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Abstract

We introduce a new definition of π-flatness for linear differential delay systems with time-varying
coefficients. We characterize π- and π-0-flat outputs and provide an algorithm to efficiently com-
pute such outputs. We present an academic example of motion planning to discuss the pertinence
of the approach.
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1. Introduction

Differential flatness, roughly speaking, means that all the variables of an under-determined
system of ordinary differential equations can be expressed as functions of a particular output,
called flat output, and a finite number of its successive time derivatives ([1, 2, 3], see also [4, 5, 6]
and the references therein).

For time-delay systems and more general classes of infinite-dimensional systems, extensions
of this concept have been proposed and thoroughly discussed in [7, 8, 9, 10]. In a linear context,
relations with the notion of system parameterization [11, 12] and, in the behavioral approach
of [13], with latent variables of observable image representations [14], have been established.
Other theoretic approaches have been proposed e.g. in [15, 16]. Interesting control applications
of linear differential-delay systems may be found in [7, 9, 10].

Characterizing differential flatness and flat outputs has been an active topic since the begin-
ning of this theory. The interested reader may find a historical perspective of this question in
[5, 6]. Constructive algorithms, relying on standard computer algebra environments, may be
found e.g. in [17, 18] for nonlinear finite-dimensional systems, or [19, 20] for linear systems
over Ore algebras.
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For algebraic reasons recalled in Section 4, the notions of π-freeness and π-flatness have been
introduced in the context of linear differential-delay systems by [7, 21, 9, 10] and then for linear
time-varying differential-delay systems, with polynomial time dependence, by [16, 22].

The results and algorithms proposed in this paper concern time-varying differential-delay
systems with meromorphic time-dependence. Our approach may be seen as an extension of
[21, 23, 5] to this context.

Our main contributions are (1) a new definition of π- and π-k-flatness, (2) the characterization
of π- and π-0-flatness in terms of the hyper-regularity of the system matrices, (3) yielding an
elementary algorithm, of polynomial time complexity, to compute π- and π-0-flat outputs, based
on the row/column reduction of the former matrices.

Let us emphasize that the introduced definitions are directly suitable for motion planning
and that our formalism is able to consider state and input variables separately or not. Note
that, though the natural algebraic framework used to describe such systems is based on a ring,
denoted by O, of polynomials in both the delay and differential operators, which is non principal,
the evaluation of our π- and π-0-flatness criteria relies upon computations over a principal ideal
ring, denoted by O, containing O, thus making the computations much simpler.

The paper is organized as follows. A first section briefly presents recalls on operators and
signals (Section 2), followed by recalls on matrices over the non commutative differential ring O
(Section 3). In the latter section, the notions of hyper-regularity and row and column reduction
are introduced and characterized in this non commutative context. Section 4 then deals with
differential algebraic notions of systems, π-flatness and π-k-flatness and contains the main results
characterizing π-flat and π-0-flat outputs. Algorithms to compute such π-flat and π-0-flat outputs
are then deduced. Finally, the proposed methodology is illustrated by an example of motion
planning in Section 5.

2. Operators & signal space

2.1. Recalls on Ore polynomials
In this paper we consider linear mixed differential and time-delay operators. We will model

them using the so-called Ore polynomials. These are a class of non-commutative polynomials,
named after Øystein Ore who was the first to discuss them in [24]. In the following we will give
a brief introduction to Ore polynomials, pointing to the appropriate references for details.

Let K be a ring and let σ : K → K be an automorphism. An additive map ϑ : K → K is
called a σ-derivation if for all a and b ∈ K the σ-Leibniz rule ϑ(ab) = σ(a)ϑ(b) + ϑ(a)b holds
(compare with [25, Sect. 7.3]). Consider the free K-left module generated by the powers of an
indeterminate x. We define the right-multiplication of x by an element of K with the commutation
rule

xa = σ(a)x + ϑ(a) for all a ∈ K.

Assuming associativity and distributivity, this rule allows us to compute arbitrary products. It
can be shown (see, e. g., [25, Thm. 7.3.1]) that this makes the free module into a ring which we
call the ring of (left) Ore polynomials in x w. r. t. σ and ϑ. In the literature this is usually denoted
by K[x;σ, ϑ].

The degree of an Ore polynomial p is defined as the largest exponent n such that xn has a
non-zero coefficient in p. We use deg 0 = −∞. If K is a domain, then we have the familiar
rule deg(pq) = deg p + deg q for all p and q ∈ K[x;σ, ϑ]. If K is a division ring, then it is
possible to divide elements in K[x;σ, ϑ] with remainder in a way which is very similar to the
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usual polynomial division. See [26] for details. This turns K[x;σ, ϑ] into a (left and right)
principal ideal domain and thus into a (left or right) Ore ring (see also [27, Prop. 5.9]). Thus,
we can form the field of (left or right) fractions K(x;σ, ϑ). See for example [28] for an extensive
introduction on how to properly define the various arithmetic operations for such fractions.

