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Abstract

In this paper, we propose a new methodology to automatically find

a model that fits on an experimental variogram. Starting with a linear

combination of some basic authorized structures (e.g spherical, expo-

nential,...), a numerical algorithm is used to compute the parameters

which minimize a distance between the model and the experimental

variogram. The initial values are automatically chosen and the algo-

rithm is iterative. After this first step, parameters with a negligible

influence are discarded from the model and the more parsimonious

model is estimated by using the numerical algorithm again. This pro-

cess is iterated until no more parameter can be discarded.

A procedure based on a profiled cost function is also developed
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in order to use the numerical algorithm for multivariate data sets

(possibly with a lot of variables) modeled in the scope of a linear model

of coregionalization. The efficiency of the method is illustrated on

several examples (including variogram maps) and on two multivariate

cases.

Keywords: Automatic fitting ; variogram maps ; linear model of coregion-

alization ; anisotropy ; weighted least squares ; over-fitting.

1 Introduction

A key stage for most of geostatistical studies is the modeling of the structural

model which characterizes the spatial behavior of the variables of interest

(Chilès and Delfiner, 2012). For this purpose, some methods are based on

the likelihood in a distributional framework. For instance, the drift terms

and the covariance parameters can be jointly estimated by numerical max-

imization of the likelihood under a multigaussian assumption (Mardia and

Marshall, 1984). Even if it is shown that such an estimator is asymptotically

unbiased and consistent, the bias can be important for a finite sample size.

For this reason, other authors propose to work with the restricted maximum

likelihood estimator (Cressie and Lahiri, 1996). Also based on the Gaus-

sian likelihood, some works are made in the Bayesian paradigm (for instance

Handcock and Wallis, 1994).

Nevertheless, all these iterative methods need several evaluations of the
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likelihood and each one requires to solve a linear system with a dimension

equal to the size of the data set. This can be prohibitive when working

with several thousands of samples (Stein, 1999) as it is common in a lot of

domains, for instance in the mining industry. Furthermore, the distributional

assumptions that have to be made (as the multigaussian one) cannot be easily

checked on the data.

For these reasons, most geostatistical studies are based on weaker as-

sumptions such as the intrinsic stationarity (i.e the variance of the incre-

ments between two points is only a function of the lag between these two

points). In such a framework, the experimental variogram, which measures

the spatial continuity, is computed. Then a valid model for the theoretical

variogram must be fitted on the experimental variogram. Indeed, this model

cannot be any function: it must be a conditionally definite negative function

in order to ensure that the variance of any linear combination of the data

always remains positive, as long as their weights add up to 0. For that sake,

it is recommended to define the model as a linear combination of a small set

of authorized functions, called basic structures (nugget effect, exponential,

spherical, linear structures to name only few of them) with positive coeffi-

cients. Each basic structure depends on a limited set of parameters, such as

the sill, the scale parameter, the anisotropy ratios and rotation angles. Other

basic structures may need some shape parameters, for instance the exponent

in the power model.

Once the set of basic structures is defined, and if all their parameters
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(except the sills) are given, the optimal determination of the sills can be

obtained by using standard minimization procedures. The principle is to

find the model that minimizes a cost function measuring the distance be-

tween the model and the experimental variogram. In the univariate case it

is sufficient that the sills fulfill a positivity constraint and they can be fitted

by ordinary least squares (OLS), weighted least squares (WLS) or general-

ized least squares (GLS) (Cressie, 1985, 1993). In the multivariate case and

in the scope of the linear model of coregionalization (LMC), it is sufficient

that the fitted matrices of sills for each basic structure are positive definite

(Wackernagel, 2003). For this purpose, there exists a numerical algorithm to

find the optimal matrix of sills for each basic structure, under the positive

definiteness constraint (Goulard and Voltz, 1992). Theses techniques are suf-

ficient when the choice of the necessary basic structures is obvious and when

the scale and shape parameters can be visually guessed. However, things

become more complicated when the experimental variograms are calculated

in different directions and show an anisotropy for example. The complexity

may even increase when a different anisotropy is attached to each structure,

or in the 3-D case. Finally, in the moving geostatistics approach (Magneron

et al, 2009), the structural model varies across the domain. Therefore this

fitting step must be repeated several times. For all these reasons, automatic

procedures for the entire set of variogram parameters are needed.

