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General study of single input single output
linear time invariant laws.

Application to an adapted models algorithm control
(AMAC).

Abstract : In this study, we come back on some charac-
teristics of linear time invariant control laws and we
show how the single input single output (SISO) adapted
model algorithm control (AMAC) is a technique for
designing such a law.
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Introduction

Let us return on what is the p r o b Lc rn of sampled-data

control systems synthesis.

Given a mathematical model of a process, functionnal

operator between an input and an output, given a set of

specifications, given a method to compute a control input,

the problem of synthesis may be defined as follows : find

the parameters used in the computation of the control input

such that the mathematical process with that input meets

all the specifications. We spoke about a mathematical model

of a process and not about a real physical process. We will

say a law of command to be robust if it can be used on a

physical process.

More precisely we call robustness the coherence between

approximations of a mathematical representation of a physical

process, and the sensi tivi ty of performance criteria defined

by the specifications, to variations of this representation.

Let Po be the nominal mathematical process, the control

input is designed for, if the performance criteria are continuous

in PO' we can expect the satisfaction of the specifications

for any P in the vicinity of PO. Then, the physical process

we want to command must have representations each in this

vicini ty.

Another way to formulate the problem is : the set of

mathematical processes, images of the physical process, must

be enclosed in the set of mathematical processes which verify

the specifications for a given control law.

A-l Introduction 

Let us return on what is the problem of sampled-data 

control systems synthesis. 

Given a mathematical model of a process, 

operator between an input and an output, given a set of 

specifications, given a method ta compute a control input, 

the problem of synthesis may be defined as follows : find 

the parameters used in the computation of the control input 

su ch that the mathematical process with that input meets 
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So we will successively

- define a mathematical process

- define a set of specifications

- find relationships between parameters of the

- study the sensitivity of the performance criteria.

Sa we will successively 

- define a mathematical process 

- define a set of specifications 

a control law 

- find relationships between parameters of the control 

law 

study the sensitivity of the performance criteria. 



A-2 Definitions

A-2.1 Definition of the mathematical model of

A-2.1.1 Definition

We define here a discrete time mathematical model

of a process as a transformation of a set of sequences

inputs into another set of sequences called o u p u t.s ,

We differentiate three types of signals between

the input

a controlable measured signal called control

noted en

an uncontrolable but measured signal called

measured disturbance, and noted v n

an uncontrolable unmeasured signal called

disturbance and noted w
n.

For single input single output systems

scalars and so the output noted sn'

So, if P is an operator on

relation between inputs and output

s ( . ) =P ( e ( . ) , v ( . ) , w ( • ) ) •

A-2.1.2 Hypotheses

A- 2 . 1. 2 . 1 Hyp a the sis 0 n P ( H1) :

We suppose P to be a linear time

invariant operator which is of rational type and asymptoti-

cally stable. Moreover we suppose a non zero static gain.

A-2 Definitions 
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noted en 
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single input single output systems 
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Sa, P is an operator on sequences, 

relation between inputs and output 

s ( . ) =P {e ( .) ,v (. ) ,w ( • ) ) . 

A-2.1.2.1 Hypothesis on l'(H1): 

We suppose p to be a linear time 

invariant operator which is of rational type and asymptoti-

cally stable. Moreover we suppose a non zero static gain. 



A-2.1. 2.2 Hypo:thesis on disturbances (H2) :

We suppose both measured and unmeasured

disturbances to be causal and to admit z - transforms which

verify conditions of final value therorem [lJ.

If the disturbances are represented as

stochastic processes, these hypotheses are made on the

mathematical expectations and all the following deterministic

resul ts must be considered in mathematical expectation.

Moreover we suppose the output to be

lineraly time-invariant dependant on the disturbances. So we

introduce a new linear, time invariant, asymptotically stable

operator Q between the measured disturbance and the output.

A-2.1.3 Representation of the mathematical model

of the process

With hypotheses Hl, H2, we compute the

output s(n), from the inputs e(n) ,v(n) ,w(n) by the recursive

equation :

N

en-i+Lhi v n_ i
฀฀฀

(1)

time invariant scalars.

Neglecting the initial conditions

(justified by asymptotic stability), we can represent (1)

a more concise way using z - transforms

s(Z)=P(z)e(z)+Q(Z)v(Z)+w(Z) (2)

A-2.1. 2.2 Hypothesis on disturbances (E2) , 

We suppose both measured and unmeasured 

disturbances to be causal and to admit z - transforms which 

verify conditions of final value therorem [lJ. 

If the disturhances are represented as 

stochastic processes, these hypotheses are made on the 

mathematical expectationsand aIl the following deterministic 

results must he considered in mathematical expectation. 

Moreover we suppose the output to be 

lineraly time-invariant dependant on the disturbanees. SO we 
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operator Q between the measured disturbance and the output. 
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of the proeess 

With hypotheses Hl, H2, we compute the 

output s(n), from the inputs e(n) ,ven) ,w(n) by the recursive 

equation : 

N N 

fi Sn_i=f gi e n _ i + L hi v n _ i 

i"'O i=O 

are time invariant scalars. 

Neglecting the initial conditions 

(justified by asymptotic stability) , we can represent (Il 

in a more concise way using z - transforms 

s [z) =p (z) e (z) +Q (z) V (z) +w (z) 

(1) 

(2) 



p (z)
p(z)=_n_

Pd (z)

N N -i

qd (z) .Pn (z) = L gi zg ,

i=O

qn (z)

฀฀฀฀฀฀฀

(3)

N

P
d
(z) ·qd (z) = t

i=O

N -i
f

f
i

Z

and from the causality principle, degree of P
n
( r e s p . qn) is less

than degree of P
d
(resp. qd).

Moreover from the hypotheses,

and qd (z) are strictly in the unit circle.

roots of P
d
(z)

So we get the block representation given by

figure 1

FIGURE 1 - Representation of the process
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A-2.2 Definition of a set of specifications

A-2. 2.1 ฀฀฀ regulation

We want the effect of non decreasing distur-

on the process to be, in some sense, minimized or

Given an external non diminishing signal

set point and noted un ' we want the output

n to track un with minimal or ideally, zero steady

state error. For this problem, we impose a causal set point

with z - transform which verifies conditions of the

A-2.2.3 Internal stability

In both cases it is also imperative that

an appropriate control law be designed in such a way as to

insure an asymptotically stable design i. e. the relations

between the external signals (set point, measured and

unmeasured inputs) and the internal signals (control, output)

must be stable in some sense.

A-2. 2. 4 ฀฀฀฀฀฀฀ convergence

We will summarize the preceding definitions

by the asymptotic convergence of the output sn

set point un

(4)

A-2.2 Definition of a set of specifications 

A-2. 2.1 Output regulation 

We want the effect of non decreasing distur-

bances on the process to be, in some sense, minimized or 

eliminated. 

Given an external non diminishing signal 

called the set point and noted un ' we want the output 

Sn to track un wi th minimal or ideally, zero steady 

state error. For this problem, we impose a causal set point 

with z - transform which verifies conditions of the final 

A-2.2.3 InternaI stability 

In both cases it is also imperative that 

an appropriate control law be designed in such a way as to 

insure an asymptotically stable design i.e. the relations 

between the external signaIs {set point, measured and 

unmeasured inputs) and the internaI signals {control,output) 

must be stable in sorne sense. 

A-2. 2. 4 ฀฀฀฀฀฀฀฀convergence 

We will summarize the preceding definitions 

by the asymptotic convergence of the output sn 

set point un 

(4' 



In fact we have only here the least constraints

to set any system of control. The synthesis of such a system

must also take into account the behaviour of this convergence

and need performance criteria [21. From greater variability we

keep ourselves wi thin the convergence cr iter ion.

A-2.3 Definition of the control law

We call control law a method to compute future

given the observation of all the measurable past signals. To

get a very general linear time-invariant control, we compute

a future control e
n+ 1

,given the past measured signals

(em' sm' urn' v
m

; m ฀ n) as a finite linear combination

N

e(n+l) =-r
i=O

sn_i+ t r i u n_ i- t
i=O i=O

(5)

Or using z - transforms, we wr i te :

c (z) e (z) =r ( z ) u (z) -d (z) S (z) -b (z) v (z) (6)

c(z), r(z), d(z), b(z) z - polynomials such that

degree of c(z) is greater than degree of r(z), d(z) or b(z)

and c(z) is mutually prime with r(z), d(z) and b(z).