If K is commutative, σ = id and ϑ = 0 are the identity and the zero map, respectively,
then K[x; id, 0] is just the usual polynomial ring K[x]. Two other important special cases of Ore
polynomials are linear differential and delay operators, which we discuss in the following.

Example 1. Let K be the field of meromorphic functions over the real line (see e.g. [29, p. 42])).

1. Assume first that ϑ = 0 and that σ = δ is the time delay operator which is defined by
δ f (t) = f (t − τ) for all f ∈ K where τ > 0 is a fixed real number. In an abuse of notation,
we will denote the ring K[x; δ, 0] just by K[δ], i. e., we identify δ with the Ore variable x.
The commutation rule for K[δ] is δ f (t) = f (t − τ)δ for all f (t) ∈ K. We call it the ring of
time delay operators.

2. Assume now, that σ = id. Let ϑ = ∂ be the usual derivation in the sense of calculus.
Then, the ring K[x; id, ∂]—which we will just write as K[∂]—has the commutation rule
∂ f (t) = f (t)∂ + ḟ (t) for all f (t) ∈ K. This is the ring of differential operators.

Since the maps ∂ and δ commute, we may extend ∂ to K[δ] by setting ∂(δ) = 0. Thus, the
ring O = K[δ, ∂]—or in more complete notation K[x; δ, 0][y; id, ∂]—is well-defined and has the
commutation rules

δ f (t) = f (t − τ)δ, ∂ f (t) = f (t)∂ + ḟ (t) and ∂δ = δ∂

where f (t) ∈ K. We call O the ring of time-delay differential operators. The commutation of ∂
and δ means that this ring is an Ore algebra in the sense of [30, Def. 1.2]. Using the formulæ
in [28, Thm. 13], we may extend the action of ∂ on the fractions in K(δ). Thus, also the ring
O = K(δ)[∂] is a well-defined Ore polynomial ring.

Since δ is an automorphism, by [25, Sect. 7.3] we may form the ring of formal Laurent series
K((δ)) in δ with coefficients in K. That is, K((δ)) consists of elements of the form

∑
j≥N f jδ

j where
N ∈ Z and f j ∈ K for all j ≥ N. Moreover, by [25, Prop. 7.3.7] we may embed K(δ) into K((δ)).

2.2. Signal space

The signal space has to be contained in the domain of the previously defined operators. Such
a space is not unique in general and we may choose it in accordance to our control objectives. A
signal space suitable for motion planning tasks should satisfy at least the following requirements.
It should:

1. be closed under the action of any polynomial of differentiation (∂) and delay (δ)

2. be closed under advances defined by inverses of δ-polynomials,

3. contain C∞ functions with compact support in R.
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Therefore we introduce

S = { f : R→ R | ∃E f ⊆ R discrete : f ∈ C∞(R \ E f ,R)
and ∃t0 ∈ R ∀t ∈ R : t < t0 =⇒ f (t) = 0}.

which is an adaptation of a space introduced in [31, Sec. 3]. Indeed, S fullfills the first and third
property and it is even an O-module.

As far as property 2 is concerned: if π ∈ K[δ] with π , 0, let us compute π−1 f for f ∈ S.
To this end we can develop π−1 into a formal Laurent series π−1 =

∑
j≥N a jδ

j where N ∈ Z and
a j ∈ K for all j ≥ N (see Appendix A). Then for any f ∈ S and t ∈ R we have

(π−1 f )(t) =
∑
j≥N

a jδ
j f (t) =

∑
j≥N

a j f (t − jτ).

Since f (t − jτ) = 0 for jτ > t − t0 all but finitely many of the summands on the right hand
side vanish at any given t. We can check that π−1 f is again in S. Thus, property 2 is satisfied.
Moreover, one can show that S is an O-module. Note that changing O to O in conjunction with
S will yield significant simplifications in the sequel.

The example discussed in Section 5 also shows that S is relevant for motion planning tasks.
Note in addition that S contains splines and step functions.

3. Matrices & hyper-regularity

We model systems of linear time-delay differential equations using matrices of operators.
The set of all n×m matrices with entries in O is denoted by On×m. Square matrices in On×n which
possess a two-sided inverse that is also in On×n are called unimodular. The set of all unimodular
matrices of On×n is denoted by Gln(O). We write 1n for the n × n identity matrix and 0n×m for
the n × m zero matrix. In both cases we will omit the indices when they are obvious from the
context. We use O1×m for the set of row vectors of length m and On for the set of column vectors
of length n. Given a matrix M ∈ On×m we denote its O-row space by O1×nM. For a matrix
M = (Mi, j) ∈ On×m we define deg∂ M = max{deg∂ Mi, j | i = 1, . . . , n, j = 1, . . . ,m}. This will
also be applied to row or column vectors regarding them as 1×m- or n×1-matrices, respectively.
We write Mi,∗ for the i-th row of M and M∗, j for the j-th column of M where i = 1, . . . , n and
j = 1, . . . ,m.