Some statistical software already propose automatic variogram fitting pro-

cedures. These routines are usually based on non-linear optimizations tools.
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For instance, the function variofit in the R package geoR (Diggle and J.,

2007) calls the R function optim. But they have not been fully adapted to

the specific case of variogram modeling and may fail to converge, mostly in

the case where nested models are used.

Other methods are based on stochastic optimization. For instance the

varfit program tries to minimize the cost function by randomly perturbing

the value of one parameter at each iteration (Larrondo et al, 2003; Pardo-

Igúzquiza, 1999). The new parameter value is accepted if it reduces the cost

function. More recently, simulated annealing is used to fit a linear model of

coregionalization (Emery, 2010).

In this paper, a new algorithm is presented. It has been developed and

heavily tested in many different configurations. It is based on a numerical

minimization (deterministic) of a sum of squares and uses specific techniques

to cope with numerical singularities and convergence problems often encoun-

tered with variogram fitting (mostly when several basic structures are used).

Each parameter is restricted to a definition domain consistent with the geo-

statistical framework (e.g the range must be a positive quantity) but this

domain can also be defined by the user. The user can input his own set of

basic structures and the algorithm tries to obtain a good fit within this set

while avoiding over-fitting.

This paper first gives the mathematical basis of the numerical algorithm

and details its different steps. Then an extension of the method is proposed

in order to fit all the parameters of a LMC. Finally the method efficiency
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is illustrated through several examples of automatic fits performed on one

or more variables, isotropic or not, starting from experimental variograms or

variogram maps.

2 Problem formulation

We start with a collection of experimental structure quantities γ̂j = γ̂(~hj)

(e.g an experimental variogram) for the lag vectors ~hj ∈ Rd, j = 1, . . . , n. We

also consider a collection of weights ω1, . . . , ωn (for instance ωj = Nj/||~hj||

where Nj is the number of pairs which have been used to compute γ̂(~hj)).

We consider G = {g(1), . . . , g(p)} a family of normalized basic structures

with a sill parameter equal to one. Note that each g(i) is parametrized by

a vector θi such as g(i) ≡ g
(i)
θi

. For instance g
(1)
θ1

could be the exponential

variogram model in R3 and θ1 is the vector containing the parameters of this

model (range, anisotropy angles and ratios). G can contain the same basic

structure several times since a “good” model could be a linear combination

of two exponential structures, one with a short range and the other one with

a longer range.

The aim is to find a linear combination γΨ =
∑p

i=1 λig
(i)
θi

with positive

coefficients such as the cost function

S(Ψ) =
1

2

n∑
j=1

ωj

(
γΨ(~hj)− γ̂(~hj)

)2

(1)

is minimum with respect to the full vector of parameters Ψ = (θ1, . . . , θp, λ1, . . . , λp).
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In other words, the target Ψ? is the value that minimizes the cost function:

Ψ? = argmin
Ψ∈D

S(Ψ),

where D ⊂ RN , the definition domain of Ψ, is an hyper-rectangle, and N is

the total number of parameters.

In the following, we will denote Λ = (λ1, . . . , λp) (for the set of sills),

Θ = (θ1, . . . , θp) (for the other parameters) and DΛ and DΘ their respective

definition domains.

3 Algorithm

In order to work with a parsimonious model, the following iterative procedure

is used:

1. Initialization : at k = 0, an initial model family G0 is given.

2. Iterations: at step k,

(i) start from an initial model in Gk, say γ
(k)
Ψ0

,

(ii) find γ
(k)
Ψ? the best model in Gk (i.e find the “best” vector of parameters

Ψ? using an iterative and numerical algorithm),

(iii) if Gk can be reduced, then take Gk+1 ⊂ Gk and return to (i). Otherwise

set γΨ? = γ
(k)
Ψ? and exit.
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The algorithm of step (ii) (presented in Sect. 3.1) is only able to find a

local minimizer for Ψ. For this reason, care has to be taken for the choice of

the initial vector of parameters Ψ
(k)
0 in step (i) (as described in Sect. 3.2.2).