Note that from the homogeneity of equation (6),

is no use to take rational functions instead of polynomials.

A-2.3.2 Interpretation

Equation (6) has the block diagram representation given

figure 2.
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FIGURE 2 - Control law structure

So we can interpret the four parameters c,r,d,b of the

control law as [3] :

c (z) a compensator

d (z)

r (z) is a reference

b (z) is a feed_forward input

FIGURE 2 - Control law structure 

So we can interpret the four parameters c,r,d,b of the 

control law as [3] , 

c (z) is a compensator 

d (z) is a sensor 

r (z) is a reference 

b (z) is a feed_forward input 



A-3 Relations between parameters of the control

A-3.1 study of the closed loop-system

We study the closed loop-system in its asymptotic

behaviour. So we are going to express the various

between external and internal signals :

The closed loop system is represented by figure 3

FIGURE 3 - Closed-loop system

s (z) =Sa (z) U (z) +Srv ( a ) v (z) +Srw (z) w (z )

e (z) =E
a
(z) u (z) +E

r v
(z) v (z) +E

r w
(z) w ( z )

with : the tracking transfers

E a (z) c (z) ฀฀ ฀฀฀ p (z)

(7)

(8)

(9)

(10)

A-3 Relations between parameter5 of the contTol 

A - 3 • 1 S t u ฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀h",",-"=,,,"-",' ฀฀฀฀฀฀฀฀฀"'C Y"'"Cot e"",m 

behaviour. 

Wc study the 

going ta 

loop-systcm in its asymptotic 

the various transfers 

between extern"l and internal signals 

The closed loop system is represented by figure 3 

FIGURE 3 - Closed-laop system 

We have the z - transform r\'?lations 

s (z) "'Sa (z) u (z) +Srv(z) v (z) +Srw (z) wez) (7) 

e (2) =Ea (z) U (z) +Erv (z) V (z) +Erw (z) W (z) (8) 

the tracking transfers 

(9) 

(10 ) 
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and the regulation feedback and feed forward transfers

c (z)

c (z) +d (z) P (z)

b (z) +d (z) Q (z)

c (z) +d (z) P (z)

d (z)

c (z) +d (z) P (z)

(11)

(12)

(13)

(14)

We can see that the poles of any transfer are

given by the roots of the expression c(z)+d(z)P(z). Moreover

from the stability of P(z), Q(z) and the hypothesis of

mutual primeness, a necessary and sufficient condition of

internal stability is given by the stability of the control

and more precisely by the stability of the E
a
(z) transfer.

We shall note that given the stability conditions,

sensor d(z) determine the Erw(Z) regulation transfer, the

compensator c (z) determines the Sr
w
(z) regulation transfer

and r(z) determines the Ea(Z) tracking transfer. With

tracking transfer :

remark that the difference between d(z) and r(z)

differenciates between regulation and tracking behaviours.

whi th expression (11), if it is possible to get

c (z) Q(z) =b (z) P (z) (16)

we will be able to compensate completely the measured distur-

10 

regulation feedback and feedforward transfers 

E (zl=_b(z)+d(zlQ(z) 

rv c(z)+d(z)P(z) 

E (z)=o- d(z) 
rw c(z)+d(z)P(z) 

(11 ) 

(12) 

(13) 

( 14) 

l'le can see that the poles of any transfer are 

given by the roots of the expression c(z)+d(z)P(z). Moreover 

stability of P (z), Q (z) and the hypothesis of 

mutual primeness, a necessary and suffi aient condition of 

internaI stability ls given by the stability of the control 

and more precise!y by the stability of the Ea (z) transfer. 

We shall note that given the stability conditions, 

sensor d(z) determine the Erw(z) regulation transfer, the 

compensator c(z) determines the Srw(z) regulation transfer 

and r(z) determines the Ea(Z) tracking transfer. With 

tracking transfer , 

1 _ 5 (z)=5 (z)+(d(zl-r(z»P(z) 
a rw c(z)+d(z)P(z) 

we remark that the difference between d(z) and r(z) 

differenciates between regulation and tracking behaviours. 

( 15) 

Whith expression (11), if it is possible to get 

c(z)Q(z)=b(z)P(z) (16) 

we wiLL be able to compensate completely the measured distur-



From expressions (9), (11), (12), we

expression (4) using the final value theorem

lim (l-z) ( s (z) -u (z»;O

Supposing s(z) ,u(z) to be defined in the ring

(1, + CO ) . separate set-point, measured and

unmeasured disturbances actions, we will transpose

specifications into four constraints

regulation constraints :

tracking constraint :

And stability constraint

The roots of c(z) Pd(z)+d(z)Pn(z) are strictly

in the unit cercle.

A-3.2 Regulation constraints

Passive regulation

We want to impose relation (18). with the

hypothesis on the process and if- the sensor has a non

static gain, it is necessary and sufficient that :

(17)

(18)

( 19)

(20)

c (1) =0 (21)

11 
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A-3. 2.1 ฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀

We want ta impose relation (18). With the 

hypothesis on the process and if' the sensor has a non 

static gain, it 15 necessary and sufficient that 

c (1) =0 

(17) 

(18) 
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(20) 

(21) 
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So, we must impose a factorization of the

compensator in

c (z) = (z-l) m (z)

Moreover, from now on, we will write the

k d(z) with

d (1) =1, k;<O

From the preceding resul ts,

impose

b (1) =0

So, we have the following factorization

b (z) = (z-l) n (z)

A-3.3 Tracking constraint

(22)

(23)

(24)

(25).

We verify expression (20) if we impose identical

static gains for both sensor and reference. So as in (23),

from now on, we will write the reference as k r (z)

r (1) =1, kT"O

A-3.4 Remark

(26)

With expressions (22), (23), (25) and (26), (6) must

zm(z)e(z)=m(z)e(z)+(z-l)n(z)v(z) +k(r(z)u(z)-d(z)s(z» (27)

12 
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So the control is computed in a recursive way.

A-3.5 Stability constraint

We study the polynomial

(z-l)m(z)Pd(z)+kd(Z)Pn(z)

We know already :

- Pd (z) has all its roots strictly in the unit circle

- k,d(l),Pn(l) are different from zero

- degree of m (z) is greater than degree of d (z)

- degree of Pd (z) is greater than degree of Pn (z)

wi th no more hypothesis on the process, we can give a sufficient

condi tion of internal stability (Proof in Appendix 1).

If m(z) has all its roots strictly in the unit

circle, it exists a vicinity of zero v t o) such that if

k is in V(a)-(O), internal asymptotic stability is ensured

and only if :

km(l)P(l» a (stability condition)

P (1) equal to the static gain of the process.

(28)

Note that from continuity, the existence of a vicinity

can be transposed on the existence of a vicinity of

p (z) as we will see in a next section, and so this permits

the study of robustness as it was formulated in the introduc-

13 

So the control 15 computed in a recursive way. 
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Note that from continuity, the existence of a vicinity 
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P (z) as we will see in a next section, and so this permits 

the study of robustness as it was formulated in the introduc-



A-3.6 Introduction of a non linearity on the control

We will extend here the results of Rouhani [4J.

introduce a non linear compensator defined as follows

(figure 4).

y n be the input signal of the compensator,

compute the control en through the expression :

N-l

e
n+ 1

=f
n
(n%- (y n +L (m

i
-w

i
+
1)
e
n_ i

+mNe
n_N

»

i=O

W(Z)=f m
i

zN-i

i=O

f
n
(x) a real time varying function

FIGURE 4 - Non linear compensator

(29)

To study the behaviour of the closed-loop system, we

give an asymptotic value u to the set point, we compute

a theoretic asymptotic value e of the control :

p(l)e=u (30)

suppose the disturbances ฀฀฀be bounded and the

processes to be a M.A. system (P(z)=z P Pn(z)),

A-3.6 Introduction of a non linearity on the control 

We will extend here the results of Rouhani [41. 

introduce a non linear compensator defined as follows 

(figure 4). 

y n be the input signal of the compensatar, 

compute the control en through the expression 

N-1 

฀฀฀฀฀฀฀฀฀฀฀ (Yn+L (mi-mi+l)en_i+mNen_N » 

i"'O 

with m(z)'" f mi zN-i 

i"'O 

f n (x) a real time varying function 

y n e ฀฀฀฀฀
n (z-l)m(z) n+1 

FIGURE 4 - Non linear campensator 

'1'0 study the behaviour of the closed-Iaap system, 

give an asymptotic value u ta the set point, we compute 

a theoretic asymptotic value e of the control 

(29) 

p(l)e"'u (30) 

We suppose the disturbances ฀฀฀฀be bounded and the 

processes to be a M.A. system (p (z) =Z P Po (z». 