Let M ∈ On×m. Since K(δ) is a division ring, O is a principal ideal domain. This means we
can apply [32, Thm. 8.1.1] in order to find unimodular matrices S ∈ Gln(O) and T ∈ Glm(O)
such that S MT is in Smith-Jacobson form. This is a diagonal form with the additional property
that each diagonal element is a total divisor of the next one.

Definition 1 (Hyper-regularity [5]). A matrix M ∈ On×m is called hyper-regular if the diagonal
elements of its Smith-Jacobson form are all 1, i. e., if there are unimodular matrices S ∈ Gln(O)
and T ∈ Glm(O) such that

n ≥ m and S MT =

(
1m

0n−m×m

)
or n < m and S MT = (1n, 0n×m−n).
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Usually, the given method for obtaining a Smith-Jacobson form involves computing a diag-
onal form by repeatedly taking greatest common (left or right) divisors as a first step. Since
the performance of this approach is difficult to predict and most likely exponential due to de-
gree growth, we will give an alternate, and computationally more efficient, characterisation of
hyper-regularity below.

Proposition 1 ([19]). (i) A matrix M ∈ On×m, with n < m, is hyper-regular if, and only if, it
possesses a right-inverse, i.e. ∃ T ∈ Glm(O) such that MT = (1n, 0n×(m−n)).

(ii) A matrix M ∈ On×m, with n ≥ m, is hyper-regular if, and only if, it possesses a left-inverse,

i.e. ∃ S ∈ Gln(O) such that S M =

(
1m

0(n−m)×m

)
.

Proof. We only prove (i). The proof of (ii) follows the same lines and is left to the reader. Let
M ∈ On×m be given with n < m. M is hyper-regular if, and only if, there are matrices S ∈ Gln(O)
and T ∈ Glm(O) such that S MT = (1n, 0n×m−n). Thus, using the identity(

1n, 0
)

= S −1
(
1n, 0

) (S 0
0 1m−n

)
we get (

1n, 0
)

= S −1(S MT )
(
S 0
0 1m−n

)
= M

(
T

(
S 0
0 1m−n

))
.

which proves that M is hyper-regular if, and only if, it has
(
T

(
S 0
0 1m−n

))
as right-inverse. �

We will apply the technique of row-reduction for the computation of left- or right-inverses.
A matrix M ∈ O

n×m
is called row-reduced (or row-proper) if for all row vectors v ∈ O

1×n
the

so-called predictable degree property

deg∂ vM = max{deg∂ v j + deg∂ M j,∗ | j = 1, . . . , n}

holds. Note, that this definition differs from the usual one as given in [33, Sect. 2] or [34,
Sect. 2.2], but is shown to be equivalent in [33, Lem. A.1 (a)] where one can easily check that
the proof also works for division rings instead of fields. Similarly, the algorithm outlined in
the proof of [33, Thm. 2.2] can be easily transferred to division rings, and we obtain that for
every matrix M ∈ On×m there exists a matrix S ∈ Gln(O) such that the non-zero rows of S M
form a row-reduced submatrix. Using the results in [35] row-reduction is of low polynomial
complexity in the size of M and its degree. Directly from the definition we obtain that the rows
of a row-reduced matrix must be linearly independent.

Row-reducedness is connected to the Popov normal form (see, e. g., [36, Def. 2.2]) which is
essentially a row-reduced matrix with additional properties to make it unique. One may prove
that for each matrix in On×m there exists exactly one matrix Popov form having the same row
space. Also, row-reduction may be regarded as a special case of Gröbner basis computation—
see [35].

We consider now the case n ≤ m. Let M ∈ On×m, and let S̃ ∈ Gln(O) be such that

S̃ M =

(
M̃
0

)
.
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where M̃ ∈ O
k×m

is row-reduced and k is the (left) row-rank of M by [33, Thm. A.2]. Assume
first that M is hyper-regular. As discussed above, this means that all unit vectors of O1×m are in
the row-space of M̃. Thus, we must have k = m and by [33, Lem. A.1 (c)] all rows of M̃ have
∂-degree 0 or below. Thus, M̃ ∈ K(δ)m×m. Since all rows of M̃ are linearly independent, we
conclude that M̃ has maximal (left) row rank.

Conversely, if row-reduction of M yields a matrix of degree 0 and (left) row-rank m, then
clearly M is hyper-regular.

There is also the analogue concept of column-reduction. Each matrix may be brought into
column-reduced form (up to zero rows) by right multiplication with a unimodular matrix. All
the results cited above hold with the appropriate changes. In total, we have proved the following
lemma.

Lemma 1 ([19]). A matrix M ∈ On×m is hyper-regular if and only if

1. n ≥ m and row-reduction yields a matrix of ∂-degree 0 and left row-rank m

2. or, n ≤ m and column-reduction yields a matrix of ∂-degree 0 and right column-rank n.