The way to reduce the model family in step (iii) is detailed in Sect. 3.2.3.

3.1 Numerical algorithm

In this part, we describe the point (ii) of the main algorithm. The numerical

algorithm we propose is a variant of the Gauss-Newton algorithm. We call

it foxleg by reference to the close Powell’s Dog Leg algorithm (for instance

Madsen et al, 2004a) and the translation of the French name of the second

author.

3.1.1 Principle of the Gauss-Newton algorithm

We start from an initial value, say Ψ0. If Ψ? denotes a value of D that

corresponds to a local minimizer of the cost function S(Ψ) given by Eq. (1),

then the aim is to produce a sequence (Ψ(t))t∈N? of elements of D such that

Ψ(t) converges towards Ψ? when t tends to infinity. For j = 1, . . . , n, let us

denote:

rj(Ψ) = γΨ(~hj)− γ̂(~hj)

the residual associated to the jth lag. With this notation, the cost function

can be written:
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S(Ψ) =
1

2

n∑
j=1

ωjr
2
j (Ψ). (2)

First, note that for a vector ε = (ε1, . . . , εN) such as ||ε|| is small, the

Taylor expansion of each rj around Ψ gives:

rj(Ψ + ε) ' rj(Ψ) + εTJj(Ψ)

where T stands for the transposition and Jj(Ψ) is the gradient vector of rj

with respect to each component of Ψ. Then the kth component of Jj(Ψ) is:

Jkj =
∂rj
∂Ψk

(Ψ),

for k = 1, . . . , N .

By replacing rj by its approximation in Eq. (2), we obtain an approxi-

mation function LΨ of S around Ψ:

S(Ψ + ε) ' LΨ(ε) =
1

2

n∑
j=1

ωjr
2
j (Ψ) +

n∑
j=1

ωjrj(Ψ)εTJj(Ψ) +
1

2

n∑
j=1

ωj(ε
TJj(Ψ))2

= S(Ψ) + εTJ(Ψ)Wr(Ψ) +
1

2
εTJT (Ψ)WJ(Ψ)ε

= S(Ψ) + εT∇S(Ψ) +
1

2
εTJT (Ψ)WJ(Ψ)ε

where r(Ψ) is the vector of size n whose jth component is rj(Ψ), ∇S(Ψ) =

J(Ψ)Wr(Ψ) is the gradient vector of S with respect to Ψ, J(Ψ) is the N ×n

matrix whose the jth column is Jj(Ψ), and W is the n × n diagonal matrix
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of the weights, that is Wjj = ωj and Wij = 0 for i 6= j, i, j = 1, . . . , n.

The principle of the algorithm is to find at the (t + 1)th iteration, the

vector Ψ(t+1) = Ψ(t) + ε(t) such that:

ε(t) = argmin
(Ψ(t)+ε)∈D

LΨ(t)(ε) (3)

Since the matrix M(Ψ) = JT (Ψ)WJ(Ψ) is generally positive definite (see

Sect. 3.1.3 for the cases where M(Ψ) is only positive semidefinite), the global

minimum of LΨ can be obtained by differentiating LΨ with respect to the

components of ε and equating to zero. This leads to:

ε(t) = −M−1(Ψ(t))∇S(Ψ(t)).

Hence the updating equation is:

Ψ(t+1) = Ψ(t) −M−1(Ψ(t))∇S(Ψ(t)). (4)

The Gauss-Newton method is known to have a good convergence rate

when Ψ(t) is not far from the local minimum Ψ? and when the weighted

residuals
√
ωjrj(Ψ

?) are close to zero (Madsen et al, 2004a). This case is

generally encountered for variogram fitting since the weights are small for

large lag vectors and the variogram at the vicinity of the origin can be well

fitted in most of the cases by adequately choosing the initial values (see

Subsect. 3.2.2 for the automatic choice of initial value). Nevertheless, there
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are some cases for which the algorithm fails to converge. In Sect. 3.1.2 we

present a modification based on trust regions which makes the Gauss-Newton

algorithm more robust to the choice of initial values.

3.1.2 Trust region based method

Starting from the consideration that a Taylor approximation is all the more

accurate as ||ε|| is small, trust region based methods assume that the quadratic

approximation is accurate inside a region around the current value Ψ(t).