Then we can say (Proof in Appendix 2) :

Let./ be the greatest modulus of the roots of

(z-1)m(z)z P+kd(z)Pn(z), if for any n we have for a certain

XNp - 1

f
n
(x

Np
+e)-e

< ฀
y

, k <.1 (31)

then the non linear system is

In fact here (with the hypothesis on the disturbances)

stability is taken in the sense of bounded input bounded

output (bibo). But if the external signals (set-point,

disturbances) become constant, it will become an asymptotic

stability and verify relation (4).

Then we can say (Proof in Appendix 2) , 

Let? be the greatest modulus of the roots of 

(z-l)m(z)zNp+kd(Z)Pn(Z), if for any n we have for a certain 

X o X o 

< k 
k(l (31) 

XNp _l r XNp -l 

f n (xNp +e)-e XNp 

non linear system i8 

In fact here (with the hypothesis on the disturbances) 

stabili ty is taken in the sense of bounded input bounded 

output (bibo). But if the external signals (set-point, 

disturbances) become constant, it will become an asymptotic 

stability and verify relation (4). 



Sensitivity of the convergence criterion

Following our introduction we are going to study the

sensitivity of our preceding results to variations of P

and Q. In fact given the parameters m,r,k,d,m of the

control law, we are looking for the set of P,Q operators

for which the convergence criterion is satisfied. To keep

the validity of our approach, we will take P, Q in the

class of linear time invariant processes.

At once let us remark that only the stability constraint

uses hypothesis on P and Q, so we can conclude to

insensitivity of the tracking and regulation constraints.

And from now on we will look at the stability problem.

From expressions (9) to (14) it is easy to

conclude that for any asymptotically stable Q, we will

stability. So, in fact, there is no sensitivity to

Q.

A-4.2 Sensitivity to P

In the hypothesis HI we have imposed P additional

constraints to those on Q, particularly rational type and non

zero static gain. The latter was essential in regulation

and stability constraints. So we must impose variations of

P to maintain the sign of the static gain. The former was

a theoretic facility but it can be relaxed.

A-4. 2.1 P of rational type

In that case we have to find all the pairs of

polynomials (Pn (z), Pd Cz ) such that :
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degree of P
d
is greater than degree of P

n'
and the roots

of Pd(z) and (z-l)m(z)Pd(z)+kPn(z)d(z) are strictly in the

unit circle.

Pd (z) and the number (N
p+l)

of coefficients

of Pn(z), suppose m(z) has all its roots in the unit circle,

we look for the coefficients PO, ..•.. ,PNp such that the

polynomial

฀ N-i

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀L Pi z P (32)

฀฀฀

has all

Let us work in the g (z) coefficients

be a vector representative of g (z) ,

M be representative of (z-l)m(z)P
d(z),

P be representative of P
n
(z) ,

D be a matrix representative of the

of d(z) on p(z).

(33)

G is linearly dependant on P.

Otherwise, given the highest degree coefficient

of m(z) Pd (z), from the continuity of the coefficients on

the roots, we can say that the set of admissible Gs which

represent polynomials whose roots are in the unit circle

is closed, bounded and connected. Moreover from the presence

of (z-l), we can say that M is on the frontier of this

Thus we have the situation given by figure 5.
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of G

Set of admissible Gs

D.P

gain locus

FIGURE 5 - Coefficient representation of stability

constraint

So from the knowledge of the set of admissible

Gs, we can find the set of admissible Ps. The first set has

been studied by Markov [6J in the continuous case. Particu-

larly we can' t make sure of convexity of the set, so

the linearity we don' t know if the set of admissible PS is

connected.

This approach gives the roles of In, d or k :

m corresponds to a translation, d is very similar to a

rotation and k to a linear displacement. Moreover we

see the coupling between vicini ties of k and P.
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So from the knowledge of the set of admissible 

Gs, we can find the set of admissible Ps. The first set has 

been studied by Markov [6] in the continuous case. Parti cu-

larly we can' t wake sure of convexi ty of the set, 50 
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connected. 

This approach gives the roles of m, d or k : 

ID corresponds ta a translation, d ls very similar ta a 

rotation and k te a 11near displacement. ฀฀฀฀฀฀฀฀฀฀we can 

see the çoupling between vicinities of k and P. 
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A- 4 . 2 . 2 Pin the vic i nity 0 far at ionalP0-

Suppose the parameters of the control

fitted to a nominal process Po of rational type. We

are looking for variations /':,.P around PO' such that we

internal stability.

If we suppose P (z) to be an analytic function

a domain strictly contained in the unit circle and

9 ( z) = (z -1 ) m ( z ) +kd ( z) Po (z)

h (z) =kd (z) l:,.P (z)

Then g (±) and h (±) are analytic in and on the

uni t circle and with the Rou c h e Theorem [7] , we can

for any process P(z)=PO(z)+Ap(z) such that

(34)

(35)

sf [- n, n) (36)

we will have internal stability.

We have in fact here another presentation of

resul t of Doyle [8) in the SI SO case.

A-4.2.3 Application to a polynomial variation

Let us take 6.P (z) of the form :

N

6P(Z)=[ lIPjz
M- j

j=O

Expression (36) means :

(37)

I(eil> -1) m (e
i G)

+kd (e
i 9)

Po (e
i 6' )1> k Id (e

i 9) Ilh.p (e i 8 ) /.(3 8 )

V9 E: [_n, 11J
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Let us take ll.P (zl of the form : 

6.P (z) =:[" e.PjzM-j 

j=O 

Expression (36) 

(34) 

(35) 

(36) 

(37) 

฀฀฀฀฀฀-1) m (e 1 1<) +kd (e19 ) Po (e i 5')1 > k Id (e i @)IJll.P(e 10)jpS) 

VB é. [_11, nJ 



But we have wi th appendix 3 :

IAP(e
i 9
) 1
2= i APj API cos(j_l)$ (39)

j ,1=0

2 N

฀฀฀฀฀฀฀฀฀ «L ฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀I) (40)

j=O

c.a n get an upper bound of the modulus

1

(f ฀฀฀฀฀ < min l(e
i':l)m(e i e

)+kd(eiS)Po(eil9\

j=O rN.[-n ฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀

(41)

Practically an FFT algorithm will provide

spectra.

A-4.2.4 Convergence criterion sensi tivi ty index (CCl)

Given a process Po and the parameters of

control law we define an absolute index by :

From expression (36) this index gives an upper

bound on the possible spectrum variation to verify convergence

criterion. So we call it a convergence criterion sensitivity

index. To insure robustness, it has to be compared with an

equivalent approximation index given by the Po model

estimation phase.
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bound on the possible spectrum variation ta verify convergence 

criterion. SA we calI it a convergence criterion sensitivity 

index. Ta in sure robustness, it has ta be compared with an 

equivalent approximation index given by the Po model 
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In this first part, we came back on the problem of

linear control. The most important results have been

reformulated in a very general way: resul ts on the structure

of the control law, results on stability in the linear case

and in a simple non linear case and at last results on a

measure of the sensitivity of stability.

2! 

A-S sUIlIJIlary 

In th!s first part, we came back on the problem of 

linear control. The mest important results have been 

reformulated in a very general way : results on the stI"ucture 

of the control law, results on stability in the linear case 

and in a simple non linear case and at last results on a 

measure of the sensitivity of stability. 



B. THE SINGLE INPUT-SINGLE OUTPUT (SISO)

ADAPTED MODELALGORITHMCONTROL (AMAC)

We have just presented a linear time invariant control law in a

general fashion. It is an abstract approach which serves only to ensure

the convergence criterion. In an attempt to get behavior criteria, we are

going to give a physical presentation through a SISO control based on

the mathematical representation of the process of paragraph A-2.l.3:

s(z) ฀ P(z)e(z) + Q(z)v(z) + w(z)

and the use of adapted models of the operators P,Q.

