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Abstract. A heating stage as been developed to perform in-situ annealing in a SEM equipped 

with an EBSD system in order to study recrystall ization mechanisms. High temperature 

treatments could then be performed inside the SEM, up to 1180°C and with high heating- and 

cooling-rates (~100°C.s
-1

). Samples were cooled down to room temperature to perform EBSD 

orientation mapping in between successive short-duration heat-treatments. Microstructure 

evolution snapshots obtained this way allow gaining an insight into recrystallization mechanisms. 

The interest of such experiments is shown for two examples: static recrystallization of cold-

deformed pure tantalum, and post dynamic evolution of hot-deformed Zircaloy4.
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1. Introduction

Understanding recrystallization in polycrystalline materials, as well as any microstructure evolution 

phenomenon, requires a description of the physical mechanisms which occur locally and to 

observe how these mechanisms depend on microstructure local parameters. One of the main 

difficulties to overcome is linked to the fact that once the phenomenon occurred (e.g. a nucleus 

appeared, or a grain boundary moved), the pre-existing structures have disappeared. Identifying 

recrystallization mechanisms from a series of samples annealed under different conditions must 

therefore be based on statistical considerations. An alternative approach is to observe how a 

particular local structure evolves during annealing and check if this evolution is consistent with the 

postulated physical mechanism. The possibility of directly observing the evolution of a given 

sample area in the deformed state and throughout recrystallization is then of utmost interest. The 

use of an in-situ heating stage in a SEM system offers that possibility [1,2]. SEM provides the 

suitable spatial resolution, and, if coupled to the EBSD technique, also allows for investigating 
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local texture effects which are of utmost importance when dealing with grain boundary migration

phenomena.

Studying recrystallization mechanisms (notably the nucleation stage) has motivated the 

development of in-situ annealing devices over the last decade. The main drawbacks of the 

previously developed devices were a relatively low maximal temperature (typically 500°C) or a 

rather slow heating rate (only few °C.s
-1

) [3-6], and a poor control of temperature gradients within 

the sample. More recently, high-temperature in-situ annealing treatments (>1000°C) have been 

performed by D. Prior's team in Liverpool, with a heating stage implemented in a CAMSCAN SEM 

especially designed for in-situ experiments [7,8]. In addition, in those experiments, controlling the 

heating and cooling rates is not that crucial because EBSD data are directly acquired at high 

temperature. The increase in EBSD data acquisition rates indeed allows nowadays for getting the 

zone of interest scanned within a few minutes, which can be achieved if the required spatial 

resolution is not too high or the scanned area not too large. Such an experimental procedure is 

nevertheless suitable only if the evolution kinetics are slow enough [9,10]. In order to avoid those 

limitations, we adopted the sequential approach which consists in room temperature EBSD 

measurements after successive annealing treatments. Then heating and cooling must be as fast 

as possible so that the microstructure does not evolve during heating and cooling stages. The 

observed evolution can then be related to the holding time at the chosen annealing temperature.

It is worth noticing that if this sequential approach has advantages for recrystallization and grain 

growth studies, it would not be suitable for other processes like phase transformations. In this 

case, EBSD mapping at high temperature is required [11].

The main design differences between the previously existing heating stages lies on the sample 

dimensions and how it is connected to the heating device. Systems with a relatively massive 

sample, including commercial ones, have a thermal inertia which does not allow for fast heating 

and cooling. In addition, thermal gradients may still exist in the sample and the temperature 

reached at the observed surface may be difficult to determine [12]. This is one of the main 

reasons why we, and other teams [e.g. 13], have chosen to build a heating stage based on the 

principle originally proposed by R. Le Gall et al. [3]. This principle and how it was adapted is 

described in the next section. In the following, recrystallization sequences obtained by this 

technique will be presented and discussed.

2. Experimental setup

An in-situ heating stage has been developed to be set up in a FEI XL30 ESEM also equipped 

with a TSL EBSD system (view of the heating stage tilted to 70° in the SEM chamber, as required 

for EBSD measurements, in Fig. 1a). The basic principle of this heating stage has originally been



3

proposed by R. Le Gall et al. [3]. The heating device is a thin tantalum foil (about 30 µm thick) on 

which the sample (few mm wide and ~300 µm thick) is point-welded (Fig. 1b). An electrical current 

goes through the Ta foil such that both the Ta foil and the sample are heated by Joule effect. 