Therefore the quadratic optimization problem of Eq. (3) is solved under

the constraint that ||ε|| ≤ δt where δt is a positive radius. Then the effective

diminution of S is compared to the gain which is predicted by the approxi-

mation that is the gain of LΨ(t) . If this predicted gain is close to the effective

gain, then the radius of the trust region is increased, otherwise it is decreased.

The previous procedure is implemented as follows. At the (t+ 1)th itera-

tion, we compute a candidate Ψc for the next iteration by solving:

Ψc = argmin
Ψ∈D

LΨ(t)(Ψ−Ψ(t))

under the following set of constraints on the vector R = Ψ−Ψ(t):

(i) Ψ has to belong to the set of its allowed values DΨ

(ii) |Ri| = |Ψi − Ψ
(t)
i | has to be lower than δtγi where γi is a scaling

parameter.

The method to obtain the constrained minimum Ψc of LΨ is a classical
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quadratic optimization problem under linear constraints. The Powell’s Dog

Leg algorithm provides an approximation to this minimum. Here we use a

numerical algorithm which gives the exact result of this problem in a finite

number of iterations (Madsen et al, 2004b).

Then we compare the effective gain with the predicted gain by computing

the ratio:

α =
S(Ψc)− S(Ψ(t))

LΨ(t)(Ψc −Ψ(t))− LΨ(t)(0)

First note that the denominator of α is always positive.

If α < 0, we set Ψ(t+1) = Ψ(t) rejecting the candidate value Ψc as S(Ψc) >

S(Ψ(t)).

If α > 0, we set Ψ(t+1) = Ψc.

Furthermore, we update δt as follows:

(i) if α > 0.75, we set δt+1 = 2δt since LΨ(t) gave a good approximation of

the gain,

(ii) if α < 0.25, we set δt+1 = δt/2 since the approximation poorly agreed

with the effective gain.

3.1.3 Singularity of the Gauss-Newton matrix M(Ψ)

In some cases the matrix M(Ψ) is not invertible. It means that the quadratic

function LΨ does not have a unique minimum on RN . Instead there is a sub-

space E of RN on which LΨ is minimum. In these cases, we can obtain
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a particular minimum on E by replacing M(Ψ)−1 by M(Ψ)−, a particu-

lar generalized-inverse of M(Ψ). In this work we use the Moore-Penrose

generalized-inverse (Horn and Johnson, 1985).

3.1.4 Impossible steps

If some components are on the boundary of their definition domains and if

the candidate values obtained by Eq. (4) are located outside the authorized

range of values (by crossing the domain boundary), these components are said

to be unmodifiable for the current iteration. At each iteration, the algorithm

starts by computing the Gauss-Newton step, and while some components are

unmodifiable, they are suppressed from the model and the Gauss-Newton

step is computed again without them. The current iteration will then leave

these unmodifiable components unchanged.

3.2 Automatic settings

The numerical procedure described in the previous section is used to fit the

parameters of the basic structures (sill, range, anisotropy ratios and rotation

angles) in order to minimize the distance between an experimental quantity

and the model.

Note that all basic structures do not share the same number and type of

parameters. For example:

(i) the nugget effect component is simply defined by its sill;
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(ii) the spherical basic structure requires the definition of its sill and range,

and possibly the anisotropy ratios and rotation angles;

(iii) the J-Bessel basic structure requires the definition of an additional scale

parameter: the hole-effect periodicity;

(iv) the linear basic structure simply requires a slope coefficient, in addition

to possible anisotropies.

The efficiency of the algorithm heavily relies on the correct choice of some

algorithmic options which are described in the next paragraphs.

3.2.1 Algorithmic options

Scaling . During the iterative procedure, each parameter is modified in

turn in order to measure the impact of its variation on the cost function.

These variations must be equalized over the different parameters, in order this

technique to be applied for parameters as different as the range (expressed in

field units), the sill (expressed as square units of the variable), the anisotropy

angle (generally in degrees) or the dimensionless anisotropy ratio. The ad hoc

solution implemented is to scale the ranges against the maximum distance

of the experimental variograms, the sill against the total variance and the

rotation angles against 1800 degrees.