4. Systems

Consider systems of the kind
Ax = Bu, (1)

with the pseudo state x of dimension n, input u of dimension m and the matrices A ∈ Rn×n

and B ∈ Rn×m, where R is a ring. For the analysis of such systems, two important objects are
considered (see e.g. [37, 38, 39, 40, 7, 13, 11, 16, 34]):

• its behavior B , ker(A,−B), where the kernel is taken with respect to the chosen signal
space2, where the components of the variables x and u are supposed to live

• and its system module M , R1×(n+m)/R1×n(A,−B), where R1×p is the set of row vectors
of length p, for every p ∈ N, with components in R and where R1×n(A,−B) is the module
generated by the rows of the matrix (A,−B).

Linear time-invariant differential systems, i. e. without delay, the ring R being chosen as R[∂]
and being commutative, are shown to be differentially flat if, and only if, their system moduleM
over R is free, and a flat output is, by definition, a basis of the free moduleM (see e. g. [2, 5]).
This property may serve as a flatness definition for linear differential-delay systems ([7, 21, 10]).
Nevertheless, only few systems have a free system module. Moreover, since the considered
base ring R = O = K[δ, ∂] is not a principal ideal domain, freeness is in general different
e. g. from torsion freeness or projective freeness (see e. g. [7]), with important, but otherwise
unclear, pratical consequences on the control possibilities of the system. However, for linear
time-invariant differential-delay systems, namely with R = R[δ, ∂], in virtue of the localization
property of a commutative Ore algebra, torsion freeness ofM is equivalent to the existence of a
so-called liberation polynomial π , 0, π ∈ R[δ], such that π−1M is free. This property is called

2this space is not uniquely defined and may be chosen according to the specific application one is interested in, such
as motion planning, tracking, etc. See section 2
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π-freeness (see again [7]) and a basis of the free module π−1M is called a π-flat output. It can be
interpreted as follows: if the system module, finitely generated by m input variables, is torsion
free, it admits a basis of the form π−1{y1, . . . , ym} where yi ∈ R, i = 1, . . . ,m. Consequently,
every system variable can be expressed as a combination of derivatives, delays and advances of
(y1, . . . , ym). Note that the action of π−1 on a variable z may be interpreted as a formal power
series in δ−kz = z(· + kτ) for k ≥ −N, for some N ∈ N, and thus a combination of advances, or
predictions, of z (see Section 2).

To extend this approach to time-varying differential-delay systems without restricting the
time dependence of the system coefficients to be polynomial, as in [16, 22] where effective
Gröbner bases techniques are used, many new difficulties appear, and in particular the fact that
the set made of the powers of a given polynomial is not in general an Ore set. Therefore, we
are lead to propose a different definition of π-flatness, based on an extension of the “practical”
flatness definition, in the spirit of [21, 9], saying that all the system variables are expressible
in terms of a flat output, its derivatives, delays and advances in finite number. Moreover we
introduce the definition of π-k-flatness, which is an analogue, in our differential-delay context,
to the notion of k-flatness (see [41, 42, 43, 44]). This viewpoint is developed in the next two
subsections.

4.1. Recalls on the framework

From now on, we take System (1) with R = O = K[∂, δ] as in Section 2.1. Recall that δ,
the delay operator, is defined by δ f (t) = f (t − τ) for all t ∈ R, where τ is a given positive real
number and f ∈ K, and that ∂ , d

dt is the ordinary time derivative operator. The ground field K
is the field of meromorphic functions over the real line and the notation O = K(δ)[∂] is defined
in Section 2.1. Furthermore, we will consider only the signal space S from Section 2.2.

We assume that the matrix (A,−B) has full (left) row rank.
In this case, System (1) is a differential-delay system, possibly with time-varying coefficients,

the coefficients being meromorphic functions of time. An example of such system is provided
by the following:

Example 2. Consider the system

ẋ1(t) = a(t)
(
x2(t − 1) − x2(t − 2)

)
ẋ2(t) = u(t − 1),

where the pseudo-state x , (x1, x2) belongs to S2, the control u belongs to S, and the function a
is meromorphic with respect to time. Here, the matrices A and B are given by

A ,
(
∂ −a(δ − δ2)
0 ∂

)
, B ,

(
0
δ

)
and, as announced, they are matrices over the ring O = K[δ, ∂].

4.2. π-flatness

One usual way to consider System (1) is to bring all the variables in one side, i.e. to consider
the system

(A,−B)
(
x
u

)
= 0
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or, in other words,
Fξ = 0 (2)

with F , (A,−B) and ξ ,
(
x
u

)
.

Definition 2 (π-flatness). The system (2) is called π-flat if there exist π ∈ K[δ] and matrices
P ∈ Om×(n+m) and Q ∈ O(n+m)×m such that

π−1QSm = B = ker F and π−1P π−1Q = 1m.

Equivalently, there exist a polynomial π ∈ K[δ] and matrices P and Q of suitable dimensions
over the ring O, such that ξ = π−1Qy, with y = π−1Pξ for all ξ ∈ Sn+m, where y ∈ Sm is a π-flat
output. In other words, π-flatness means that all the system variables can be expressed as linear
combinations of y and a finite number of its delays, advances and derivatives, in an invertible
way, namely the matrix π−1P admits the matrix π−1Q as right-pseudo-inverse.

