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Abstract. A macrosegregation benchmark experiment is simulated using a three dimensional 

(3D) Cellular Automaton (CA) - Finite Element (FE) model. It consists of a Sn - 3 wt% Pb 

alloy solidified in a rectangular cavity. Thanks to tabulated thermodynamic properties and 

solidification paths with temperature and composition, the effect of natural convection and 

macrosegregation on cooling curves is correctly predicted. Nucleation parameters are adjusted 

so that the simulated grain structure correlates with the real grain structure. Although 

macrosegregation is well predicted, this is not the case for freckles yet observed in the 

solidified sample.  

1.  Introduction 

Macrosegregation is a major problem for the casting industry. It can be due to several mechanisms 

involving i- solute transport in the liquid and in the mushy zone due to fluid flow, ii- grain transport 

because of gravity and convection, iii- liquid flow driven by shrinkage and deformation and 

iv- diffusion of solute in the liquid and solid phases [1]. 

Due to the multiple and overlapping origins of macrosegregation, quantitative validation of simula-

tion tools is a challenging task. Experimental benchmarks have thus been developed for that purpose. 

A reference work is the early experiment of Hebditch and Hunt [2] in Pb - 48 wt% Sn alloy. A similar 

benchmark was recently developed with enhanced data acquisitions and metallurgical inspections [3, 

4]. It provides detailed data on temperature evolution during solidification and measured distribution 

of composition and eutectic fraction in the solidified ingot. Alloy composition can also be changed and 

forced convection can be studied thanks to electromagnetic stirring. Few attempts have already been 

made to simulate the experiment (e.g. [5, 6]). However, they lack either tracking of the columnar grain 

structure and/or 3D considerations. Both are yet expected to have a great influence on the results if 

quantitative comparison is to be reached. We propose here to simulate such a benchmark experiment 

with a CAFE model that accounts for structure and macrosegregation in three dimensions. 

2.  Experimental 

A Sn - 3 wt% Pb ingot is considered. Its dimensions are 10 cm width x 6 cm height x 1 cm thick. The 

opposite smallest surfaces, dimensions 6 cm x 1 cm, are positioned vertically in contact with heat 

exchangers that serve to melt or freeze the ingot by imposed temperature evolutions. The other sides of 

the ingot are well insulated and considered as adiabatic. The ingot is first melted by heating up to 

260 °C. A 10 minutes holding time at this temperature is applied in order to homogenize the liquid 

while imposing a forced convection by electromagnetic stirring. Stirring is then stopped and time is 

reset to zero. The right-hand-side (RHS) heat exchanger is heated up to 280 °C while the left-hand-



 

 

 

 

 

 

side (LHS) heat exchanger is cooled down to 240 °C. These temperatures are maintained for 1000s so 

that natural convection due to the temperature difference is stabilized. Finally, the RHS and LHS heat 

exchangers are simultaneously cooled down at -0.03 °C s
-1

 until complete solidification, so that a 

40 °C difference is maintained between the LHS and RHS heat exchangers. 

Temperature evolution is recorded with 50 thermocouples equally spaced by 1 cm in a regular lat-

tice of 5 rows x 10 columns, plus 6 thermocouples in each heat exchanger. The segregation map is 

retrieved with X-ray imaging and quantitative chemical analyses using Inductively Coupled Plasma 

(ICP) spectrometry at the same 50 positions where the thermocouples are located. Experimental results 

presented in the next section are based on reference 4. 

3.  Modeling 

3.1. FE method 

The CAFE model has been extensively described elsewhere [7-10] and is only briefly presented 

hereafter. It consists of a standard FE method to solve average macroscopic equations written with the 

approximation of constant and equal densities for both solid and liquid phases, 0, as well as a fixed 

solid phase.  

The following set of equations is solved to compute the average enthalpy, <H>, the average com-

position, <w>, and the average velocity, <v>. 

