andA = 0.42 T > 1000K
(17)
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where κ0 is the thermal conductivity of silicon (W·cm-1·K-1) at room temperature

T0.

3.2 Emissivity

There have been several studies of the thermal radiation emitted by silicon at elevated

temperatures. But since silicon emissivity strongly depends on many factors, such as

the sample thickness, doping, surface conditions... experiments must be interpreted

with care before applying one of the various measured silicon emissivity values to any

kind of model. As first approximation, an emissivity value acceptable regarding the

different experimental results is null at room temperature, which then rises smoothly

with temperature increase to a maximum value of 0.7 at 1220 K.

3.3 Thermal expansion

The single-crystal silicon thermal expansion coefficient aT has been measured in the

range 120 K to 1500 K by several means such as an interferometric dilatometer [53,54],

X-ray diffractometry [55] and other techniques [56]. The reported measurements were

found in good agreement between different methods (Table 6). From these measure-

ments, a fitting expression of the linear thermal expansion coefficient aT (10-6·K-1) is

given by [55]:

α(T ) = 3.725
(

1− e−5.88·10−3(T−124)
)

+ 5.548·10−4T (18)

with T between 120 K and 1500 K. At room temperature the recommended value is

a(298.2) = 2.59 ± 0.05 · 10-6K-1. Note that the effect of temperature on silicon density

can also be evaluated from these values.

T (K) k (W·cm-1·K-1)

300 2.616
400 3.253
500 3.614
600 3.842
700 4.016
800 4.151
900 4.185
1000 4.258
1100 4.323
1200 4.384
1300 4.442
1400 4.500
1500 4.556

Table 6 Single crystal silicon thermal expansion coefficient values
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4 Fracture properties of single crystal silicon

4.1 Brittle-ductile transition

Single crystal silicon is a brittle material at room temperature, in which cracks prop-

agate without any appreciable plastic deformation. Nevertheless, it exhibits a ductile

behavior above a certain temperature TBD, for a given loading rate (or increase rate

of stress intensity ) and doping level. Single crystal silicon brittle-ductile transition

experiments were carried out especially by St. John [57], Brede and Haasen [58], Hirsch

et al. [59,60,61], George and Michot [62], Hsia and Argon [63]. They pointed out that

silicon presents a particularly sharp brittle-ductile transition. This transition is indeed

associated with a sudden increase in stress to fracture, in order to intercept the yield

stress curve. This transition occurs over a very narrow temperature range, typically

less than 10 K (Figure 1). The microscopic studies of the fractured samples have shown

that there is hardly any dislocation activity at the crack tip below the brittle-ductile

transition temperature, few hundred dislocations can be seen from the crack, moving

into the bulk, along well-defined crystallographic directions approaching TBD and a

huge amount of dislocations nucleate above this critical temperature TBD. It is also im-

portant to note that if silicon is pre-deformed to introduce dislocations and dislocations

sources, it exhibits a softer transition [64].

Fig. 1 Sharp brittle-ductile transition in silicon. The stress intensity at fracture rises abruptly
at TBD

Figure 2 illustrates the Arrhenius plot of the most current data on the brittle-

ductile transition temperature. It shows that, although all the lines for intrinsic silicon

have the same slope, the intercepts vary widely from one result to another, showing the

dependence on the testing methods (especially levels of crack tip perfection). It also

points out that p-type dopants do not affect the brittle-ductile transition temperature

while n-type dopants decrease it. Moreover, TBD increases with a higher rate of stress

intensity. These experiments have determined TBD as a function of, using the activation

energy for the brittle-ductile transition UBD (this activation energy was found to be

nearly equal to Udis in Eq. 12):

K̇ = A exp

(

−UBD

kTBD

)

(19)
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Fig. 2 Brittle-ductile transition temperature in silicon. Data from: ABC [58], D [57], EF [62],
GH [59]. Doping levels: ABCH n-type, and DEFGH intrinsic

where A is a model constant and k is the Boltzmann constant. UBD was measured

to be 2.1 eV for intrinsic, and 1.6 eV for n-type silicon by Samuels and Roberts [59].