If π ∈ K, then the system is simply called flat and y a flat output.
This definition is thus an extension of the one proposed by [2, 3] for finite-dimensional non-

linear ordinary differential systems or by [21] for time-invariant delay-differential systems. Other
definitions for time-varying linear differential-delay systems with polynomial time dependence
are proposed by Chyzak, Quadrat and Robertz [16].

Remark 1. Note that Definition 2 is equivalent to the existence of matrices P̄ ∈ O
m×(n+m)

and
Q̄ ∈ O

(n+m)×m
such that Q̄Sm = B and P̄Q̄ = 1m. We recover π by computation of the left common

denominator of P̄ and Q̄ [27, Prop. 5.3]. Therefore all computations can be done over O.

We have the following proposition:

Proposition 2. Assume that y is a π-flat output of system (2). Let us set y = T̄ z with T̄ ∈ Glm(O).
There exists a polynomial κ ∈ K[δ] such that z is a κ-flat output of system (2).

Proof. By Remark 1, it is sufficient to prove that T̄−1P̄ and Q̄T̄ are related to the transformed flat
output z. Obviously, we have T̄−1P̄ Q̄T̄ = 1m and moreover Q̄T̄Sm = Q̄Sm = B. With κ being a
common denominator of T̄−1P̄ and Q̄T̄ , the claim follows. �

Remark 2. To every π-flat system there obviously corresponds a polynomial π0 ∈ K[δ] of mini-
mal degree such that the system is π0-flat.

To characterize π-flat systems, we introduce the following definition:

Definition 3. We callM , O
n+m

/O
n
F the extended system module.

Theorem 1. We have the following equivalences:

(i) System (2) is π-flat;

(ii) The extended system moduleM is free;

(iii) The matrix F is hyper-regular over O.
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Remark 3. Note that in the linear time-invariant case Definition 2 is equivalent to the definitions
of [7, 16].

For the proof we need the following lemma:

Lemma 2. Let Λ be an arbitrary ring and M ∈ Λp×q, and let S ∈ Glp(Λ) and T ∈ Glq(Λ) be
unimodular. Then Λ1×q/Λ1×pM � Λ1×q/Λ1×p(S MT ) as left Λ-modules.

Proof. The map ϕ = v 7→ vT is an automorphism of Λ1×q because T is unimodular. The kernel of
the composition π ◦ ϕ of the projection π : Λ1×q → Λ1×q/Λ1×pS MT with ϕ is ϕ−1(Λ1×pS MT ) =

Λ1×pS M = Λ1×pM where the second identity follows from the unimodularity of S . Since π ◦ ϕ
is also surjective, by the first isomorphism theorem for modules (see, e. g., [27, Theorem 1.17])
there is an isomorphism Λ1×q/Λ1×pM → Λ1×q/Λ1×p(S MT ). �

Proof (of Theorem 1). We prove first that (i) is equivalent to (iii). If the system Fξ = 0 is π-flat,
there are matrices P̄ ∈ O

m×(n+m)
and Q̄ ∈ O

(n+m)×m
with common denominator π ∈ K[δ] \ {0} such

that Q̄Sm = B = ker F and P̄ Q̄ = 1m. That means that Q̄ is surjective and that the following
diagramme is exact.

0 Sm Sn+m im F 0
Q̄ F

P̄ Ē

Since P̄ Q̄ = 1, by the splitting lemma (see, e. g., [45, Prop. 3.2]) one can show (see [46]) that
there is a matrix Ē ∈ O

k×n
such that FĒ = 1n where n is the (left) rank of im F because the rows

of F are linearly independent by assumption. Therefore F is hyper-regular.
Conversely, let F be hyper-regular. Using Lemma 1 we may thus compute W̄ ∈ Gln+m(O)

such that FW̄ = (1n, 0). If we let Q̄ be the last m columns of W̄ and P̄ the last m rows of W̄−1,
then we have FQ̄ = 0 and P̄Q̄ = 1m. Extracting a common denominator π of P̄ and Q̄, we have
proved that Fξ = 0 is π-flat.

Next we show that (iii) is equivalent to (ii). Assume first that F is hyper-regular. Since the
unit vectors are in the column space of F, by column-reduction we obtain an invertible matrix
T̄ ∈ Gln+m(O) such that FT̄ = (1n, 0). By Lemma 2, this means that

M =
O

1×(n+m)

O
1×n

F
�
O

1×(n+m)

O
1×n

FT̄
�
O

1×(n+m)

O
1×n

(1n, 0)
� O

1×m

which is free.
Conversely, assume that M is free. Using, e. g., the method in [32, Thm. 8.1.1] we may

obtain unimodular matrices S̄ ∈ Gln(O) and T̄ ∈ Gln+m(O) such that S̄ FT̄ = (∆̄, 0) where
∆̄ = diag(a1, . . . , an) ∈ O

n×n
is a diagonal matrix. By Lemma 2,

M =
O

1×(n+m)

O
1×n

F
�
O

1×(n+m)

O
1×n

S̄ FT̄
�
O

1×(n+m)

O
1×n

(∆̄, 0)
�

n⊕
j=1

O

Oa j

⊕ O
1×m

.