B-l. General SISO AMAC Presentation

B-l.l Definition of the Strategy

(1)

At time n , given the past measurable signals, the S1S0 AMAC computes

a control such that a predicted output of the process is identical to a

predicted set point.

Taking the notation of Box and Jenkins [9], we write this:

the prediction being here of one point ahead. From the representation

of the process (1) we decompose the predicted output into two parts: a

deterministic part which functionally depends on the inputs and a non-

deterministic part sUn(l) resulting from the disturbances. Let M(en(l),

e£: £':<:= n) be a model of the operator P which defines the deterministic

B. THE SINGLE INPUT-SINGLE OUTPur (SISO) 
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deterministic part sun(l) resulting fram the disturbances. Let M(en(l), 

e1,; R. s n) be a 1ll0del of the operator P which defines the deterministic 
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output from the future and past controls, we deduce from (2) the control

law as:

(3)

Then to compute the control en (1) we have three different problems:

inversion of M, estimation and prediction of the non-deterministic out-

put, and prediction of the set point.

From its definition, M is a model of the process. Note that to

compute en (1), we use this model in a reversed way compared to the physical

transfer, sa we require M to be invertible in the sense defined by Box

and Jenkins [9] and we call it a deconvolution model. Thus with the

linear time invariant hypothesis the model of the process is taken linear,

time invariant, asymptotically stable, of rational type and invertible.

Let rod
i
or Md(z) be the impulse response and the rational z-transform

of this deconvolution model. We obtain from (3)

(4)

and md
O
must be different from zero.

B-1.3 Estimation and Prediction of the Non-Deterministic Output

From expression (1) the non-deterministic output is the sum of both

a filtered measured disturbance v
n
and an unmeasured disturbance w

n
.

Suppose we have an estimation w
n
of w

n
and a convolution model of the
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Suppose we have an estimation On of IOn and a eonvolution model of the 



measured disturbance filter Q : nC
i
(Nc(z», then if v

n
(1) and w

n
(1) are

predictions of measured and unmeasured disturbances, we compute:

(5)

So we first need the estimation w
n
(1) of the unmeasured disturbance and

secondly measured and unmeasured disturbance predictors.

We already introduced a convolution model Nc of Q. Let us take also

a new model mC
i
(Mc(z» of the process P. This time we need a model to be

used in the same way as the process so Mc(z) is a convolution model com-

pared with Md(z), a deconvolution model. Similarly to expression (1), we

compute the estimation w
n
by

00 00

wn = sn - iI
o
mCi'en_ i - iI

o
nCi'vn_ i

Now from the past v
n
and w

n
' we want to predict 3u

n(1).
From discrete

parameter prediction theory [10], vn(l) and wn(l) can be computed with

prediction filters. Using a-rtr ans f orms they may be expressed as

vel) (z) = Fv(Z) v(z) = ฀฀฀฀฀฀ v(z)

(7)

where fwn(z), fwd(z), fvn(z), fvd(z) are polynomials in z , the degree of

fwd(resp fvd) being greater than the degree of fwn(resp fvn). Moreover,

to be able to predict the continuous component of the disturbances, we

measured disturbance fil ter Q : nei(Nc(z», then if vn(l) and wn(l) are 

predictions of measured and unmeasured disturbances, we compute: 

(5) 
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prediction filters. Using lI-transforms they may be expressed as 
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(7) 

",here fwn(z), fwd(z), fvn(z), fvd(z) are polynomials in z, the degree of 

fwd(resp fvd) being greater than the degree of fwn(resp fvn). Moreover, 

ta be able ta predict the continuous compone.nt of the disturbances, we 



impose unit static gain predictors.

Thus we get the z-transform of BUn (1) :

su(l) (z) = Nc(z) v(z) + Fw(z) w(z)

with Nc' (z) ฀฀฀฀฀ computed from N
c
and F

v
through the relation:

00 00

ncO vn (1) + ฀฀฀ nC i v n+l-i = ฀฀฀ ฀฀฀ v n_ i

Now from z-transform of (6) we have the final relation:

(8)

(9)

su(l)(z) = FW(z) (s(z) -Mc(z)e(z)) + ฀฀฀฀฀฀ -Fw(z)Nc(z))v(z) (10)

or equivalently in the time domain:

where * represents the discrete convolution operator.

B-1.3 Set Point Prediction

(ll)

To get a better behavior of the closed-loop system, at time n we

need future set points. In some cases they are available (particularly

when there is a hierarchical control). But generally we need a predictor.

Let us take it in the form of a rational filter Fu(z) with fU
i
as impulse

response and with unit static gain.

u(l)(z) = Fu(z)u(z) = ฀฀฀฀฀฀ u(z) (12)

impose unit static gain predietors. 

Thus we get the z-transfonn of sUn (1): 

suCl) (z) ฀฀NeCz) vez) + Fw(z) f./(z) (8) 

with Ne'(z) (nei) computed from Ne and Fv through the relation: 

. . 
nea vn(l) + ฀฀฀฀ ne i v n+l _i = ฀฀฀฀nei vn _ i (9) 

Now from z-transform of (6) we have the final relation: 

8u(1)(z) - Fw(z)(s(z) -Me(z)e(z» + ฀฀฀฀฀฀฀- Fw(z)Ne(z»v(z) (10) 

or equivalently in the time domain: 

(11) 

where il: represents the discrete convolution operator. 

B-1.3 Set Point Prediction 

To get a better behavior of the closed-loop system, at time n we 

need future set points. In 60me cases tbey are available (particularly 

when there i8 a hierarchical control). But generally we need a predietor. 

Let us take it in the form of a rational fil ter Fu(z) with fUi as impulse 

response and with unit statie gain. 

û(l)(2) = Fu(z)u(z) = ฀฀฀฀฀฀฀u(z) (12) 



(13)

with fun(z), fud(z) polynomials in z, with the degree of fud(z) greater than

or equal to the degree of fun(z).

B-1.4 Expression and Properties of the 5150 AMAC Law

From expressions (3), (11) and (13) we get the 5150 AMAC law

(14)

This prediction is used as the future control e
n
+
l.

Thus we get the

z-transform representation of the 5150 AMAC law:

(zoMd(z) - Fw(z) oMc(z»e(z) = Fu(z) ou(z) - Fw(z)s(z)

- (Nc' (z) - Fw(z)Nc(z) )v(z) (15)

Then we find the expression of the four polynomials of our general linear

time invariant control law:

c(z) = zoMd(z) - Fw(z)Mc(z)

r(z) = Fu(z)

(16)

d(z) = Fw(z)

b(z) = Nc' (z) - Fw(z)Nc(z)

Thus we can give a physical interpretation to these polynomials. Moreover,

we see that from a physical point of view c, r , d and b are not mutually

independent, but Md or Mc, Nc , Fu , Fv and Fw are.

(13) 
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The regulation and tracking constraints (see Part A) are verified

since we have imposed:

Md(l) = Mc(l)

Fu(l) = Fv(l) = Fw(l) = 1

Nc'(l) = Nc(l)

(17)

The stability constraint (Appendix 4) can be verified by a modification

of the dynamic of the unmeasured disturbance predictor if: the different

models and predictors are stable, the numerator of the deconvolution

model has all its roots strictly in the unit circle, the following in-

equality is satisfied: Md(l) 'P(l) > o. (18)

Now assuming a perfect knowledge of the process and the measured

disturbance filter:

Mc(z) = P(z); Nc(z) = Q(z) (19)

we can write the expected closed-loop tracking and regulation transfer:

Sa (z) = ฀฀฀฀฀฀฀฀

Srw(z) = 1 - ฀฀฀฀฀฀฀฀฀

Srv (z) = Q{z ) - Nc ฀ ฀฀฀฀฀฀฀฀

(20)

(21)

(22)

So the closed-loop tracking transfer is the product of the set point pre-

dictor and the deconvolution model mismatch of the process. Similarly we

get the closed-loop regulation transfer. Thus in a perfect matching,

the various predictors specify the tracking and regulation closed-loop

transfers.