The most quantitative model proposed for the brittle-ductile transition in silicon is the

one proposed by Hirsch and Roberts [61,65]. In this model, the shielding of the crack

front by dislocations emitted from there competes with the rise of the stress intensity

factor KI to the critical value KIc. The main feature of the model is that the material

becomes ductile only when the emitted dislocations shield every point of the crack

front. In this sense, the mobility of the dislocations plays the major role in this model.

4.2 Fracture toughness

As for the mechanical properties, the single crystal silicon fracture toughness KIc de-

pends on the crystallographic orientation. Vickers micro-hardness indentation asso-

ciated, or not, with four point bending, and double cantilever beam are the most

commonly used methods to evaluate this toughness anisotropy. Since the different re-

ported silicon fracture studies have emphasized the fracture anisotropy on the low index

planes, we will focus here on the fracture toughness of these planes, i.e. {100}, {110}

and {111} planes, although many higher order index planes surface energy values sit

between the ones of the low index planes [66]. These results suggest that silicon may

also cleave on crystallographic planes other than the low index ones [67,68]. Table 7

summarizes the fractures toughness and fracture energy values at room temperature

reported in the literature. As seen in the previous section, these fracture toughness

values are valid for temperatures below the brittle-ductile transition one. In case of

simulated values, the method is written in parentheses: Molecular Dynamics (MD) or

Density Functional Theory (DFT).

The referenced articles might report values either in terms of fracture surface energy

γ(hkl) or fracture toughness KIc(hkl). The following approximate equation, in which

E[hkl] is the Young’s modulus in the perpendicular direction to the crack surface, was

used to convert them when necessary:

KIc(hkl) =
(

2γ(hkl)E[hkl]

)1/2
(20)
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Fracture toughness
KIc (MPa·m1/2)

Fracture energy
gs (J·m-2)

Fracture
planes

{111} {110} {100} {111} {110} {100}

[69] 0.62
[70] 0.62 0.71 0.75
[57] 0.93
[71] 0.82 0.90 0.95
[72] 0.65 0.80
[73] 1.00
[74] 0.78
[75] 1.05–1.19
[76] 1.14–1.19 1.07–1.18 0.82–1.15
[77] 0.95
[68] 1.22 0.81–1.01 0.86–1.25
[78] 0.66
[79] 0.68–0.73
[80] 1.15
[81] 1.12 1.29
[82] 0.63–0.74 1.11

[83] (DFT) 1.73 1.73
[84] (MD) 1.19 1.50 2.26
[85] (DFT) 1.56
[86] (MD) 0.656 1.45
[86] (DFT) 0.646

Table 7 Reported silicon fracture toughness and fracture energy values. MD = Molecular
Dynamics. DFT = Density Functional Theory.

As first remark, the countervailing maxima and minima in the modulus and fracture

resistance variations lead to a very small variation in toughness with fracture planes.

Silicon is reported to have two principal cleavage planes: {111} planes, usually the

easiest cleavage plane and {110} planes. In other words, the cleavage energy of {111}

is lower than {100} one and thus, crack will unlikely propagate on the {100} plane.

Different crack propagation directions have been studied for both fracture planes.

The <110> propagation directions were seen to be the preferred propagation di-

rections on both cleavage planes. Nevertheless, on the {111} fracture surface, the

anisotropy with respect to propagation direction manifests itself only in faint mark-

ings along <110> directions. Complementary, cleavage fracture on the {110} plane is

very anisotropic. Propagation along the <110> directions is easy and results in nearly

perfectly flat fracture surfaces, while along the <100> directions, perpendicular to the

preferred direction, the crack deflects onto {111} planes inclined by 35.26° with respect

to the original fracture plane [75,68,87]. In contrast to the results of the {110} fracture

planes, the cracks introduced along the {100} planes were observed to deviate from

these planes. These results can be understood by the fact that the fracture toughness

of the {100} planes is almost the same as those of the higher order planes near {100}.