Since this module is free by assumption we conclude that all a j must be units, i. e., we may
assume w. l. o. g. that ∆̄ = 1n. By Definition 1, F is hyper-regular. �
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Algorithm 1 (Computation of a π-flat output).

Input: A matrix F ∈ On×(n+m) representing the system (2).

Output: An Ore polynomial π ∈ K[δ] together with matrices P ∈ Om×(n+m) and Q ∈ O(n+m)×m as
in Definition 2 or fail if such matrices do not exist.

Procedure:
1. Use column-reduction to check whether F is hyper-regular. If not, then return fail.

2. Else, let W̄ ∈ Gln+m(O) be such that

FW̄ =
(
1n 0n×m

)
.

3. Let

Q̄ , W̄
(
0n×m

1m

)
and P̄ ,

(
0m×n 1m

)
W̄−1.

4. Let π ∈ K[δ] be a common denominator of P̄ and Q̄.

5. Set P , πP̄ ∈ Om×(n+m) and Q , πQ̄ ∈ O(n+m)×m.

6. Return π, P and Q.

Remark 4. In the above algorithm we exploit the fact that W̄−1 can be computed at the same
time as W̄ by inverting the elementary actions that compose W̄.

4.3. π-0-flatness
In contrast to the considerations of the previous subsection, it is sometimes necessary to

keep the state and input variables separate: in the theory of linear time-invariant systems, con-
trollability is equivalent to the existence of Brunovský’s canonical form (see e.g. [47, 48]); the
interpretation of some of their states as flat output (see e.g. [2]) shows that flat outputs do not
need to depend on u, i. e. there exist P ∈ Rm×n and Q ∈ Rn×m such that y = Px, x = Qy and
PQ = 1m. This property is called 0-flatness. The fact that u can be expressed as a function of y
is, in this case, an immediate consequence of the system equation with x = Qy. More generally:

Definition 4. We say that a system is π-k-flat, with k ≥ 1, if and only if there exists a π-flat output

y such that the maximal degree with respect to ∂ of the matrix P
(
0n−m

1m

)
is equal to k − 1.

We set k = 0, by convention, if P
(
0n−m

1m

)
= 0, i. e. y does not depend on u.

Note that π-0-flatness is equivalent to the existence of (π, P,Q) as in Definition 2 such that
P =

(
P1 0m,m

)
with P1 ∈ O

m×n and π−1P1π
−1Q1 = 1m where Q1 ,

(
1n 0n,m

)
Q.

A linear flat system is not necessarily 0-flat, as shown by the following elementary example:

Example 3. Consider the system (
1 −∂

) (x
u

)
= 0

or
x = u̇.

It can be easily seen that y = u is a flat output. Hence the system is 1-flat.
10



Remark 5. Note that elementary considerations show that 1-flatness is not preserved under the

action of the group of unimodular matrices. Indeed, setting
(
x′

u′

)
=

(
0 1
1 0

) (
x
u

)
in the previous

example, we get the system
(
−∂ 1

) (x′

u′

)
= 0, or −ẋ′ = u′, which admits y′ = x′ as flat output and

is thus obviously 0-flat. However, if we restrict the transformation group to be Gln(O) ⊗ Glm(O),
a group preserving the control variables, then 1-flatness is preserved.

Example 3 and Remark 5 thus show that obtaining a characterization of π-0-flat systems is
of interest.

Lemma 3 (Elimination). If B in (1) is hyper-regular, the system can be decomposed according
to (

R̃
ϕ−1F

)
x = M̃Ax = M̃Bu =

(
1m

0(n−m)×m

)
u. (3)

where F ∈ O(n−m)×n and ϕ ∈ K[δ] with ϕ , 0.

Remark 6. Let F̄ ∈ O
p×q

. Let ϕ ∈ K[δ] be its common denominator. We have F̄ = ϕ−1F with
F ∈ Op×q. Thus, ker F̄ = ker F.

Theorem 2. If B is hyper-regular, we have the following equivalences:

(i) The control system (1) is π-0-flat;

(ii) The extended system module O
1×n
/O

1×(n−m)
F is free, with F defined in (3);

(iii) F is hyper-regular over O.