Thanks to the small dimensions, a power of only a few tens of Watts is sufficient to achieve high 

temperature (1200°C has easily been reached),  and temperature is  very l ikely to be 

homogeneous in such thin pieces. Another advantage is the low thermal inertia which allows fast 

heating and cooling (both at ~100°C.s
-1

). Our original contribution to this design mainly lies in the 

Ta plate being mounted on a mechanical system that compensate for thermal dilatation. This 

allows for keeping the zone of interest in the same position throughout the heating-annealing-

and-cooling cycles. In addition, in our system, the temperature cycles are program-controlled 

using thermocouples welded on the sample surface (Fig. 1b).

Figure 1. a) Heating stage mounted in the SEM chamber, tilted to 70° to suit EBSD settings. b) 

Thermocouples welded on the sample which itself is welded on the Ta plate.



4

3. Recrystallization sequences

3.1. Static recrystallization of tantalum (more details in [14]).

Pure tantalum, which was initially in fully recrystallized state with equiaxed grains, was deformed 

by compression at room temperature. This led to a heterogeneously deformed microstructure 

(Fig. 2a). All the grains flattened but some of them accumulated more internal strain than others 

as revealed by higher Kernel Average Misorientation (KAM) values. 

During the first annealing steps, the intragranular misorientations decrease in amplitude as a 

result of recovery, the peak in the KAM distribution shifts to lower values. Then, recrystallized 

grains appear (top of microstructure 3d) in the areas which initially had high KAM values. 

Subsequently, the recrystallized grains progressively invade the recovered matrix. They are 

characterized by low KAM values and, accordingly, a distinct peak centered on 0.5° appears and 

increases in the KAM distribution. The last unrecrystallized grains in microstructure 3f correspond 

to those with low KAM in the deformed state. Such a behavior has already been reported for 

tantalum, with much coarser grains [15-17]. Assuming that the KAM value is increasing with 

increasing strain and therefore with increasing stored energy, the dependence of the local 

recrystallization kinetics with the stored energy level could be directly observed in those 

experiments. 

The large recrystallized grains (Figs. 3e-f) exhibit island grains, with high KAM values, through 

which the moving boundary could not go. Further experiments have to be done to check weather 

this is an intrinsic behavior of the material or if this is an artifact resulting from the free surface 

effects. In addition, the indexing rate is much lower after the first heating steps than it is in the 

deformed state, which sounds counterintuitive. The indexing rate is subsequently improved while 

recrystallization progresses. If oxidation was responsible for the lower indexing rate after heating, 

it would not vanish later on. One possible explanation, which will also require further 

investigations, is that dislocations may be attracted near the surface and affect the diffraction 

diagram quality. It is worth noticing that the material of this experiment was a high purity metal, in 

which the motilities of both dislocations and grains boundaries are know to be higher than in 

alloys. Such a material is more likely to be sensitive to free surface effects. 
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Figure 2. Recrystallization sequence of cold deformed tantalum: i) and a-f) Microstructure as 

revealed by EBSD for the initial state and after successive heat treatments detailed in the top 

right graph. For each state, the microstructure is shown within a orientation color-coded (left 

column; radial direction RD projected in the standard triangle) and within a color code defined as 

function of the KAM value (right column; blue to red for KAM = 0 to 5°). A kernel radius of 3µm 

was considered for KAM calculations. The evolution of the KAM angle distribution is also shown 

on the right part of the figure. Black pixels are non-indexed points. EBSD scan step size: 1µm
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3.2. Post-dynamic recrystallization of Zircaloy-4 (more details in [18]). 