The regulation and tracking constraints (see Part A) are verified 
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Md(l) ฀฀Mc{l) 

Fu(l) ฀฀ Fv(l) ฀฀Fw(1) = l 

Ne 1 (1) = NeCl) 

(17) 
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equality ls satisfied: Md(l} ·P(l) > O. (18) 

Now assuming a perfect know1edge of the process and the measured 

disturbance fil ter: 

Me(z) - P(z}; Ne(z} = Q(z} (19) 

we cau write the expected closed-loop tracking and regulation transfer: 

Sa (z) '" ฀฀฀฀฀฀฀฀ (20) 

Srw{z) = l - ฀฀฀฀฀฀฀฀฀฀ (21) 

Srv(z) ฀฀Q(z) - ฀฀฀฀฀฀ (22) 

So the c10sed-Ioop tracking transfer is the product of the set. point pre-

dictor and the deconvolution model mismatch of the process. Similarly we 

get the c1osed-Ioop regulation transfer. Thus in a perfect matching, 

the various predictors specify the tracking and regulation closed-loop 

transfers. 



The block representation of the SISO AMAC is given by Figure 6.
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Figure 6. SISO AMAC Representation
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B-2. SISO AMAC Examples

Following our presentation we will present two classical control

systems used whenever the convolution and deconvolution model can be iden-
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B-2. 5150 AMAC ฀฀฀฀฀฀

Following our presentstion we will present two classieal control 

systems used whenever the convolution and deconvolution model can be iden-

tics!. 



B-2.1 The Optimum Control System of Phillipson [11]

Let us suppose no measured disturbance and an asymptotically stable

process with a delay of 2 samples. We take a convolution model with a

delay of k samples, k underestimation of 2:

Mc(z) = ฀฀฀฀฀฀ (23)

with Md(z) supposed to have all its roots strictly in the unit circle.

Then if we take a unit gain element as a set point predictor, and a

k-step-predictor ฀฀฀฀฀ for the disturbance, we obtain the optimal control

system of Phillipson (Figure 7) which is an improvement over the Smith

con troller.

Figure 7. Optimum Control System of Phillipson

As mentioned by Phillipson, this system used in regulation is equivalent

to the Box-Jenkins-Astrom minimum-variance control [9] or to the Kalman

linear regulator [12].

Thus, this system is essentially made for regulation. Moreover, the

use of the inverse model as controller since this will be a high-pass filter,

amplifies noise, causes violent changes in the control signal and perhaps

frequent saturation. That is why the A}lAC uses here an adapted model and
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Then if we take a unit: gain element as a set: point: predictor. and a 

k-step-predictor ฀฀฀฀฀฀ for t:he disturbance. we ob tain the opt:imal control 

syst:em of Fhillipson (Figure 7) which is an improvement over the Smith 

con troller. 

Figure 7. Optimum Control System of Phillipson 

As mentioned by Fhillipson. this system uBed in regulation is equivalent 

to the Box-Jenkins-Astrom minimum-variance eontrol [9] or t:o the Kalman 

linear regulat:or [12]. 

Thus, t:his system is essentially made for regulation. Moreover, the 

use of the inverse model as controller since this will be a high-pass filt:er, 

amplifies noise, causes violent changes in the control signal and perhaps 

fraquent saturation. That is why the A}!AC uses here an adapted model and 
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avoids rapid changes in set point thanks to the set point predictor.

Predictor H can be easily computed when the disturbance can be described

as the output of a known rational filter whose input is an independent

zero-mean random sequence. But to verify internal stability we must

not forget the constraints on the denominator of H. Here Phillipson

suggests the use of exponential smoothing for prediction to solve the

problem. That way, we can answer satisfactorily the output regulation

but not so properly the output tracking. The model predictive heuristic

control which follows attempts to answer the two questions introducing

a set point predictor and deducing the disturbance predictor.

B-2.2 Model Predic tive Heuristic Control (MPHC) [13]

We give here a simplified study of this method; the very general

study can be found in [14]. Suppose no measured disturbance (MPHC can

be extended to this case) and a convolution model having a moving average

(MA) structure with all its roots strictly in the unit circle, we take:

M(z) = Mc(z) = Md(z)

For the set point and disturbance predictors, we choose

1- G(l)

Fu (z) = 1- z-lG(z)

(24)

(25)

where G(z) is a nonzero static gain transfer such that Fu(z) and Fw(z)

satisfy stability conditions.
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where G(z) 1s a nonzero statie gain transfer such that Pu(z) and Fw(z) 

satisfy stability conditions. 
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Then from (15) we get the MPHC law:

฀฀฀฀฀฀฀฀฀ )'M(z)'e(z) =--:-1- [(l-G(l»u(z) - (l-G(z»s(z)]
1- z G(z) 1- z G(z)

(25)

(z-l)'M(z)'e(z) + s(z) = (l-G(l»u(z) + G(z)s(z) (26)

Let us develop the strategy of this relation.

Both terms are similar to outputs. We call the left-hand term a

predicted output sp(z) and the right-hand term a reference output sR(z),

From

sp(z) = zM(z)e(z) + (s(z) - M(z)e(z» (27)

we define the predicted output as the output of the model at time (n+l)

corrected of the estimation w(n) of the disturbance

with sM(n+1) output of the model with a predicted input en (1). The ref-

erence output sR(z) is given by a trajectory connecting the past outputs

of the process to the present set point.

00 co

sR(n+1) = (1 - ฀฀฀ gi)un + ฀฀฀ gi sn-i

Thus the MPHC strategy consists in computing future inputs such that

(29)

predicted outputs are on a connecting trajectory. Its block representation

is given by Figure 8.
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From 
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we define the predicted output as the output of the mode! at time (n+1) 

corrected of the estimation Q-(n) of the disturbance 

with sM(n+l) output of the mode! with a predicted input en(I). The ref-

erence output sR(z) ls given by a trajectory connecting the past outputs 

of the process ta the present set point. 

. . 
SR (n+1) = (1 - ฀฀฀฀gi)Un + i!O gi sn-i (29) 

ThuB the MPHC strategy consists in cOlIlputing future inputs such that 

predicted outputs are on a connecting trajectory. rts block representation 

iB given by Figure B. 



Figure 8. MPHC Representation with G(z) as Connecting Trajectory Generator

From part A, we will satisfy the convergence criterion if M(z) has all

its roots strictly in the unit circle and (l-G(l)) is taken as the stability

coefficient. But again, the transfers are not independent, for instance in a

perfect modeling we have:

(30)

(31)

The regulation transfer is the discrete differentia tion of the tracking

transfer. Moreover, if the model does not verify the stability condition,

the strategy must be seriously questioned but it has been extended to this

case by the introduction of the notion of adapted model [14].

B-3. Choice of the Deconvolution Model

We have seen that the most general linear time invariant control law

contains five independent physical components. Theoretically each can be

obtained from a modeling (system or spectrum). But the deconvolution

model is a special case because its use is not a physical one. We are
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The regulation transfer 18 the discrete differentiation of the tracking 

transfer. Moreover, if the model does not verity the stability condition, 

the strategy must be seriously questioned but lt has bean extended to this 

case by the introduction of the notion of adapted model I14]. 

B-3. Choice of the Deconvolution Model 

\ole have seen that the mast generai iinear time invariant control law 

cantains five independent physical components. Theoretically each can be 

obtained from a modeling (system or spectrum). But the deconvolut:ion 

model is a special case because its use is not a physical one. We are 
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going to show where the problem is and how to solve it.

B-3.l Terms of the Problem and Mathematical Solution

Let Md(z) be this deconvolution model

Md(z) = ฀฀฀฀฀฀ (32)

with mdn(z). mdd(z) polynomials in z such that with expectation (4) degree

of mdd(z) is equal to degree of mdn(z).

Mc(z) is the knowledge of the process, Le., the convolution model:

Mc(z) = ฀฀฀฀฀฀ (33)

with mcn(z), mcd(z) polynomials in z , with degree of mcd(z) greater than

degree of mcn(z). The differences between these models are in their use.

Let e, s be the input and the output, we write

s(z) = ฀฀฀฀฀฀ e(z)

similarly to the process, but:

e(z) = ฀฀฀฀฀฀ s I z )

is a reversed relation compared with the process.