Proof. Let F be hyper-regular over O. From representation (3) combined with Theorem 1, there
exists P̄1 ∈ O

m×n
and Q̄1 ∈ O

n×m
such that FQ̄1 = 0 and P̄1Q̄1 = 1m. Thus, P̄ ,

(
P̄1, 0

)
and

Q̄ ,
(

Q̄1
R̃Q̄1

)
satisfy P̄Q̄ = P̄1Q̄1 = 1m and

M̃
(
A −B

)
Q̄ = M̃

(
AQ̄1 − BR̃Q̄1

)
=

(
R̃

ϕ−1F

)
Q̄1 −

(
1m

0

)
R̃Q̄1 = 0. (4)

Equation (4) implies that Q̄Sm ⊆ B. To prove the other inclusion, let γ =
( γ1
γ2

)
∈ B. Then

analogously

0 = M̃
(
A −B

)
γ =

(
R̃

ϕ−1F

)
γ1 −

(
1m

0

)
γ2.

Since kerϕ−1F = ker F, we obtain γ1 ∈ ker F and R̃γ1 = γ2. Consequently, there exists ζ ∈ Sm

such that γ1 = Q̄1ζ and thus also γ2 = R̃Q̄1ζ. Hence, γ ∈ Q̄Sm and the other inclusion also holds.
Thus, extracting a common denominator π such that P̄ = π−1P and Q̄ = π−1Q where P ∈ Om×n

and Q ∈ On×m, we see that π, P and Q fulfill Definition 4. Thus, (iii) implies (i).
Conversely, if (i) holds with π, P and Q being as in Definition 4, then with Q1 = (1n, 0)Q

and P1 = P
(

1n
0

)
, by the same calculation (4) we obtain ϕ−1Fπ−1Q1 = 0 and π−1P1π

−1Q1 = 1m.
Thus, Fx = 0 is π-flat. Thus, by Theorem 1 we have (iii). �
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If the matrix B of system (1) is hyper-regular, we can directly check for the existence of a
π-0-flat output, as shown in Theorem 2. A suitable algorithm is as follows:

Algorithm 2 (Computation of a π-0-flat output).

Input: Matrices A ∈ On×n and B ∈ On×m with B hyper-regular, representing (1).

Output: If system (1) is π-0-flat, the polynomial π ∈ K[δ] and the triple (P,Q,R) of the matrices
P ∈ Om×n, Q ∈ On×m and R ∈ Om×m from Definition 2.

Else, if the system defined by A and B is not π-0-flat, then FAIL.

Procedure:
1. Compute M̃ ∈ Gln(O), s.t. M̃B =

(
1m

0(n−m)×m

)
.

2. Write

M̃A =

(
R̃

ϕ−1F

)
where R̃ ∈ O

m×n
and F ∈ O(n−m)×n.

3. If Algorithm 1 applied to F returns π1, P1 and Q1, then

(a) Set P̄ = (π−1
1 P1, 0) and

Q̄ =

(
π−1

1 Q1
R̃π−1

1 Q1

)
.

(b) Let π be a common denominator of P̄ and Q̄ and set P = πP̄ ∈ Om×n and
Q = πQ̄ ∈ On×m.

(c) Return π, P and Q.

4. Else, return fail

If the matrix B of system (1) is not hyper-regular, we can check for π-flatness by applying
Algorithm 1.

Remark 7. Note that Algorithms 1 and 2 do not necessarily yield a polynomial π of minimal
degree in δ. Especially, it is not guaranteed, that we obtain π ∈ K if the system is flat.

5. Example

To illustrate the results of the preceding sections and the usefulness of the concept for the
feedforward controller design for linear time-delay differential systems, we demonstrate all steps
for the system of Example 2. Note that all the necessary computations can be done with a package
for the computer algebra system Maple, which has been presented in [19]. The package can be
obtained from the first author upon request.

The matrix B is hyper-regular and following Algorithm 2 we compute M̃ such that M̃B =

(
1
0

)
.

We get

M̃ =

(
0 δ−1

1 0

)
.

12



Thus: (
R̃
F

)
= M̃A =

(
0 δ−1∂
∂ a(δ2 − δ)

)
We now follow Algorithm 1 and compute W̄ such that FW̄ =

(
1 0

)
to

W̄ =

(
0 1

(δ2 − δ)−1 1
a −(δ2 − δ)−1 1

a∂

)
.

The inverse is

W̄−1 =

(
∂ a(δ2 − δ)
1 0

)
.

Subsuming the remaining computations of Algorithm 1 we directly obtain the following matrices
in step 3 a) of Algorithm 2, namely

P̄ =
((

0 1
)

W̄−1 0
)

=
(
1 0 0

)
, (5)

and

Q̄ =

(
12
R̃

)
W̄

(
0
1

)
=


1

−(δ2 − δ)−1 1
a∂

−
(
δ3 − δ2

)−1 (
1
a∂

2 − ȧ
a2 ∂

)
 . (6)

We readily get π = δ3 − δ2.
From (5), a π-0-flat output is given by y = x1. This can also be deduced from the first entry

in Q̄. From (6) we deduce that x2 = −(δ2 − δ)−1
(

1
a ẏ

)
and u = −

(
δ3 − δ2

)−1 (
1
a ÿ − ȧ

a2 ẏ
)
.