Stopping criterion . It is needed to stop the iterative algorithm. It is

based on a combination of criteria:
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(i) the maximum number of iterations has been reached,

(ii) the distance between the experimental variogram and the model is small

enough,

(iii) the size of the search rectangle is small enough.

Numerical gradient . The sensitivity of the cost function must be cal-

culated. This involves the calculation of its partial derivative against each

parameter. This derivative is approximated by the numerical gradient ob-

tained as follows:

∇S(Ψ)k '=
S(Ψ1, . . . ,Ψk−1,Ψk + ε,Ψk+1 . . . ,Ψn)− S(Ψ1, . . . ,Ψk−1,Ψk − ε,Ψk+1 . . . ,Ψn)

2ε

This simplification avoids having to check the differentiability of the cost

function.

3.2.2 Initial values and bounds

When starting the foxleg iterative procedure, each parameter must be set to

an initial value and the corresponding bounds must be defined. The rules are

chosen in order to give each parameter some influence on the cost function,

avoiding numerical pitfalls (zero gradients, singularity of the Hessian matrix).

The rules are different depending on the parameter type:

(i) the initial sill for each basic structure is set by default to a value equal

to the total variance divided by the number of structures;
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(ii) the initial range for each basic structure is set by default to half of

the maximum distance divided by the number of basic structures (the

nugget effect component is discarded). The maximum distance is ob-

tained as the longest distance for which the experimental variogram has

been calculated;

(iii) the initial anisotropy ratio is set to 1 (isotropic hypothesis);

(iv) the initial anisotropy angle is arbitrarily set to 0.

Similarly the bounds depend on the parameter type. For example the sill

and the range must be positive and the rotation angle has no bound.

3.2.3 Model reduction

Obviously, the cost function evaluation is improved when the set of param-

eters gets larger. On the other hand, the principle of parsimony leads to

favor the model with the smallest number of parameters. According to this

principle, an additional feature has been included in the procedure in order

to find a parsimonious model.

When the iterative procedure is ended, the resulting model is analyzed: if

a basic structure represents a too small part of the total variability (e.g 5%),

this structure is discarded of the model with its corresponding parameters.

Note that the model reduction criterion can be different for each basic struc-

ture. For instance the nugget effect may be added on purpose (for relaxing

16



the kriging system when the model is composed of a Gaussian covariance

only) and should not be removed by the automatic fitting procedure.

As soon as a basic structure is discarded, foxleg iterative procedure is

started again. If the previous foxleg procedure had converged before the

maximum number of iterations, the remaining parameters are kept with their

current values. Otherwise, their values are automatically reinitialized.

4 Adaptation to the multivariate case

We consider K variables and for each i, k = 1, . . . , K, we have the cross-

variograms (or univariate variograms when i = k) γ̂(ik)(~hj), j = 1, . . . , n.

Note that n is the total number of lag vectors ~hj. In the heterotopic case,

we can have some pairs (i, k) for which γ̂(ik)(~hj) is not defined for a given j.

In this case and by convention, we consider that γ̂(ik)(~hj) = 0.

In this section, we work in the scope of the linear model of coregional-

ization, where the model is expressed as a combination of basic normalized

variogram structures (with sill equal to one). We denote by p the number of

these basic functions. Then each simple and cross-variogram γ̂(ik) is modeled

as follows:

γ(ik)(~h) =

p∑
r=1

λ
(r)
ik γθr(~h), (5)

Each coregionalization matrix Γ(r), defined by Γ
(r)
ik = λ

(r)
ik for i, k =

1, . . . , K, must be positive definite. In the following, DΛ will denote the
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subset of Rpn(n−1)/2 in which Λ = (λ
(r)
ik )i,k=1,...,K

r=1,...,p
is well defined. The posi-

tive definiteness of the coregionalization matrices is difficult to obtain by the

foxleg algorithm since it imposes non-linear constraints on the terms λ
(r)
ik for

i, k = 1, . . . , K.

