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Abstract. Time sequences of 3D images of an Al-Cu alloy in the mushy state are obtained 
using in situ and real-time X-ray microtomography during a tensile test. Surface meshes of 
phase interfaces are built from these images with the help of a Marching Cubes algorithm. The 
signed distance to the surface meshes is then computed on a finite element mesh of the volume 
of the phases. These signed distance functions enable to track the interfaces between the phases 
in an implicit way. A numerical representation of the real microstructure is thus obtained, 
allowing to perform a numerical tensile test which is compared with the experimental tensile 
test. Results retrieve the general dynamic behaviour of the strain field evolution and opens 
promising perspectives for further interpretations of experimental results based on numerical 
simulations. 

1. Introduction 
Nowadays, numerical simulations of complex systems are mandatory in many fields. The first aspect 
to consider for performing analyses on such system is the creation of a realistic numerical 
representation of the object under study. This is the case in phase transformations taking place in the 
context of materials science. Several phases may coexist in a given material, delimited by interfaces. A 
mesh of the structure of the phases is then needed to study the heat, mass and momentum transfers 
taking place at phase interfaces and in the bulk phases. Results of such analyses for the entire material 
are not trivial because of the various phase properties and interface behaviours. 

When it is not possible to consider a numerical representation of the real specimen, statistical 
representative elementary volumes (REV) can be used. Advantages lead in the possibility to easily 
change the morphology of the REV. The sample behaviour can then be studied with respect to various 
parameters. For instance, by using a modified Voronoi tessellation, Phillion et al. showed the effect of 
microstructural features on the semi-solid tensile deformation of an aluminium alloy such as solid 
fraction, porosity and grain size [1].  

During the last decade, X-ray microtomography has considerably developed [2-4]. This imaging 
technique gives access to in situ three-dimensional (3D) morphology of a multiphase sample. Thus, 
Terzi et al. obtained a set of 3D images showing morphological evolutions in a few millimeters sample 
of an aluminium copper alloy during tensile testing [5]. It is currently possible to reach a spatial and 
time resolution of less than 1 µm and 1 s, respectively, on millimeters domain size [4].  

The ambition of this paper is to describe a way to transform data coming from X-ray 
microtomography into a finite element (FE) representation and to use it to run numerical simulations. 
In section 2, the approach chosen to obtain the FE representation is explained. Section 3 presents the 
model equations for the numerical tensile test and the way to solve them. Finally, results on the real 
morphology are presented and compared to the experimental data in section 4.  
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2. Finite element representation 
Three steps are required to transform a 3D picture into a FE representation [6]: segmentation, surface 
mesh computation and volume mesh computation. The segmentation is the designation of all the 
phases of the multiphase domain, using the grey level of the tomography images. Because images are 
already segmented by Terzi et al. [5], only generations of surface and volume mesh will be explained 
here. 

1.0. Surface mesh computation 
The surface meshes used to separate the different phases are a representation of the interfaces between 
these phases. In the case considered here, three phases are identified with the X-ray microtomography: 
solid, liquid and air. Two segmentations give access to two binary images, where only black and white 
levels are present to separate the liquid phase from the solid+gas zone and the gas from the 
solid+liquid zone. These two images are sufficient to define all solid/liquid, solid/gas and liquid/gas 
interfaces. Two surface meshes are then computed with the help of a Marching Cubes (MC) algorithm.  
Voxels are the constitutive element of 3D images. A 3D image can be seen as a stack of 2D slices. A 
marching cube is a logical cube created from eight neighbouring voxels, four from one slice and four 
from the neighbouring slice [7]. For each voxel, two states are possible: inside a phase or outside it. 
Consequently there are 28 = 256 cases for a MC. Each case corresponds to a surface separating the 
phases. To obtain the surface, rotational symmetry is considered [8] to reduce the problem from 256 
cases to 23 patterns shown in figure 1. Once the surface is computed for one MC, the algorithm moves 
to the next cube until the whole image is treated. 
 

 
 

Figure 1. Illustration of the 23 patterns considered for a single marching cube and corresponding 
surface mesh. Vertices are assigned a dot if they are inside the liquid. 

1.0. Volume mesh computation 
The volume mesh computation is based on the immersed volume method (IVM) described in [9]. In 
our case the volume mesh used for tensile test computations must include, as for the images, three 
existing phases. Two level set functions are computed within this volume mesh to take into account 
the properties of the three phases.  

A level set function is a signed distance from a surface mesh computed for all nodes of our 
tetrahedral volume mesh. Two level sets are computed: the liquid level set lφ , representing the 

interface between the liquid and the solid+gas mixture, and the air level set aφ , representing the 

interface between the air and the solid+liquid mixture. The negative sign for the liquid level set is 
chosen inside the liquid and inside the air for the air level set. The algorithm used to compute the 
distance between a triangular facet of the surface mesh and a node of the volume mesh is described 



 
 
 
 
 
 

in [11]. To get the signed distance, the normal to the facet of the surface mesh is used. The distance 
between a node and the surface mesh is the minimal distance between this node and all the facets. 
Because surface and volume meshes can have several millions of facets and nodes respectively, it is 
very time consuming to compute the distance from a given node to all the facets of the surface mesh. 
To decrease the CPU time cost, a hierarchical representation of the surface mesh is built at the 
beginning of the simulation [12].  

