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Abstract. Time sequences of 3D images of an Al-Cu alloy in ringshy state are obtained
using in situ and real-time X-ray microtomographyridg a tensile test. Surface meshes of
phase interfaces are built from these images Wwithhelp of a Marching Cubes algorithm. The
signed distance to the surface meshes is then dedhpua a finite element mesh of the volume
of the phases. These signed distance functionsestabiack the interfaces between the phases
in an implicit way. A numerical representation dktreal microstructure is thus obtained,
allowing to perform a numerical tensile test whislcompared with the experimental tensile
test. Results retrieve the general dynamic behawbuhe strain field evolution and opens
promising perspectives for further interpretatiafisexperimental results based on numerical
simulations.

1. Introduction

Nowadays, numerical simulations of complex systamesmandatory in many fields. The first aspect
to consider for performing analyses on such systenthe creation of a realistic numerical
representation of the object under study. Thihiésdase in phase transformations taking placeen th
context of materials science. Several phases mexisian a given material, delimited by interfacas.
mesh of the structure of the phases is then netedetlidy the heat, mass and momentum transfers
taking place at phase interfaces and in the bulispf. Results of such analyses for the entire ralater
are not trivial because of the various phase ptigseand interface behaviours.

When it is not possible to consider a numericakgsentation of the real specimen, statistical
representative elementary volumes (REV) can be.usddantages lead in the possibility to easily
change the morphology of the REV. The sample beladan then be studied with respect to various
parameters. For instance, by using a modified Vairtessellation, Phillion et al. showed the effetct
microstructural features on the semi-solid tendiédormation of an aluminium alloy such as solid
fraction, porosity and grain size [1].

During the last decade, X-ray microtomography hassitlerably developed [2-4]. This imaging
technique gives access to in situ three-dimensif#a) morphology of a multiphase sample. Thus,
Terzi et al. obtained a set of 3D images showingpmalogical evolutions in a few millimeters sample
of an aluminium copper alloy during tensile test[By It is currently possible to reach a spatiatla
time resolution of less than 1 um and 1 s, respagtion millimeters domain size [4].

The ambition of this paper is to describe a way ttansform data coming from X-ray
microtomography into a finite element (FE) repreéatgon and to use it to run numerical simulations.
In section 2, the approach chosen to obtain theelpEesentation is explained. Section 3 presents the
model equations for the numerical tensile test thiedway to solve them. Finally, results on the real
morphology are presented and compared to the empstal data in section 4.



2. Finite element representation

Three steps are required to transform a 3D pidhtea FE representation [6]: segmentation, surface
mesh computation and volume mesh computation. Egeentation is the designation of all the
phases of the multiphase domain, using the gresl lgivthe tomography images. Because images are
already segmented by Terzi et al. [5], only genenatof surface and volume mesh will be explained
here.

1.0. Surface mesh computation

The surface meshes used to separate the diffdnasep are a representation of the interfaces betwee
these phases. In the case considered here, thaseghre identified with the X-ray microtomography:
solid, liquid and air. Two segmentations give asdestwo binary images, where only black and white
levels are present to separate the liquid phase fitee solid+gas zone and the gas from the
solid+liquid zone. These two images are sufficientlefine all solid/liquid, solid/gas and liquidga
interfaces. Two surface meshes are then computbdivé help of a Marching Cubes (MC) algorithm.
Voxels are the constitutive element of 3D image®DAimage can be seen as a stack of 2D slices. A
marching cube is a logical cube created from engiighbouring voxels, four from one slice and four
from the neighbouring slice [7]. For each voxelptatates are possible: inside a phase or outside it
Consequently there aré 2 256 cases for a MC. Each case corresponds toface separating the
phases. To obtain the surface, rotational symnistopnsidered [8] to reduce the problem from 256
cases to 23 patterns shown in figure 1. Once tHaaaiis computed for one MC, the algorithm moves
to the next cube until the whole image is treated.

Figure 1. lllustration of the 23 patterns considered feiragle marching cube and corresponding
surface mesh. Vertices are assigned a dot if treeynaide the liquid.

1.0.Volume mesh computation
The volume mesh computation is based on the immearskime method (IVM) described in [9]. In
our case the volume mesh used for tensile test otafipns must include, as for the images, three
existing phases. Two level set functions are cosgbutithin this volume mesh to take into account
the properties of the three phases.

A level set function is a signed distance from afeme mesh computed for all nodes of our

tetrahedral volume mesh. Two level sets are comdputee liquid level setq,, representing the
interface between the liquid and the solid+gas un&t and the air level sef,, representing the

interface between the air and the solid+liquid oni&t The negative sign for the liquid level set is
chosen inside the liquid and inside the air for #irelevel set. The algorithm used to compute the
distance between a triangular facet of the surfaesh and a node of the volume mesh is described



in [11]. To get the signed distance, the normaiht® facet of the surface mesh is used. The distance
between a node and the surface mesh is the mirdisi@nce between this node and all the facets.
Because surface and volume meshes can have sevbi@hs of facets and nodes respectively, it is
very time consuming to compute the distance frogivan node to all the facets of the surface mesh.
To decrease the CPU time cost, a hierarchical septation of the surface mesh is built at the
beginning of the simulation [12].