4.1 Decomposition of the coregionalization matrices

In order to ensure the positive definiteness of the coregionalization matrices,

a first possibility is to change the parametrization of the problem by using

a decomposition of each matrix Γ(r). For instance, if Γ(r) = L(r)L(r)T is the

Cholesky decomposition of Γ(r) with L(r) a lower triangular matrix, then the

terms of L(r) can vary in R and we can perform the optimization for this new

set of parameters.

This method can be used when the number of variables K and the number

of basic structures p are small enough. Otherwise, the number of parameters

is too high and the optimization algorithm often fails to converge. For these

latter cases, we propose to reduce the space dimension by using an implicit

profiled cost function based on the algorithm proposed by Goulard and Voltz,

as explained below.

4.2 Minimization of a profiled cost function

To fit the coregionalization model of Eq. (5), we minimize the following cost

function:
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S(Ψ) =
n∑
j=1

K∑
i,k=1

ωikj

(
γ

(ik)
Ψ (~hj)− γ̂(ik)(~hj)

)2

An improvement has been carried out compared to the initial implemen-

tation: as for the multi-directional case, the weights must be normalized to

give the same weight to each cross-variogram. In the heterotopic case, the

weights ωikj are set to 0 if γ̂(ik)(~hj) is not computed.

Since Ψ = (Θ,Λ) where Θ stands for the non-linear parameters (scale,

anisotropy parameters and shape parameters) and Λ stands for the sill, we

can consider S as a function of Θ and Λ. When Θ is given, the algorithm

proposed by Goulard and Voltz to solve the ordinary least-squares problem

gives:

Λ?(Θ) = argmin
Λ∈DΛ

S(Θ,Λ).

We use these remarks to reduce the dimension of the space over which

the minimization is performed as explained above. We consider the reduced

cost function also called profiled cost function:

Sr(Θ) = S(Θ,Λ?(Θ))

=
n∑
j=1

K∑
i,k=1

ωijk

(
γ

(ik)
(Θ,Λ?(Θ))(

~hj)− γ̂(ik)(~hj)
)2

then
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Θ? = argmin
Θ∈DΘ

Sr(Θ)

can be obtained with the algorithm presented above. Note that, at each

iteration, the Goulard’s algorithm has to be used several times: once for

each evaluation of Sr and twice for each evaluation of the partial derivatives

of Sr with respect to each θk.

Finally, we obtain:

Ψ? = (Θ?,Λ?(Θ?)).

Note that in this formulation, we cannot fix the definition domain DΛ

since the Goulard’s algorithm only provides Λ such that all the coregional-

ization matrices are positive definite and foxleg algorithm only works on the

vector Θ. To fix more constraints on the sill parameters λ
(r)
ik , a modification

of the Goulard’s algorithm should be developed.

Therefore the final fitting procedure combines the classical iterative pro-

cedure for fitting all the parameters (except the sill) with the Goulard’s

algorithm used to obtain the optimal matrices of sills (assuming that all the

other parameters are fixed).
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5 Examples

5.1 Variogram

In this first test, we fit the experimental variogram plotted on the left side

of (Fig. 1). The fitting algorithm is performed (using a nugget effect, a

cubic variogram and a spherical variogram as basic functions), convergence

is reached after 33 iterations only. The model plotted after each iteration

shows that convergence is almost immediate for such a simple case.

Another illustration consists in representing the cost function (i.e. the dis-

tance between the experimental variogram and the model) as a function of

the number of iterations. We fit the same experimental variogram as before,

but we consider an initial set of 5 basic structures (nugget effect, gaussian,

cubic, exponential and spherical components): the number of parameters is

equal to 9 (nugget effect and the sill and the range for each basic structure).

The left part of (Fig. 2) shows the monotonous decrease of the cost function

with the rank of the iteration; the right part shows the evolution of the δ pa-

rameter. During the first eight iterations, the cost function decreases rapidly,

while the δ parameter increases (in a non-monotonous way). When the cost

function flattens, the δ parameter starts decreasing in order to confirm that

the minimum score has really been reached. At iteration #33, the iterative

algorithm is ended.

In this experience, all the basic structures are kept (even when their sill

becomes negligible). In particular, at iteration #3, the gaussian and the
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cubic components become useless; at iteration #7, the exponential term

disappears. The other two basic structures (i.e. the nugget effect and the

spherical basic structures) are kept in the final model. Usually, when some

basic structures are discarded, the optimization step is launched again with

the reduced set of basic functions. This step is bypassed here.