A sample was taken from the core of a hot-extruded bar of Zircaloy4, which was initially in a β-

quenched state. The extrusion conditions were chosen to avoid post-dynamic recrystallization

because the aim of these experiments was precisely to provide information about the post-

dynamic microstructure evolution. The initial hot-extruded specimens (Fig. 3a) therefore exhibit a 

duplex microstructure made of (i) highly-recovered / continuously-recrystallized small equiaxed 

grains, and (ii) elongated strain-hardened grains. The non-fragmented lamellar structures exhibit 

orientation spread and accordingly color gradients. Both continuous orientation gradients and 

substructures are visible. Apart from those lamellar areas, EBSD patterns could seldom be 

reliably indexed, because of the small size of dynamically-recrystallized-grains and recovered 

grain-fragments, which were below the actual spatial resolution of EBSD mapping in the used 

SEM.

Upon heat treatment (Figs. 3b-c), fast recrystallization is observed in the fragmented part, fast

growth of existing equiaxed small grains is observed and also new grains seem to appear from 

areas where the orientation could not be measured in the initial material. These "new" grains are 

in fact very likely to arise from the growth of small dynamically-recrystallized grains or recovered 

fragments. This stage is achieved within the first 15 sec at 750°C. Such a fast evolution can not 

be assessed by conventional bulk specimen annealing, because controlling a holding time of a 

few seconds at a high target temperature reached at high heating speed is almost impossible. 

The fast early stage is followed by a slower evolution of the elongated grain structures. The 

internal structure of the initial lamellae reorganizes by recovery but most of these lamellae still

remain after the three successive annealing treatments of 5s at 750°C. Orientations with <10-10> 

close to the extrusion direction are predominant in the initial material and orientations with <11-

20> develop during recrystallization, especially for the largest recrystallized grains. Both the two-

stage recrystallization kinetics and the crystallographic texture change are fully consistent with the 

results reported for conventional studies of static recrystallization in cold deformed low alloyed 

zirconium [19-21].  This suggests that the interaction of the free surface with the crystalline 

defects and the moving grain boundaries did not change much the recrystallization mechanisms 

in those in-situ experiments as compared to what happens in the bulk. 

In the cited static recrystallization studies, annealing was performed at lower temperature to slow 

down kinetics and observe the early evolution stages. In the present experiment, the temperature 

was chosen to match the industrial forming temperature of the Zircaloy-4, in-situ annealing was 

the only way to observe the very fast early stages of post-dynamic recrystallization.
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Figure 3. Recrystallization sequence of a Zy4 sample. a) initial state (hot-extruded at 685°C and 

cooled down rapidly). Microstructure after b) two, c) three, successive 5s in-situ annealing 

treatments at 750°C. Extrusion direction is horizontal, radial direction vertical, the color code 

defined on the inverse pole figure refers to the extrusion direction. The grey pixels are those for 

which the orientation could not be reliably determined. EBSD scan step size: 0.75µm.

4. Conclusion and prospects

The approach involving in-situ annealing and observation of recrystallization phenomena at a free 

surface was criticized in the past with the argument that phenomena at the sample surface may 

differ from those in the bulk. The observed free surface indeed interacts with crystalline defects 

and moving boundaries. This may nevertheless be more harmful for i) pure metals (e.g. pure 

tantalum data shown here )  and i i )  for curvature-driven grain boundary motion than for 

recrystallization phenomena (which involve much higher driving forces). 

Providing a  c a r e f u l  interpretation, our in-situ annealing device coup led  w i th  EBSD 

characterization can provide information about the recrystallization mechanisms which can not be 

assessed otherwise. A typical example was shown here for post-dynamic recrystallization at 

750°C in the zirconium alloy, where the fast early evolution achieved within 15 seconds could be 

sequentially observed. This technique will be improved, notably by coupling it with a FEG-SEM 

and a fast EBSD camera to improve the spatial resolution of the EBSD maps, so that the 

phenomena can not only be observed, but the related fine-scale mechanisms can be identified.

The output of these in-situ annealing experiments will also be deeper analyzed i) by detecting 

more precisely where changes occur (this can be done for example by calculating the orientation 

change for each point in the map between two successive snapshots, i.e. calculating "time-lapse 

misorientation maps" as proposed recently by Wheeler et al. [22]), and ii) by evaluating semi-

quantitatively the stored energy field (via the local content of geometrically necessary dislocations 

assessed from the intragranular misorientations [23-26]).  
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