Energy conservation 0 
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where <H
l
>

l
, <v>, <κ> and T are respectively the average liquid enthalpy, the average liquid velocity, 

the average thermal conductivity and the temperature, <w
l
>

l
, D

l
 and g

l
 are respectively the average 

liquid composition, the diffusion coefficient of the solutal element in the liquid and the volume 

fraction of liquid, μ, p and g are the dynamic viscosity, the intrinsic pressure in the liquid and the 

gravity vector. Diffusion in the solid is neglected here. The Boussinesq approximation is assumed in 

order to compute the fluid flow induced by natural convection. The density is therefore kept constant 

in all terms of the momentum equation except in the gravity term, where: 

  = 0 (1 - T (T - T0) - w (<w
l
>

l
 - w0

l
))  (4)  

with T and w the thermal and solutal expansion coefficients, T0 and w0

l
 reference temperature and 

composition. The volumetric friction force, M, accounts for the interaction of the liquid with the solid 

phase. It is defined as M = ( /K) g
l
 <v>  with the local permeability given by 

K = [g
l 3

 2

2

] / [180 (1-g
l
)

 2

]. In the fully liquid region, K tends toward infinity and the classical Navier-

Stokes equation is retrieved. In the solid region, K tends toward zero and the M term becomes 

dominant, leading to Darcy's relation. Details on the calculation of the permeability are given 

elsewhere [8]. It mainly depends on the secondary dendrite arm spacing, λ2. The value used in the 

present work is directly extracted from measurements [4]. Finally, a local solidification model is used, 

that predicts the liquid fraction and the temperature considering an average enthalpy and an average 

composition, while accounting for the nucleation and growth the grain structure with some 

undercooling [10]. This is explained hereafter. 

3.2. CA method 

A regular grid of cubic cells is generated in the simulation domain, with a cell size smaller than the FE 

mesh. Random cells are picked where nucleation sites are allocated. A critical nucleation undercooling, 



 

 

 

 

 

 

Tnucl, is associated to each site. Its value is randomly chosen following a Gaussian distribution 

defined by a mean undercooling, TN, a standard deviation, T , and the total density nmax that 

corresponds to the integral of the distribution. If the CA cell associated with the nucleation site is still 

liquid when the local undercooling reaches the nucleation undercooling, then the site nucleates a new 

grain with a random orientation given by a set of Euler angles.  

A velocity, vp , is used to compute the growth of the half diagonals of a local octahedral shape 

associated with the CA cell. These diagonals corresponds to the main <100> dendrite growth 

directions of a cubic metal. For a cell located at the grain boundary with the free liquid, the 

supersaturation, , is proportional to the difference between the dendrite tip composition, w
ls
, and the 

average liquid composition far from the interface, w
l∞

, the latter being approximated as <w>: 

   = (w
ls
 - w

l∞
)/(w

ls
 (1-k)) (5)  

 It is computed from a boundary layer correlation: 

  = Pvp
 exp(Pvp

) {E1(Pvp
) - E1(Pvp

 [1 + 4 (A Re2r

B
 Sc

C
 sin( /2))

-1
])} (6)  

with A = 0.5773, B = 0.6596, C = 0.5249 and where Pvp
 = (r vp)/(2D

l
) is the growth Péclet number 

defined with the dendrite tip radius r, Pvl = (r v
l
)/(2D

l
) is the flow Péclet number proportional to the 

liquid velocity, v
l
, Sc = /D

l
 is the Schmidt number defined with the kinematic viscosity , 

Re2r = 4Pvl/Sc is the Reynolds number, θ is the angle between the fluid flow direction and a <100> 

growth direction [11]. The velocity of the dendrite tip is computed with the relation given by the 

marginal stability criterion: 

 r
2
 vp = (D

l
/

*
) (  mL (k-1) w
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) (7)  

with mL the liquidus slope, k the segregation coefficient, the Gibbs-Thomson coefficient and 
*
 the 

stability constant equal to (4
2
)

-1
 [8, 9]. The volume fraction of the propagated growth front, g

(i)
, is 

then computed for each cell from the growing shape. g
(i)

 locally accounts for the presence of structure i, 

here dendritic (i=1) or eutectic (i=2) for a binary Sn-Pb alloy [10]. When only the dendritic structure is 

present, the value g
(1)

=0 corresponds to a fully liquid state. The value g
(1)

=1 corresponds to a “fully 

mushy” state, i.e. the remaining liquid is interdendritic. Intermediate values correspond to a transition 

state made of mixture of a mushy zone, g
(1)

, plus an extradendritic liquid, 1-g
(1)

. Thus the value of g
(1)

 

depends on nucleation events, growth kinetics, and more generally temperature evolution in the ingot 

in the vicinity of the FE nodes. As no growth is solved here for the eutectic structure, g
(2)

 is simply set 

to one below the eutectic temperature, TE. 