The second example illustrates the automatic model fitting for an anisotropic

variable defined in the 2-D space, based on two directional experimental var-

iograms. Obviously in this experience, we are not able to infer the anisotropy

directions (we assume that the main axes of the anisotropy ellipse are paral-

lel to the directions where the experimental variogram has been calculated).

We rather focus on the sills and ranges along the main axes of the anisotropy

ellipse, for each basic structure. Figure 3 shows the experimental variograms

and the corresponding model.

The initial set of basic structures consists of a nugget effect, and gaussian,

cubic, exponential and spherical components. The number of parameters is

equal to 13. The first descent is ended after 229 iterations. The nugget effect

and exponential basic structures are then discarded and the fitting procedure

is launched again. After 92 more iterations, the final anisotropic model is

obtained.

5.2 Variogram map

Due to its generality, foxleg algorithm has been applied to various experi-

ments. A promising one is to fit the model of a variable starting from an
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experimental variogram map. Obviously, such an information provides much

more knowledge on the spatial structure than the traditional experimental

variogram, even when calculated in several directions. The number of sam-

ples changes from the number of lags for experimental variograms to the

number of nodes of the grid where the variogram map is calculated. For

the sake of demonstration, we first define a model composed of two nested

structures (see Fig. 4):

(i) a short anisotropic spherical component with ranges equal to 4 and

10 units and 20 degrees for the rotation angle of the main axis of the

anisotropy ellipse,

(ii) a long anisotropic spherical component with ranges equal to 20 and 40

units and an angle of -30 degrees.

Note that the model is rather complex as both structures show anisotropy

but do not share the same rotation. A realization of this model is (uncondi-

tionally) simulated on a 2-D grid of 100 by 100 units. Finally a variogram

map is calculated on a grid of 101 by 101 grid meshes (from -50 to +50).

We start foxleg algorithm from the information carried by the experimen-

tal variogram map: it uses 101*101 data for inferring the few parameters

of the model. The process is therefore rather slow but the result is better

than with experimental variograms as the fit simultaneously accounts for all

directions and all distances up to 50 units (half of the variogram grid extent).

Although the initial information carried by the variogram map is perturbed
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by the statistical fluctuations of the simulation, the resulting model is quite

close to the initial model as it is composed of:

(i) a first spherical component with ranges of 4.8 and 9.9 and a rotation of

16.9 degrees,

(ii) a second spherical component with ranges of 19.8 and 51.6 and a rota-

tion of -29.5 degrees.

5.3 Multivariate case

Example 1 This section demonstrates the ability of foxleg algorithm to op-

erate in the multivariate case (2 variables in this case, called A and B) when

simple and cross experimental variograms have been calculated in two direc-

tions. A preliminary remark shows that, in this 2-D setup, the anisotropy

angle cannot be inferred: the only parameters that can be obtained are the

ranges in the calculation directions and the sill matrices for the different

structures.

Let us consider that we wish to infer the model with an initial set of

basic structures composed of a nugget effect, a cubic, a spherical and an

exponential basic structures. The total number of parameters depends upon

the technique used to fit the sills of the structures:

(i) if Goulard’s algorithm is used: 2 for the ranges of each structure (except

the nugget effect) for a total of 6 parameters. The sill matrices are

inferred by the Goulard’s algorithm,
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(ii) otherwise: to the 6 previous parameters, we must add one sill matrix

(i.e. 3 more parameters for the corresponding L matrix) per structure

(including the nugget effect), for a total of 18 parameters.

In the first trial, we use foxleg combined with Goulard’s algorithm. A

first convergence is reached after 30 iterations. The resulting model is then

cleaned: the nugget effect and the cubic basic structures are discarded and

the iterative algorithm is launched again with only 4 parameters left. A set

of 41 additional iterations is needed to reach the final minimum score of the

cost function. The resulting model is displayed in (Fig. 5).