We now use these formulas to generate feedforward trajectories corresponding to the fol-
lowing motion planning problem: we are looking for a trajectory of (x1, x2, u) starting from
x(0) = (x1(0), x2(0)) = (0 0) and arriving at the final state x(2) = (1 0) at time t = 2, while x1 has
to be equal to zero before t = 0 and to 1 after t = 2.

In order to compute explicit feedforward state and input trajectories without integrating the
system differential-delay equations, we compute a reference trajectory for the flat output y, which
is not constrained by any differential-delay equation thanks to the freeness of the extended system

module, and then deduce the state and input trajectories by
(
x
u

)
= Q̄y with Q̄ defined by (6). We

take a(t) = t + 3 and thus ȧ(t) = 1. Furthermore, we take τ = 1, i.e. δa(t) = a(t − 1).
In order to obtain an explicit expression for x2 = −(δ2 − δ)−1

(
1
a ẏ

)
, we compute the series

expansion (
δ2 − δ

)−1
=

∑
j≥−1

−δ j.

Taking into account that x1 is required to be constant for t < 0 and t > 2, the desired trajectory
yd for y = x1 will be constant at these points of time and thus ẏd = ÿd = 0 for t < 0 and t > 2.
This yields

x2,d =

∑
j≥−1

δ j

 1
a

ẏd = X2,d(t)χ[−1,0[(t) + (X2,d(t) + X2,d(t + 1))χ[0,∞[(t + 1), (7)

where X2,d(t) = 1
a(t−btc) ẏd(t − btc).
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We make the ansatz

yd(t) = (a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5)χ[0,2[(t) + χ[2,∞[(t)

the coefficients ai, i = 0, . . . , 5 being such that y(0) = x1(0) = 0, y(2) = x1(2) = 1, ẏ(0) = 0,
ẏ(2) = 0, ÿ(0) = 0 and ÿ(2) = 0. We readily get:

yd(t) =

(
−

45
4

t2 +
35
4

t3 −
3
4

t5
)
χ[0,2[(t) + χ[2,∞[(t). (8)

We now insert this expression in (7) to obtain the corresponding feedforward control. Since

π−1 =
(
δ3 − δ2

)−1
=

∑
j≥−2

δ j (9)

we get
ud(t) = Ud(t)χ[−2,−1[(t) + (Ud(t) + Ud(t + 1))χ[−1,∞[(t), (10)

where Ud(t) = − 1
a(t−btc)) ÿd(t−btc) + 1

a2(t−btc) ẏd(t−btc), which completes the solution of this motion
planning problem. The resulting trajectories are shown in Figure 1. Though the trajectory for y
is relatively smooth, it is generated by an input u which is quite irregular and complicated. We
also notice that u has to start 2τ before the beginning of the y-trajectory in order to satisfy the
above requirements, which corresponds to the order of the Laurent series associated to π−1.
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0
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−3 −2 −1 0 1 2 3
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−3 −2 −1 0 1 2 3
−8
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−4

−2

0

2

4

t

u

Figure 1: Graphs for x1 = y, x2 and u
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6. Conclusion

In this paper we have introduced a new definition of π-flatness and the important particu-
lar case of π-0-flatness. These notions have been characterized by means of the properties of
matrices over Ore polynomial rings, such as hyper-regularity or row- and column-reducedness.
This characterization has yielded an efficient and simple algorithm to test the existence of π- and
π-0-flat outputs and compute them, via an algorithm that is implemented in the computer algebra
system Maple [19]. We have illustrated the pertinence of this approach by an academic example.

Note that the description of all possible π-0-flat outputs can be achieved; it will be the sub-
ject of a forthcoming paper. This will lead to a method to determine the minimal order of the
polynomial π.

Another potential direction to extend this approach may be to investigate other possible signal
spaces.

Finally, the question of increasing the efficiency of the proposed algorithm by using quotient
free computations may also be addressed.
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Appendix A. Inversion of a δ-Polynomial

Let π = anδ
n + . . . + akδ

k ∈ K[δ] where k < n and ak, . . . , an ∈ K. Assume that ak , 0, i.e.
that the order of π is k. The inverse π−1 in K((δ)) may be computed in the following way: First,
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using the fact that
π−1 = δ−k(anδ

n−k + . . . + ak)−1

we may assume w. l. o. g. that k = 0. We make an ansatz
∑

j≥0 c jδ
j for π−1 and compute

1 = π
∑
j≥0

c jδ
j =

n∑
i=0

∑
j≥0

aiδ
i(c j)δi+ j =

∑
`≥0

(min{`,n}∑
i=0

aiδ
i(c`−i)

)
δ`.

Comparing coefficients and using a0 , 0, we can compute

1 = a0c0 ⇐⇒ c0 = a−1
0

and

0 =

min{`,n}∑
i=0

aiδ
i(c`−i) ⇐⇒ c` = −a−1

0

min{`,n}−1∑
i=0

aiδ
i(c`−i)

for all ` ≥ 1. Note, that the left hand side depends only on those ci which are already computed.
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