(34)

(35)

As we want a stationary control law, following Box and Jenkins [9],

we have to improve the stability of both transfers ฀฀฀฀฀฀ and ฀฀฀฀฀฀ .

The former can be ensured from the stability of the process. But the
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latter has no physical significance and we have seen that we must impose

mcn(z) to have all its roots strictly in the unit circle.

As mdd(z) has no constraint in the deconvolution use, we can take:

md(z) = mdd(z) = mcd(z) (36)

Moreover, to get a zero static gain compensator, with expression (16),

we must impose:

mdn(l) = men (1) (37)

Thus the problem is: knowing the model of the process mcn(z), how to

choose mdn(z) such that it keeps the significance of a model and it satisfies

the stability condition.

If mcn(z) has all its roots strictly in the unit circle, we take

obviously:

mdn(z) = mcn(z) (38)

So the real problem occurs when mcn(z) has roots on both sides of the

unit circle. Let us factorize mcn(z) into:

mcn(z) = min(z) ·mon(z) (39)

where min(z) has all its roots strictly inside the unit circle. mon(z)

has all its roots strictly outside the unit circle. We don't deal with

modulus roots. As mdn(z) is used as a denominator, let us consider:

mid(z) = ฀฀฀฀฀฀ (40)

latter has no physical significance and we have seen that we must impose 

menez) ta have aIL its roots strictly in the unit circle. 

As mdd(z) has no constraint in the deconvolution use, we cau take: 

md(z) ฀฀mdd(z) = mcdez) (36) 
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mIn(l) "' menel) (37) 

Thus the problem is: knowing the model of the process menez), how to 

choa se mdn(z) such that it keeps the significance of a mode1and it satisfies 

the stability condition. 

If mcn(z) has aIL its roots strictly in the unit circle. we take 

obviously: 

mdn(z) = mcnez) (38) 

Sa the real problem occurs when mcnez) has roots on bath sides of the 

unit circle. Let us factorize mcnez) into: 

mcnez) = minez) "monez) (39) 

where minez) has aIL its roots strictly inside the unit circ!e, mon(z) 

has aIL its roots strictly outside the unit circle. We don't deal with 

unit modulus roots. As mdn(z) ls used as a denominator. let us consider: 

mid(z) '" ฀฀฀฀฀฀ (40) 



mod(z) = ฀฀฀฀฀฀ (40)

mid(z) is a holomorphic function defined outside a domain strictly con-

tained in the unit circle, so its Laurent expansion in the vicinity of

the unit circle is:

mid(z) = L mid. z-j

j=O J
(41)

mid(z) corresponds to a causal impulse response and so has a physical

significance.

Inversely, mod(z) is a holomorphic function defined in a domain

strictly containing the unit circle, so its Laurent expansion in the vi-

cinity of the unit circle is

mod(z) = L mod.z
j

j=O J

(42)

Thus, mod (z) can be considered as corresponding to a noncausal impulse

response. And so expression (35) or (3) implies the knowledge of the

future outputs: en (1) is functionally dependent on un (k), sUn (k), kEN.

Precisely, from (3) we get:

z ฀฀฀฀฀฀ e(z) = mod(z) [u I L) (z) - su(l) (z ) 1

en (1) depends on the term

L mod.(u (j) -su (j»
j=O J n n

(43)

(44)
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(44) 



Le., for the one step ahead prediction input, we need j-step predictions

of the set point and the non-deterministic output for all positive

integers j. This is a mathematical result; the physical problem is that

predictions are not real values. Thus the strategy of the 5150 AMAC cannot

be totally ensured.

We are going to show how this mathematical solution can be used to

design the control law.

To simplify the statement, we will suppose no measured disturbance

and as suggested by Phillipson and MPHC applications, we take exponential

smoothing for prediction:

(45)

with t,r called tracking or regulation coefficients. Moreover, as there

is no problem on the model's denominator, we suppose an MA model (with

p the number of co ef f Lc Lerit s )

Mc(z) = mc(z)

zp

with mc(z) factorized in mi(z) ·mo(z).

(46)

50 we will work with the block representation given by Figure 9 and

the AMAC law given by the relations

(47)
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Sa we will work with the black representation given by Figure 9 and 

the AMAC law given by the relations 

(47) 
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Figure 9. AMAC Representation for Study

B-3.2 Direct Application of the Mathematical Solution

From the factorization of mc(z), let mi
j
be the impulse response

corresponding to the roots inside the circle and mod
j
be the noncausal

impulse response corresponding to the inverse of the factor containing

the roots outside the unit circle. We write the control law as:

But with our constant prediction we have:

(49)

With exponential smoothing for predictions the mathematical solution gives

a deconvolution model which has among the roots of the convolution model
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B-3.2 Direct Application of the Mathematical Solution 

From the factorization of me(z). let mi j be the impulse response 

corresponding to the roots loside the circla and mod j be the noncausal 

impulse response corresponding to the inverse of the factor containing 

the roots Dutside the unit circla. We write the control law as! 

(48) 

But wit.h our constant prediction we have: 

(49) 

With exponential smoothing for predictions the mathematical solution givas 

a deconvolutlon IIIOdel which has among the roots of the convolution model 



only those which are strictly in the unit circle.

From (20), (21)

(51)

With 0 the number of roots of mon(z). Thus, the prescribed behaviors can

be followed only after the response time of mon(z).

B-3.3 k-Step Prediction

Our mathematical presentation tells us that to compute en(l) we need

further predictions. So one idea is to rewrite the AMAC strategy as

(52)

with no a priori distinction between the models.

Then (47) gives

k-l P

฀฀฀ mCi en(k-i) ; - ฀฀฀฀฀฀ e n+k-i + unCI) - sun(l) (53)

Thus the control enCl) depends on the predicted inputs en(j) and we have

to solve a linear system with k unknown quantities. To get a unique solu-

tion one could introduce a criterion on the predicted inputs.

Let us look for a solution linearly dependent on the right term as:

(54)

only those which are strictly in the unit circle. 

From (20), (21) 
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Then (47) gives 
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Let us look for a solution linearly dependent on the right term as: 
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(- i!k mci"en+k_i + un(l) - sun (l) (54) 



en(l) is the single quantity of interest and we have the control law:

p

flen(l) = - ฀฀฀฀ mci·en+k_ i + un(l) -sun(l)

Thus the implicit deconvolution model is:

p-k -(HI)

H:I(z) = f l + ฀฀฀ mCH k z

but with the static gain relation, we need:

and necessarily,

(55)

(56)

(57)

The indetermination of expression (53) is illusive. This k step prediction

strategy gives the MA deconvolution model:

Md(z) =kt mc , + z-l r mc . zk-i

i=O a, i=k a
(59)

Then the problem is how to choose the integer k in such a way as Md(z) has

all its roots strictly in the unit circle. Obviously there is at least

the solution k = p, but then the prescribed behavior can be followed only

after the time response of the process. This solution is not interesting

en(l) 18 Che single quantity of InteresC and we have the control law: 

Thus che 1mpl1cit deconvolution model ls: 

but wich the statie gain relation, we need: 

p-k 

fI + L 
1=0 

and necessarl1y. 

(55) 

(56) 

(57) 

The indetermination of expression (53) ls illusive. This k step prediction 

strategy gives the MA deconvolution model: 

(59) 

Then the problem is how to ehoose the integer k in such a way as Md(z) has 

aIl its roots strictly in the unit circle. Obviously there is at least 

the solution k = P. but then the prescribed behavior can be followed only 

aftet the time response of the process. This solution is not interesting 



but the deconvolution model can be easily computed.

This k-step prediction strategy can be extended. Given a set I of

positive inters, we impose:

(60)

This leads as previously to a linear system whose unknown quantities are

the predicted inputs. It can be solved in various ways, but the solution

must give a deconvolution model satisfying the stability conditions [14].

The advantage of such an approach is in the constrained control

case: let n be the time invariant set of admissible inputs. we write the

extended k-step prediction stra tegy as:

Min J(s (k) -u (k); ke I)

en(j)€(/ n n

where J is a criterion.

(61)

This optimization problem gives predicted inputs satisfying the con-

straints. Thus, one can expect to get a better behavior owing to the fact

that predicted constraints are taken into account.