In a second trial, we let foxleg algorithm also determine the sill matrices

(through the Cholesky decomposition terms). Note that, due to the large

number of parameters, the number of iterations is much larger. The first set

of iterations is interrupted as convergence is not reached before the maximum

number of iterations (1000). The same basic structures as previously are

discarded: the nugget effect and the exponential basic structures. As the

convergence has not been reached, the remaining basic structures are reset

to their initial values, which leads to a severe increase of the cost function.

foxleg algorithm is resumed for 854 more iterations. The resulting model is

displayed in (Fig. 6).

Note that, although the fitting procedure is different, the resulting models

are very similar. However, the computing time is significantly larger.
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Example 2 We now consider the more challenging case of fitting an isotropic

structure on a set of 18 variables (described in Petitgas et al, 2011). Without

the profiled cost function technique, for each basic (isotropic) structure, the

parameters would be the isotropic range and the terms in the coregionaliza-

tion matrix (whose size is 18*18). Benefiting from its symmetry, the number

of terms reduces to 171. Therefore, for a set of 5 basic structures (say nugget

effect, gaussian, cubic, exponential spherical), this will amount to 859 pa-

rameters, which would be unreasonable for the foxleg algorithm. With the

profiled cost function technique, the number of parameters processed by fox-

leg reduces to only 4 parameters (the ranges). A subset of the experimental

simple and cross-variograms together with the fitted model is represented in

(Fig. 7).

6 Discussion

In this paper, we propose an algorithm to automatically fit a model starting

from experimental variograms, variogram maps or cross-variograms. The

method is able to characterize the usual anisotropies (angles and ratios)

even for high ratios in 3D. By implementing a procedure for reducing the

model dimension, this algorithm provides a trade-off between the fit quality

of the resulting model and its parsimony. The multivariate case is treated by

combining the foxleg method with the usual sills fitting algorithm (Goulard

and Voltz, 1992). Several illustrations show the efficiency of the method
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which is implemented in the commercial software Isatis R© (2012) and in the R

package RGeoS (Renard et al, 2011). A specific demonstration script showing

various application cases of the methodology is available in the package by

>demo(RGeoS.AutoFit).

The main limitation of the algorithm arises in cases where the cost func-

tion presents several distinct modes leading to strong differences between the

different fits. This is mainly the case when trying to fit a periodic variogram

(in one dimension) or pseudo-periodic ones (de Fouquet et al, 2011). The

result for the periodicity parameter strongly depends on the initial values

given to the numerical algorithms. Finding the global mode would require

to test different initial values or to fix the periodicity parameter.

An interesting idea, suggested by an anonymous reviewer, consists in

avoiding the bound problems by a clever change of the parametrization of

the model: for example, using the logarithm of a quantity in order to avoid

its minimum bound. This trick will certainly be implemented in a near future

version.

Future work will concern the indirect fit of the indicator variograms in the

plurigaussian framework Armstrong et al (2011). In this case, the model of

the underlying Gaussian random functions is obtained through the automatic

fit performed on the experimental variograms of the facies indicators which

are defined by truncating the Gaussian random function.
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Figure 1: The experimental variogram (left), iterations represented in in-
creasing dark lines (right)
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Figure 2: Cost function (left) and δ parameter (right) as a function of the
number of iterations
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Figure 3: The experimental variogram (left) and the corresponding
anisotropic model (right)
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Figure 4: Variogram map of the initial model (upper-left), simulation (upper-
right), experimental variogram map (lower-left) and variogram map of the
resulting model (lower-right)
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Figure 5: Simple variogram of A (upper-left), cross-variogram of A and B
(lower-left) and simple variogram of B (lower-right). Multivariate fit using
Goulard’s algorithm. The thin solid lines represent the experimental vari-
ograms calculated in the two main grid directions; the thick solid lines rep-
resent the fitted model in the corresponding directions. The dashed lines in
the cross-variogram view give the perfect correlation envelop (Wackernagel,
2003)

35



Figure 6: Simple variogram of A (upper-left), cross-variogram of A and B
(lower-left) and simple variogram of B (lower-right). Multivariate fit without
using Goulard’s algorithm
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Figure 7: Multivariate fit for a set of 5 (among 18) demonstrative variables.
The other variogram and their corresponding fitted model are displayed in
the RGeoS package demonstration script
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