Cracks following the {100} planes even deflect onto {110} planes, inclined by 45° with

respect to the {100} planes, since these second planes exhibit the minimum fracture

toughness value among the possible deflecting planes [81,84].

Aside, there is an experiment of Deegan et al. [88] who observed that cracks which

deviate from the <110> plane can travel in arbitrary directions, moreover these di-

rections can fluctuate wildly creating a fractal fracture surface. This influence of the
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crack propagation direction in a given fracture plane, and the fact that cracks often

deflect from the original fracture plane, are therefore responsible for the large scatter

in the measured toughness value for each fracture plane, as clearly pointed out in Ta-

ble 7. Many other parameters contribute to this scatter, including the testing method,

specimen surface preparation, and the crack length measurement in case of indentation

fracture method.

Even though some ambiguities exist in the literature regarding the exact value of the

fracture toughness of single crystal silicon, it appears that the earliest measurements of

silicon fracture toughness [69,70], using the well-defined double-cantilever beam geom-

etry, are the least ambiguous from a testing geometry perspective, and in best agree-

ment [89] with both molecular dynamics calculations, based on known bond-rupture

energies, and experimental scaling of fracture resistance with band-gap in elemental

and compound semiconductors. Over the past 40 years, subsequent measurements us-

ing smaller cracks from indentation fractographic methods seem to always overestimate

fracture toughness while providing critical information on the orientation dependence

of fracture toughness. In Table 8 is summarized the range of values reported for fracture

toughness and fracture energy and some recommended values based on aforementioned

considerations. Both values for fracture toughness and fracture energy are reported for

reader’s convenience, using equation (20) to convert them.

Fracture planes {111} {110} {100}

Reported experimental range
Fracture toughness

KIc(MPa·m1/2)
0.62–1.22 0.68–1.19 0.75–1.29

Reported simulated range
Fracture energy

gs (J·m-2)
1.19–1.45 1.50–1.73 1.56-2.26

Recommended value
Fracture toughness

KIc(MPa·m1/2)
0.62 0.71 0.75

Recommended value
Fracture energy

gs (J·m-2)
1.022 1.483 2.163

Table 8 Summary of reported and recommended silicon fracture toughness and fracture en-
ergy values

4.3 Crack speed

The development of high-speed data acquisition has extended studies to dynamic crack

propagation at crack driving forces greater than the equilibrium fracture resistance.

Different experiments [78,90,91,92,93] show that cracks propagate with velocities of

about 1 to 3.5 km·s-1. There is therefore an apparent speed gap between 0 and ∼1–2

km·s-1 for crack driving forces just exceeding the fracture resistance [94,95].

A possible explanation of this phenomenon is described by many scholars [96,97,

98] and recently by Bernstein and Hess [99] where they indicate the presence of lattice

trapping barriers as major player for the propagation of a brittle fracture, i.e. the

fracture crack might lead to a configuration where the stress could be below or above

the Griffith stress but the crack is stable [96].
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Deegan [88] reports that, depending on the speed of the crack propagation, tran-

sitions from straight to wavy to multiply branched cracks are possible and could be

discontinuous, bistable, and hysteretic. At large crack driving forces, the velocities ap-

proach an apparent upper limit approximately equal to 75% of the Rayleigh wave speed

(cR ∼4.6 km·s-1) depending on the direction of crack propagation [100,101].

5 Conclusion

Single crystal silicon has been extensively used in the electronic industry, and therefore

numerous studies have also been performed and most of the needed parameters for

the computation are available in the literature. These data have been gathered and

compared here for a large temperature range.

Due to its crystalline structure, silicon is a strongly anisotropic material whose

properties depend on orientation relative to the crystal lattice, especially regarding its

fracture behavior. Several toughness values have been found in the literature. However

the variation of fracture toughness between each orientation planes remains small.

More importantly, silicon is a brittle material at room temperature, which means

that its behavior is purely elastic until it fails. But it also exhibits a sharp brittle-ductile

transition at a precise temperature.
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