With the IVM, each equation treated is solved on the whole computational domain [9]. Behaviour 
of all phases vary from Newtonian to viscoplastic, meaning that all the physical properties necessary 
for a simulation are defined in the whole volume mesh using a classical mixture law of the properties 
of each phase and the level sets defining the interfaces. In the immediate neighbourhood of an 
interface separating two phases, 1 and 2, a piecewise continuous mixing model is used. A mixed 
property α  is thus defined as:  

 ( ) 21 H1H α−+α=α  (1) 

1α  and 2α  are the property values for the two phases considered and H  is the filling ratio of the 
element for phase 1, computed with the level set separating the two phases. With three phases, 
equation (1) is applied twice to take into account the two level sets and the properties of all the phases. 
In a first time, the air level set is used with air and liquid properties. Then, the solid level set, viz. the 
opposite of the minimum of air and liquid level sets, is used with solid properties and the results of the 
first mixture.  

A topological mesher [10] is used with only isotropic meshes in this paper.  

1. Numerical model 

2.1. Equations 
Simulating the morphological evolutions of a sample at this scale is a highly challenging multiphysics 
problem. In this work, the physical models chosen to simulate the tensile test of the aluminium copper 
alloy are simplified.  

1.0.0. Mechanical behaviour. Because inertial and mass terms are assumed negligible, only the Stokes 
equations without right hand member are solved: 

 0
�

=σ⋅∇  (2) 

 0v =⋅∇ �
 (3) 

σ  is the stress tensor and v
�

 the velocity vector of the flow. The liquid and the air are modelled as two 
incompressible Newtonian fluids. The stress tensor inside these phases reads: 

 Ip)v(2 −εη=σ �
 (4) 

η  is the viscosity, )v(
�ε  the strain rate tensor and I  the identity tensor. For the solid phase, 

neglecting elasticity, the behaviour is viscoplastic. Stress and strain rate are related by: 

 Ip)v(
3

K
2Ip)v(2 1m

eq −ε






 ε=−εη=σ − �
�

�
 (5)  



 
 
 
 
 
 

K is the consistency, m the strain rate sensitivity, ε�  the equivalent strain rate and eqη  the apparent 

solid viscosity. The corresponding relation between the equivalent stress σ  and ε�  is: 

 mKε=σ �  (6)  

1.0.0. Interfaces displacements. To keep the interfaces still represented by the zero isovalue of the 
level set functions while updating the configuration, the level sets should be moved with the velocity 
derived from the resolution of the Stokes equations. To this purpose, the following convection 
equation is solved for lφ  and aφ : 

 0v
t

=φ∇⋅+
∂
φ∂ ��

 (7) 

After solving equation (7), the level set functions are no longer signed distance functions. To recover 
this property at times t when judged necessary, a reinitialisation equation is solved [13]: 

 ( )( )φ∇−φ=
τ∂
φ∂ �

1S  (8) 

( )φS  is the sign of the level set whereas τ  is a fictitious time step linked to the mesh size. To speed up 
the computation, equation (7) and equation (8) are coupled to obtain a convective reinitialisation 
equation [14]. Moreover, the level set functions being useful only near the interfaces, a smoothed 
function is rather used, through the hyperbolic tangent of the distance to each interface [15].  

1.0. Finite elements  
The partial derivative equations are solved with the finite element method with CIMLib, a highly 
parallel C++ scientific computation library described in [16], using PETSc [17] (Portable, Extensible 
Toolkit for Scientific Computation) for solving the linear systems and MPI (Message Passing 
Interface) for the parallelism. 

1.0.0. Stokes equations. After mixing the consistency and the strain rate sensitivity of the three phases, 
Stokes equations are solved with the method introduced in [18], known as MINI-element, which 
satisfies the Brezzi-Babuška stability condition [19]. The linear system is solved with the conjugate 
residual method associated with an incomplete LU preconditioning [20]. To consider the non linear 
behaviour of the solid phase, the fixed point method is used: once the velocity field v

�
 is computed, a 

new equivalent strain rate ε�  is obtained, giving rise to a new estimate for the viscosity eqη  to be 

considered for the next resolution of equation (2). 

2.1.1. Convective reinitialisation equation. The standard Galerkin method leading to results with 
spurious oscillations well known for hyperbolic problems, a streamline upwind Petrov-Galerkin 
(SUPG) stabilisation method is employed [21]. The linear system is solved with the generalized 
minimal residual method (GMRES) [22] and an incomplete LU preconditioning. 