B-3.4 Choice from Behavior Analysis

The deconvolution model defines the tracking behavior with the following

transfer obtained in a perfect modeling hypothesis.

(62)

When we can take Md(z) equal to P(z) the set point predictor plays the
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This optimization problem gives predicted inputs satisfying the con-
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B-3.4 Choiee from Behavior Analysis 

The deeonvolution model defines the traeking behavior with the following 

transfer obtain",d in a perfeet modeling hypothesis. 

Sa(Z) = ฀฀฀฀฀฀฀฀฀฀ (62) 

When we can take Md(z) equal to pez) the set point predictor plays the 
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same role as the reference model in the MPHC, so we can extend here the

ideas of Rouhani [4].

B-3.4 Pole Placement

One can impose direct pole placement. In that case, from the speci-

fied polynomial pp(z) we get the deconvolution model as:

Md(z) = ฀฀฀฀฀฀฀฀฀฀฀

because, in perfect modeling, we have

(63)

This method is very simple when the factorization (39) is known. If not,

this problem may be very difficult to solve numerically in particular

when there is a great number of roots.

B-3.5 Optimization Criterion

Another natural criterion is the minimization of a quadratic distance

between the expected and the actual responses to a set point sequence:

+IT i8 M (e
i 8
) . 2

J(Md(z» = f ฀฀฀฀฀฀฀ (1 ฀฀฀ u(e
l 8)I d8 (65)

-n e Md(e )

where u(e
i 6)

is a specified function.

This is equivalent to a distance between deconvolution and convolu-

tion models. Thus, if we write

same raIe as the reference model in the MPHC, sa we can extend here the 

ideas of Rouhani [4]. 

B-3.4 Pole Placement: 

One can impose direct pole placement. In that case, fram the speci-

fied polynomial pp(z) Iole get the deconvolution model as: 

Md(z) ฀฀min(z)pp(z) 
md(z) 

because, in perfect modeling, we bave 

(63) 

This method is very simple when the factorizatlon (39) ls known. If not, 

this problem may be very difficult to solve numerically in partlcular 

when there ls a great number of roots. 

B-3.5 0ptimizat:ion Criterion 

Another natural criterion is the minimization of a quadratic distance 

between tbe expected and the actual responses to a set point sequence: 

where u(ei6) is a specified function. 

This ls equlvalent to a distance between deconvolution and convolu-

tion models. Thus, if we write 



Md(z) = ฀฀฀฀฀฀
(66)

Mc(z) = ฀฀฀฀฀฀

The problem is to approximate the polynomial mcn(z) whose roots are on

both sides of the unit circle by a polynomial mdn(z) whose roots are

inside the unit circle and (65) can be rewritten as

+1T ie 2

J(mdn(z» = J 11 - mcn(e:s)I dF(S)

-'IT mdn(e)

with dF(8) a positive measure and:

mdn(l) = mcn(l)

(67)

(68)

Such a criterion and constraints can be computed by the Jury-Astrom al-

gori thm [15].

This method gives a deconvolution model which depends only on the

convolution model Mc and the set point predictor (tracking coefficient in

the exponential smoothing case). Those computations may be numerically

easier than polynomial factorization, but have to be done again if the

predictor is changed.

B-3.6 Conclusion

The deconvolution problem can be solved using a prediction strategy.

This leads to a simple method but not manageable results in the k step

prediction case or to more difficult computations as polynomial factori-

zation or constrained nonlinear optimization if we want to have more

manageable results.

Md(z) ฀฀฀
(66) 

฀฀฀฀฀฀฀฀฀

The prob1em ig to approxirnate the polynomial mcn{z) whose roots are on 

both sides of the unit circle by a polynomial mdn(t) whose roots are 

inside the unit circle and (65) can be rewritten as 

+'Ir ie 2 

J{lIrln{z» - J (1 - mcn(\e) 1 dF(9) 

-1f mdn{e) 

(67) 

vith dF(9) a positive measure and: 

mdn(l) '" mcn(1) (68) 

Such a criterion and constraints can be computed by the Jury-Astrom a1-

gorithm [15]. 

This method gives a deconvnlution model which depends only on the 

convolution model Mc and the set point predictor (tracking coefficient in 

the exponential smoothing caSe). Those computations may be numerically 

easier than polynomial factorization, but have to be done again if the 

predictor is changed. 

B-3.6 Conclusion 

The deconvolution problem can be solved using a prediction strategy. 

This leads to a siInple method but: not: manageable results in the k step 

prediction case or to more diffieult eo:mputations as polynomial factori-

zation or constrained nonlinear optimization if we waut to have more 

manageable results. 
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B-4. Summary

We have shown that a very general implementation of a linear time

invariant control law can be done by the adapted model algorithm control.

This method uses five independent physical entities: two non-deterministic

signal predictors which can be deduced from disturbance modelization;

two mathematical representations of the process behavior which are also

given by modelization; a set point predictor which can be deduced from the

control law specification. The problem is complicated by the fact that

one of the representations is used in a nonphysical way and thus has to

be adapted by a further prediction strategy.
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A-l

Proof of the linear stability theorem.

Let Ck(Z),A(Z),B(Z) be three polynomials with

relation ,

Ck(z)=(z-l)A(Z)+k B(z)

with e, degree of A (z) greater than degree of B (z)

(A-1.1)

_B(1)IO (A-i.2)

_ a
O

the highest degree coefficient of A (z)

_A(z) has all its roots strictly in the unit circle

_A(Z), B(z) with real coefficients.

We will show that it exists a vicinity of zero V (0) such

that if k is in V (0) - (0), the roots of C
k
(z) are strictly

the unit circle if and only

k a
O

s t i ) 0 (A-i.3)

Proof : we use continuity results , the roots of a

polynomial of the complex variable and the maximum of

moduli are continuous functions of its coefficients, the

highest degree coefficient being taken different from O.

1 - For any real k, Ck(z)

the degree of A(z).
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Proof of the linear stabili.ty theorem. 

Let Ck(Z) ,A{z) ,B{z) be three polynomials with the 

relation : 

Ck(z)=(z-llACz)+k B(z) 

with :_degree of A(Z) greater than degree of B(z} 

_ a O the highest degree coefficient of A (z) 

(A-l.1) 

_A (z) has aIl its raots strictly in the unit cirele 

_A{z), B{z) with real coefficients. 

We will show that it exists a vicinity of zero V(O) such 

that if k 15 in V{O)- (0), the raots of Ck{z) are strictly 

in the unit cirele if and only if 

k a O B(l» 0 (A-1.3) 

proaf : we use continuity results : the raots of a 

polynomial of the complex variable and the maximum of 

modu11 are continuous functions of its coefficients, the 

highest degree coefficient being taken different from O. 

1 - For any real k, Ck (z) has (da +1) roots if da 1.s 

the degree of A(z). 



A-2

2 - For k equal to zero, the roots of Co(z) are :

the d
a
roots of A (z) which are strictly in the

unit circle

The simple root : equal to 1.

From the preceding continuity properties,

exists a vicinity V (0) of zero such that for

any k in this vicinity, C (z) d
a

strictly in the unit circle.

4 - Let us study the last root.

If the modulus is greater or equal to one, the root is

real because it is alone outside the unit circle and the

coefficients of the polynomial C (z) are real. So let us

consider the polynomial C (z) of the real variable,

only root greater than one exists

ct i ) C(x}) 0

large x greater

But here we have

C( 1) =k B (1)

(A-l.4)

(A-1.5)

and the sign of c t x ) for large x is the one of <o so

there is no root if

kB (1) a
O

฀ 0 (A-l.6)

฀฀฀฀฀ : From the hypothesis on A(Z} , the signs of

A ( 1) and a
O

are the same.

A-2 
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coefficients of the polynomial C (z) are real. Sa l.et us 
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c(1) C{x» 0 (A-1.4) 

large x greater th an one. 

But here we have 

C(l)=k B(1) (A-loS) 
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A(l) and a O are the same. 



Proof of the non linear stability theorem.

m t (0 ••• 0 ID
N
••• ID

O
) t

s(n)t = «Sn_N
d-

U) ... (Sn-U»t

w (n) t = (W n - Nd
W
n
) t

d
t

(d
Nd

dO) t

u (n ) t = ( (U
n
-
Nr
-\1) ... (un -u) ) t

฀฀฀฀฀฀฀฀ -"""\
010 ••.• 0

.0

1

(A-2.1 )

Proof of the non linear stability theorem. 