With the IVM, each equation treated is solved omwhole computational domain [9]. Behaviour
of all phases vary from Newtonian to viscoplastnganing that all the physical properties necessary
for a simulation are defined in the whole volumeshesing a classical mixture law of the properties
of each phase and the level sets defining thefaues. In the immediate neighbourhood of an
interface separating two phases, 1 and 2, a piseewontinuous mixing model is used. A mixed
propertya is thus defined as:

a :Horl+(1— H)or2 (1)

o, and a, are the property values for the two phases coreidandH is the filling ratio of the

element for phase 1, computed with the level sparsting the two phases. With three phases,
equation (1) is applied twice to take into accathettwo level sets and the properties of all thasgls.
In a first time, the air level set is used with aird liquid properties. Then, the solid level s&, the
opposite of the minimum of air and liquid levelssdas used with solid properties and the resulthef
first mixture.

A topological mesher [10] is used with only isofiomeshes in this paper.

1. Numerical model

2.1.Equations

Simulating the morphological evolutions of a samggi¢his scale is a highly challenging multiphysics
problem. In this work, the physical models choseritmulate the tensile test of the aluminium copper
alloy are simplified.

1.0.0.Mechanical behaviouBecause inertial and mass terms are assumed tdglignly the Stokes
equations without right hand member are solved:
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T is the stress tensor andthe velocity vector of the flow. The liquid ancethir are modelled as two
incompressible Newtonian fluids. The stress teirsside these phases reads:

= 2nE(V) -pl (4)

all

n is the viscosity, (V) the strain rate tensor anH the identity tensor. For the solid phase,
neglecting elasticity, the behaviour is viscoplastress and strain rate are related by:

T = 204,E(V) -pl = 2[%? m'lj HOR (5)



K is the consistency, m the strain rate sensitivitythe equivalent strain rate anfl, the apparent

solid viscosity. The corresponding relation betwtenequivalent stress and€ is:
o =Kg™ (6)

1.0.0.Interfaces displacement$o keep the interfaces still represented by the iswvalue of the
level set functions while updating the configuratithe level sets should be moved with the velocity
derived from the resolution of the Stokes equatiohs this purpose, the following convection

equation is solved fog, and ¢, :

o¢ . -
—+v00p=0 7
p Cp (7

After solving equation (7), the level set functicare no longer signed distance functions. To recove
this property at times t when judged necessargiratialisation equation is solved [13]:

% =St~ |od) (8)

S((p) is the sign of the level set wheremss a fictitious time step linked to the mesh sike.speed up

the computation, equation (7) and equation (8) arapled to obtain a convective reinitialisation
equation [14]. Moreover, the level set functionsngeuseful only near the interfaces, a smoothed
function is rather used, through the hyperboligtan of the distance to each interface [15].

1.0. Finite elements

The partial derivative equations are solved with fimite element method with CIMLib, a highly
parallel C++ scientific computation library dese@tbin [16], using PETSc [17] (Portable, Extensible
Toolkit for Scientific Computation) for solving thénear systems and MPI (Message Passing
Interface) for the parallelism.

1.0.0.Stokes equationgfter mixing the consistency and the strain raesgtivity of the three phases,
Stokes equations are solved with the method intredun [18], known as MINI-element, which
satisfies the Brezzi-Babuska stability conditio®][1The linear system is solved with the conjugate
residual method associated with an incomplete Lét@nditioning [20]. To consider the non linear
behaviour of the solid phase, the fixed point mdttoused: once the velocity fiel is computed, a

new equivalent strain raté is obtained, giving rise to a new estimate for wszosity Neq tO be
considered for the next resolution of equation (2).

2.1.1.Convective reinitialisation equationfhe standard Galerkin method leading to resultd wit
spurious oscillations well known for hyperbolic pkems, a streamline upwind Petrov-Galerkin
(SUPG) stabilisation method is employed [21]. Theedr system is solved with the generalized
minimal residual method (GMRES) [22] and an incoapILU preconditioning.