3.2. Coupling with thermodynamic 

Summation of g
(i)

 over the CA cells permits to access the average information at the FE nodes. It is 

used by a microsegregation model for the determination of the internal phase fractions in the primary 

and secondary structures at the FE nodes. For that purpose, a relation between enthalpy, average 

composition and temperature is needed in the energy conservation [10]. The microsegregation model 

is based here on a tabulation of the hypoeutectic phase diagram assuming the lever rule approximation. 

Enthalpy of different phases , H
( )

, and internal fractions for each phase in each structure, g i
(i)

, are 

tabulated for several average solute composition, <w> and temperature, T. Given the local 

composition from the solution of the solute mass conservation, <w>, the average enthalpy from the 

energy conservation, <H>, and the volume fractions of structures from the CA resolution, g
(i)

, a local 

temperature, T, and internal phase fractions, g i
(i)

, verify the relation: 

 <H> = 
i
 g

(i)
 g i

(i)

(<w>,T) H (<w>,T) (8)  



 

 

 

 

 

 

where H (<w>,T))  and g i
(i)

(<w>,T)  are computed by linear interpolations of the tabulations. 

Variations of heat capacities and latent heat with temperature and composition are thus implicitly taken 

into account, as well as possible solid phase transformations. Figure 1 illustrates the tabulation of the 

enthalpy and internal fraction of phases as a function of temperature in the dendritic and eutectic 

structures for various Pb compositions of hypoeutectic Sn-Pb alloys. As read on figure 1b, 

solidification takes place with a primary dendritic structure made of the BCT_A5 phase which is 

partially transformed into the FCC_A1 phase when the solvus temperature is reached. The later solid 

state phase transformation and its temperature depend on the local average composition.  
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Figure 1. Tabulated (a) enthalpy and (b) internal phase fractions for (colored lines) the primary 

dendritic structure and (black lines) the secondary eutectic structure as a function of temperature and 

Pb composition. Internal phases are (thick lines) BCT_A5 and (thin lines) FCC_A1. Data extracted 

from the PBIN database using ThermoCalc and assuming full equilibrium. 



 

 

 

 

 

 

The eutectic structure is made of a mixture of the BCT_A5 and FCC_A1 phases with internal fractions 

also changing with temperature. Please note that these phase names are directly extracted from the 

PBIN database. The present tabulation permits to account for solid state transformations, although it is 

not clear if they are made possible due to the limited diffusion of solute in the solid phases. This 

strategy of coupling yet clearly permits to be as close as possible to thermodynamic properties, thus 

directly using tabulated enthalpies for each phase as a function of temperature and composition as 

shown on figure 1a. The method that consists of an extraction of heat capacity and latent heat as a 

function of temperature is avoided. Material properties become dependent on alloy composition and 

phase fractions, the later being considerably changed due to macrosegregation. Such methodology was 

shown earlier to provide advantages when quantitative comparison with measurements is to be 

reached [12]. 

4.  Results and discussion 

The global mass conservation requires adiabatic conditions at the boundaries of the simulation domain. 

A zero flow velocity is also imposed on ingot's boundaries. For heat transfer, all boundaries are 

adiabatic except the small right and left surfaces in contact with the heat exchangers. Temperatures 

that are imposed on these boundaries are deduced from the heat flow in the heat exchangers and the 

temperature in the sample near the surface [4]. This heat flow is deduced from temperature 

measurements in the heat exchanger at a given height. Thermocouples positions are given elsewhere 

[4]. For the results presented hereafter, the selected positions are distributed in the length of the ingot, 

as positions 5, 35, 65 and 95 mm from LHS of the ingot surface and at mid-height, i.e. at 30 mm from 

the ingot base. These positions are referred to as L30, L27, L24 and L21 in the following, respectively. 