 
 
 
 
 
 

3. Results 

3.1. Finite element representation 
Given its morphological complexity [5], accurate representation of the sample implies a very large 
number of nodes, leading to long and difficult subsequent simulations. Thus, an isotropic mesh size of 
10 µm is used whereas the initial voxel size is 2.8 µm. Moreover, only a quarter of the sample is 
modelled. Despite these considerations, the volume mesh contains more than 3 million nodes and 16 
million elements. Figure 2a shows the experimental interface between the air and the liquid+solid 
mixture 513 s after the beginning of the tensile test. It is attained from microtomography data with 
voxel representation. Figure 2b shows the same interface drawn for the FE numerical representation. 
The CPU time for computing the surface mesh is 14 s with one processor (RAM: 3.25 Go, 2.99 GHz 
Intel Core CPU). The CPU time for computing the air level set is less than 5 min with 16 processors 
(2.4 GHz Opteron cores linked by an Infiniband network). Excellent geometrical reconstruction of the 
domain boundaries with the FE mesh is demonstrated, only limited by the size of the FE mesh used. 
 

       
 

Figure 2. Metallic sample boundary between the air and the solid+liquid mixture 513 s after the 
beginning of the tensile test. (a) Experimental and (b) numerical boundaries. Vertical field of 

view: 1.43 mm. 

1.0. Mechanical computation 
Boundary conditions are applied for a uniaxial vertical tensile test. A vertical velocity is imposed at 
the bottom and at the top of the sample on all phases and vertical symmetry conditions are applied. To 
match the experimental conditions, the velocity at the bottom is zero and the velocity at the top is 0.1 
µm.s-1. For the solid, parameters are taken from a compression test campaign similar to the one made 
by [23], leading to m = 0.2 and K = 35.2 MPa. The apparent solid viscosity is on the order of 1010 Pa.s 
whereas viscosities to be considered are about 10-5 Pa.s for the air and 10-3 Pa.s for the liquid. With 
these values, the ratio between minimal and maximal viscosities is very large and no solution is found 

Air Solid+liquid 
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for the Stokes equations, due to a very bad conditioning of the global matrix and a limited precision. It 
is thus necessary to use augmented viscosities. For the liquid and the air, viscosities used in the 
simulations are 100 kPa.s and 1 kPa.s, respectively. These values are large by comparison with real 
values, but the ratio with the apparent solid viscosity is still significant and stress inside the air and the 
liquid are negligible. Figure 3 shows the equivalent strain rate and the equivalent stress of a 2D cross 
sectional cut 513 s after the beginning of the tensile test, assuming a static mechanical state. It can be 
seen that maximum strain rate values are found in liquid pockets. Stresses are quite heterogeneous in 
the solid, showing maximum values in specific regions, especially between liquid regions. 
 

 

 
 

Figure 3. Mechanical results for a 2D cross sectional cut of figure 2b. (a) Equivalent strain rate and 
(b) equivalent stress. Grey and white contours represent the zero isovalue of the air and liquid level 

sets respectively, i. e. boundaries between phases. 

3.2. Dynamic computation 
For the experiment described in [5], a lot of X-ray images are available at incremental times. It then 
becomes possible to compute the associated numerical representations to perform static mechanical 
computations, i. e. without moving the interfaces, as in the previous section. This leads to as many 
calculations as recorded images with time. But the model is also developed to start with one numerical 
representation taken as initial condition, then solve the Stokes equations, move the interfaces and 
continue in a time stepping loop, until the end of the experiment. Thanks to this dynamic simulation, 
comparisons can be made between the evolution of experimental and numerical morphologies of the 
interfaces. Figure 4 illustrates such a comparison for the interface between the air and the liquid+solid 
mixture 1323 s after the beginning of the tensile test. To obtain this reasonable agreement with the 
observation using X-ray microtomography, the starting numerical representation is the one shown in 
figure 2, just before experimental penetration of air in the sample. The CPU time for computing this 
evolution is four days with 50 processors (2.4 GHz Opteron cores linked by an Infiniband network) 
and a time step of 13.5 s. To corroborate this qualitative comparison, the equivalent stress evolution in 
the solid phase is compared for the static and the dynamic computations in figure 5. Both curves show 
a stress decrease due to sample damage by air propagation. 
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Figure 4. Boundary between the air and the solid+liquid mixture 1323 s after the beginning of the 
tensile test. (a) Experimental and (b) numerical boundaries. Vertical field of view: 1.43 mm. 

 

Figure 5. Equivalent stress evolution in the solid phase for static and dynamic computations. 
 

4. Conclusion & perspectives  
Transformation of X-ray microtomography data into tetrahedral 3D finite element representations has 
been presented in this paper, using implicit interface description with the help of level set functions. 
By solving conservation equations with initial and boundary conditions similar with experiments, 
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direct comparisons between numerical and experimental results are possible. Comparisons made for a 
tensile test on a mushy zone sample are realistic and motivate further work.  

Perspectives include: (i) more complex models taking into account solidification and additional 
physical phenomena such as surface tension, wetting and gas solubility, (ii) better interface 
representation with anisotropic meshes, (iii) larger computation to simulate the entire sample and 
increase space resolution. Such efforts could be conducted in parallel to more accurate experiments to 
gain advantage of microtomography recent progresses and development of image correlation tools to 
better estimate the boundary conditions to apply from experimental data.  
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