3. Results

3.1.Finite element representation

Given its morphological complexity [5], accuratgmesentation of the sample implies a very large
number of nodes, leading to long and difficult dpgent simulations. Thus, an isotropic mesh size of
10 um is used whereas the initial voxel size is|2i8 Moreover, only a quarter of the sample is
modelled. Despite these considerations, the volomash contains more than 3 million nodes and 16
million elements. Figure 2a shows the experimemttdrface between the air and the liquid+solid

mixture 513 s after the beginning of the tensilg.tét is attained from microtomography data with

voxel representation. Figure 2b shows the samefact drawn for the FE numerical representation.
The CPU time for computing the surface mesh is t4tls one processor (RAM: 3.25 Go, 2.99 GHz

Intel Core CPU). The CPU time for computing thelawel set is less than 5 min with 16 processors
(2.4 GHz Opteron cores linked by an Infiniband raky. Excellent geometrical reconstruction of the

domain boundaries with the FE mesh is demonstratdy limited by the size of the FE mesh used.

Figure 2. Metallic sample boundary between the air andsthiel+liquid mixture 513 s after the
beginning of the tensile test. (a) Experimental @)chumerical boundaries. Vertical field of
view: 1.43 mm.

1.0.Mechanical computation

Boundary conditions are applied for a uniaxial ieafttensile test. A vertical velocity is imposed a
the bottom and at the top of the sample on all ghasd vertical symmetry conditions are applied. To
match the experimental conditions, the velocityhatbottom is zero and the velocity at the top.is 0
um.s'. For the solid, parameters are taken from a cossjoe test campaign similar to the one made
by [23], leading to m = 0.2 and K = 35.2 MPa. Tipparent solid viscosity is on the order of®Pa.s
whereas viscosities to be considered are abotitPEOs for the air and T0Pa.s for the liquid. With
these values, the ratio between minimal and maxinsabsities is very large and no solution is found



for the Stokes equations, due to a very bad camlitg of the global matrix and a limited precisi¢in.

is thus necessary to use augmented viscositiestHeotiquid and the air, viscosities used in the
simulations are 100 kPa.s and 1 kPa.s, respectiVélgse values are large by comparison with real
values, but the ratio with the apparent solid vé#tgois still significant and stress inside theamd the
liquid are negligible. Figure 3 shows the equivalstnain rate and the equivalent stress of a 2Bscro
sectional cut 513 s after the beginning of theilertest, assuming a static mechanical state.rntbe
seen that maximum strain rate values are foundjuid pockets. Stresses are quite heterogeneous in
the solid, showing maximum values in specific regicespecially between liquid regions.
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Figure 3. Mechanical results for a 2D cross sectional ¢digare 2b. (a) Equivalent strain rate and
(b) equivalent stress. Grey and white contoursesgit the zero isovalue of the air and liquid level
sets respectively, i. e. boundaries between phases.

3.2.Dynamic computation

For the experiment described in [5], a lot of X-iemyages are available at incremental times. It then
becomes possible to compute the associated numegmasentations to perform static mechanical
computations, i. e. without moving the interfacas,in the previous section. This leads to as many
calculations as recorded images with time. Buttioelel is also developed to start with one numerical
representation taken as initial condition, thervaedhe Stokes equations, move the interfaces and
continue in a time stepping loop, until the endhe experiment. Thanks to this dynamic simulation,
comparisons can be made between the evolutionpdrarental and numerical morphologies of the
interfaces. Figure 4 illustrates such a comparfsotthe interface between the air and the liquidieso
mixture 1323 s after the beginning of the tensilst.t To obtain this reasonable agreement with the
observation using X-ray microtomography, the stgrthumerical representation is the one shown in
figure 2, just before experimental penetration iofirathe sample. The CPU time for computing this
evolution is four days with 50 processors (2.4 Gbfteron cores linked by an Infiniband network)
and a time step of 13.5 s. To corroborate thisitiide comparison, the equivalent stress evoluiion
the solid phase is compared for the static andlyin@mic computations in figure 5. Both curves show
a stress decrease due to sample damage by aigptapa
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Figure 4. Boundary between the air and the solid+liquidtomie 1323 s after the beginning of the
tensile test. (a) Experimental and (b) numericairaaries. Vertical field of view: 1.43 mm.
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Figure 5. Equivalent stress evolution in the solid phasesfatic and dynamic computations.

4. Conclusion & perspectives

Transformation of X-ray microtomography data imnttrahedral 3D finite element representations has
been presented in this paper, using implicit istesf description with the help of level set funcsion
By solving conservation equations with initial abhdundary conditions similar with experiments,



direct comparisons between numerical and experaheasults are possible. Comparisons made for a
tensile test on a mushy zone sample are realistior@tivate further work.

Perspectives include: (i) more complex models @kitto account solidification and additional
physical phenomena such as surface tension, wetimd) gas solubility, (i) better interface
representation with anisotropic meshes, (iii) largemputation to simulate the entire sample and
increase space resolution. Such efforts could bewded in parallel to more accurate experiments to
gain advantage of microtomography recent progressdsievelopment of image correlation tools to
better estimate the boundary conditions to apmgnfexperimental data.
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