Temperature evolutions at mid-height on left and right sides, i.e. at 0 and 100 mm from the left side of 

the ingot surface deduced from the heat flow analysis in the heat exchangers at mid-height, are 

referred to as positions FL3in and FR3 in, respectively. Simulation parameters are given in table 1. Note 

that the liquidus slope, mL, and the partition coefficient, k, are only used to compute the velocity of the 

growth front with the CA model because coupling with thermodynamic properties deduced from the 

PBIN database have not yet been implemented. 

Figure 2 presents the simulated fluid velocity at different times, along with the computed grain 

structure. As expected, the interaction between the flow and the structure is very strong. Although it is 

not visible on figure 2, fluid flow within the mushy zone is not null. It is however much lower than in 

the free liquid. The convection loop seen prior to solidification, e.g. before 2400 s in figure 2, is main-

ly induced by the temperature difference between the LHS and RHS heat exchangers. Figure 3 permits 

to access the imposed time evolution of the corresponding boundaries thanks to the reported tempera-

ture history at the ingot surfaces FL3in and FR3 in. Starting from an initial liquid melt at around 260 °C, 

the LHS of the ingot is heated up and hold at around 273 °C while the RHS is cooled down and hold at 

around 243 °C. The 30 °C difference between the LHS and RHS deviates from the desired 40 °C dif-

ference imposed between the heat exchangers. This is due to the heat resistance between the heat ex-

changers and the alloy. Upon further cooling, the grain structure develops. The size of the free liquid is 

further decreased. At about 3300 s, while half of the sample is still fully liquid, no more superheat 

remains and the temperature gradient is almost zero, further dumping convection. 

Predicted and experimental cooling curves are shown in figure 3, together with the predicted solid 

fraction at the same locations. The agreement between measured and simulated cooling curves is over-

all very good. During the first stages of the experiment (t < 1600s), the temperature gradient is well 

represented. No numerical oscillations are observed, which confirms that fluid convection reaches a 

stable state. This could not be reached in two-dimensional simulations: the fluid flow was more pro-

nounced and no permanent regime could be achieved, leading to perturbed cooling curves with no 

clear temperature plateau. During solidification (2000s < t < 4000s), all abrupt inflexions on the cool-

ing curves are also retrieved. They correspond to the change from a fully liquid to fully mushy state 

when the dendritic front overgrows the thermocouple position. An interesting slope change is retrieved 

shortly after time 3500 s on thermocouple L21. From the CAFE simulation, it can be interpreted as a 



 

 

 

 

 

 

recalescence linked with a sudden increase of the solid fraction. It is due to the nucleation of equiaxed 

grains in the melt taking place at this location while temperature is almost uniform leading to a fast 

grain growth and latent heat released sufficient to increase the temperature. This phenomenon can be 

observed on figure 2c where few grains have nucleated in the melt, and the columnar grain interface is 

destabilized due to an almost uniform temperature as well as a fully undercooled liquid. 

As shown in figure 4, the simulated grain structure can also be compared with the experimental 

macrograph. The structure is mainly columnar and the trend for the grains to tilt upward is reproduced 

by the simulation. Explanation is due to the introduction of the fluid flow direction with respect to the 

<100> growth directions of the grains for the computation of the growth kinetic. Because the flow is 

going downward along the growth front, as is shown in Fig. 2b, the growth directions of the grains that 

are opposite to the flow can adopt a smaller undercooling. They extend faster in the undercooled liquid 

and lead to the present grain selection. While this correlates well with the experimental observations, 

the grain direction does not retrieve the strong misorientation. It is not obvious whereas this is due to 

the kinetic law itself, or to the growth algorithm implemented in the CA method. Further investiga-

tions should be led in this direction that would probably require more dedicated experiments. Adjust-

ments have been made to the nucleation parameters (table 1) in order to fit the observed grain density, 

allowing correct prediction of the columnar-to-equiaxed (CET) transition.  
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Figure 2. Predicted fluid flow and grain structure at different times of a 3D CAFE simulation. 
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Figure 3. Experimental [4] (thick black lines) and predicted (thick colored lines) cooling curves, 

along with predicted solid fraction (thin lines). Curves are given for four positions L21, L24, L27 and 

L30, which are respectively at 5, 35, 75 and 95mm from the left side, at ingot's mid-height. Imposed 

temperatures at mid-height on right, T(FR3in), and left, T(FL3in), sides are also represented. 

Figure 5 shows the predicted solute composition maps. The measured distribution is deduced from 

quantitative chemical analysis. The CAFE prediction is drawn at the ingot center with the same scale. 

Only the area delimited with the black rectangle can be compared. It corresponds to the measurements 

area. The global agreement in the right part of the ingot is good, as the chemical analysis would cor-

respond to a mean value, i.e. within the thickness of the sample. In the left part of the ingot, a highly 

segregated zone is predicted that crosses almost all the ingot's height, whereas it is only measured at 

the bottom of the ingot. However, it is believed that measurements are not conducted on a sufficiently 

dense array. A better way to conduct comparison would then be to average the predicted quantities 

over a volume that is representative of the quantitative measurement. 

A X-ray image of the ingot reveals segregated channels in the bottom-right part of the ingot [4]. 

This is not predicted by the simulation. Although the reason for this discrepancy is not yet very clear, 

anisotropy of the mush permeability is suspected to play a role, while it is only treated as isotropic in 

the present model. Freckles prediction also strongly depends on the mesh size [6]. Despite many nu-

merical optimizations [9] and parallel computing, the current 3D simulation requires heavy resources 

thus limiting the minimum element size (table 1). 

  



 

 

 

 

 

 

 

   (a)    (b) 

Figure 4. Grains structure at ingot center (a) as observed by metallographic etching [4] and (b) as 

predicted by the 3D CAFE model. 

 

5.  Conclusion 

A 3D CAFE model was presented and applied to macrosegregation benchmark experiment. It is able 

to retrieve measured cooling curves, macrosegregation and grain structure. Quantitative prediction 

being mainly achieved when comparing temperature evolution, it is believed that the fluid flow and 

growth undercooling are also well reproduced. However, prediction of segregated channel is still 

disappointing and may require additional resources and model improvements.  
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     (a)         (b) 

Figure 5. Segregation map (a) predicted at the center of the ingot and (b) measured by chemical 

analysis [4]. The black rectangle in (a) corresponds to the measured area represented in (b). 

 
Table 1. Value of simulation parameters. 

Parameter Variable Value Unit 

Melting temperature Tm 232. °C 

Eutectic temperature Te 183. °C 

Nominal composition w0 3.0 wt% 

Eutectic composition we 38.0 wt% 

Segregation coefficient k 0.0656 wt% 

Liquidus slope mL -1.2895 wt% 

Gibbs-Thomson coefficient  2. ∙ 10
-7

 °C m 

Diffusion of Pb in liquid Sn Dl 3. ∙ 10
-9

  m
2
 s

-1
 

Dynamic viscosity l 2 ∙ 10
-3

 Pa s  

Solutal expansion coefficient w -5.3 ∙ 10
-3

 wt%
-1

  

Thermal expansion coefficient T 9.5 ∙ 10
-5

 °C
-1

  

Reference temperature T0 228.14 °C 

Reference composition w0

l
 3.0 wt. % 

Density 0 7130 kg m
-3

 

Gravity field g -9.81 m s
-2

 

Thermal conductivity in the solid s 55 W m
-1

 °C
-1

 

Thermal conductivity in the liquid l 33 W m
-1

 °C
-1

 

Secondary dendrite arm spacing 2 90 ∙ 10
-6

 m 

Maximum nucleation density nmax 10
7
 m

-3
 

Average nucleation undercooling Tn 5. °C 

Nucleation undercooling standard deviation T  1. °C 

CA cell size  200 ∙ 10
-6

 m 

FE mesh size  780-1200 ∙ 10
-6

 m 

Time step  0.1 s 

Initial temperature  260. °C 

Initial composition  3.0 wt% 

Initial velocity  0. m s
-1

 

 