Let us take the notations : 

S(n)t = «sn_Nd-U)'" (Sn-u»t 

u (n) t = «Un -
Nr 

-u) ... (Un -uJ l t 

฀฀฀__ 

010 ••.. 0 

.0 

1 

(A-2.1) 
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Q=

t
(1 1) t

to

t
(0 ..... 01) tt

1

U
t

rP et
1 to

II = identity matrix

M = N +N + 1
P d

L = N +N + 1
q d

(N +1) number of coefficients of m(z)

(N
d+1)

number of coefficients of d(z)

(N
r
+ 1) number of coefficients of r (z)

(N
b
+1) number of coefficients of b (z)

with those notations, we write-the compensator relation (29) :

-the compensator input (27) :

A-4 

t 
to (l 1) t 

t - (0 ••••• 01) t t , 

U 
t 

rP e t , to 

With TI '" identity matri:x 

M = N +N +1 
p d 

(N +1) number of coefficients of m (z) 

(Nd +l) number of coefficients of d(z) 

(Nr +ll number of coefficients of r{z) 

(Nb +1) number of coefficients of b(l1:) 

with those notations, we write-the compensator relation (29) , 

-the compensator input (27) , 



-and the process output (2) :

S(n)= fP E(n)+ d:! V(n)+W(n) (A-2.4).

From the equality of static gains of the sensor

the reference, we have

฀฀฀฀฀฀฀฀฀฀฀ [(mt(II_T)_kdtrp )E(n)+ krtU(n)

-(kdtll:? +bt)V(n)_kdtW(n)]) (A-2.7)

Thus, we have a state representation of the control

(A-2.8)

(A-2.9)

o 1

fS!,.=

(A-2.10)

A-5 

-and the process output (2) : 

S{n)= fP E(n)+!< V{n)+W(n) (A-2.4). 

From the equality of static gains of the sensor and 

the reference, we have 

฀฀฀฀฀฀฀฀฀฀฀฀฀[(WtCIl_Tl_kdtfP )E(n)+ krtUCn) 

_(kdtlQ +btlV(nl_kdtwCnl]1 (A-2.7) 

Thus, we have astate representation of the control 

CA-2.S) 

with : 

(A-2.9) 

o 1 

(A-2.l0) 



x =---.!:..-(krtU(n)_(kdtlQ +bt)V(n)_kdtW(n»

n "o
(A-2.11)

Now we remark that fSi:" is a companion matrix associated

the polynomial :

So we have a new result of stability:

Let f (1%) be the spectral radius of the matrix ฀฀

if f
n
satisfies the following inequality for a certain norm

XN p - 1

f
n
(x
Np
+e)-e

, k <1 (A-2. 12)

system with the non linearity f
n
is stable.

If the linear system is asymptotically stable, the

spectral radius of /lU is less than one, then it exists a

consistent norm of A. which is less than one [5] .

For tha t norm, we have :

฀฀ ฀ f
฀฀฀ x ]] \1(A).) II x j] , f(ll:I) <. 1 (A-2.13)

But from (42), we have also :

(A-2.14)

(A-2.15)

A-6 
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n mO 
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Let f (P':!,) be the spectral radius of the matrix A., 

if f n satisfies the following inequality for a certain narm 

"0 

XNp-l 
, k{1 (A-2.12) 

f n (xNp +'i:D-e 

system with the non linearity f n 15 stable. 

If the linear system 15 asymptotically stable, the 

spectral radius of f!ù ls less th an one, then it exists a 

consistent norm of ฀฀which 15 less th an one [SJ . 

For that norm, we have: 

f (Pi:I) ( 1 (A-2.13) 

(A-2.14) 

But from (42), we have aiso : 

(A-2.15) 



II E (n+1) 1/ (A-2.16)

Then if x
n
is bounded i. e. set-point,

and unmeasured disturbances are bounded, we can conclude

our proof.

A-7 

(A-2.16) 

Then if x n is bounded i.e. set-point, measured 

and unmeasured disturbances are bounded, we can conclude 

our proof. 
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Spectral analysis of the matrix (cos(i-j)e ,.

cos (i-j)e =cosi6l. cosje sinj9 , (A-3.1)

฀฀฀฀฀฀฀฀฀฀฀฀฀฀ ฀฀฀฀฀฀฀฀฀฀ I(.cosjB ฀฀฀฀฀฀฀฀฀฀ ,(.sinje .)
• (A-3.2)

So we see that the matrix is semi definite positive

with only two positive eigen values. We are looking for the

eigen vectors as a linear combination

We have to find x and y such that :

(A-3.3)

, . I M M
sini e (x'L c o s j a sinjt:} +L Sin

2j&
)

• j=O j=O

We deduce the expressions

XA+B=xy

xB+C= Y (A-3.4)

A-8 

APPENDIX 3 

Spectral analysis of the matrix (ccs(i-j)El ,. 
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M 2

A=L" cos j&

j=O

฀฀

B=L" sinj&- cosj&

j=O

We get :

1

A-C: «C-A) 2+ 4 B2)"2

2B

1

A+C: «C-A) 2+ 4 B2)"2

but:

A+C=M+l

A-C=t ฀฀฀฀฀฀ =!Sin ฀฀฀฀฀฀ I ฀฀฀฀฀
j=O

2B =fsin 2 j & =ISin฀฀฀฀฀ I ฀฀฀฀฀
j=O

฀฀฀฀ !Sin฀฀฀฀e I

(A-3.5)

(A-3.6)

(A-3.7)

(A-3.8)

(A-) .9)

We get 

M 

฀฀฀฀sinj& cosj& 

j-O 

1 

2 2 '2 
A-C: (tc-Al +4B ) 

2B 

1 

A+C:«C_A)2+4B2)2 

(A-3.s) 

(A-3.6) 

(A-3.7) 

([;-3.8) 

(A-3.9) 
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Proof of the AMAC ฀฀฀฀฀฀

We have to study the roots of the expression

Let us take:

Md (z) = ฀฀฀฀฀฀

Fw(z) = ฀฀฀฀฀

p(z) = ฀฀฀฀฀

Me (z) = ฀฀฀฀฀฀

The characteristic polynomial is then:

(A4.l)

(A4.2)

g(z) = Z'mdn(z)ofwd(z) opd(z) + fwn(z)' [pn(z) 'md(z) - pd(z) omen(z) 1

(A4.3)

We see directly that if the process is known:

pn(z) omd(z) - mcn(z)· pd(z) = 0 (A4.4)

and we have a necessary condition for stability: mdn(z), fwd(z) must have

their roots strictly in the unit circle.

In the general case, to make no more hypothesis on the process. we
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will use the result of Appendix 1. A direct application is in writing

the characteristic polynomial as:

g(z) = (z-I)A(z) + kB(z)

(z-I)A(z) = (z -ndnCa) ofwd(z) - mcn(z) ofwn(z» pd I z )

B(z) = fwn(z) opn(z) °md(z)

(M.S)

(A4.6)

But this leads to consider the model's static gain as the stability

coefficient and thus to lose the notion of model. Moreover, the hypo-

thesis on A(z) implies coupled conditions on the models and the unmeasured

disturbance predictor and here we lose the physical independence of these

elements.

To keep the AMAC coherence, let us factorize zefwd(z) in:

zofwd(z) = (z-l)gwd(z) + rwd(z) (M.l)

such that degree of gwd(z) is greater or equal to degree of rwd(z) and

gwd(z) has all its roots strictly in the unit circle. Such a factoriza-

tion exists always and moreover we have:

- degree of gwd(z) is equal to degree of fwd(z);

- the highest degree coefficients of gwd(z) and fwd(z) are equal;

- fwd(l) = rwd(l)

Then with a modified fwd
k
(z) defined as:

zofwdk(z) = f(z-l)gwd(z) + rwd(z)

the characteristic polynomial can be wr Lt t en as:

(M.8)

(A4.9)
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disturbance predictor and here we lose the physical independence of these 
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zofwd(z) = (z-l)gwd(z) + rwd(z) (A4.7) 

such that degree of gwd(z) 1a greater or equal to degree of rwd{z} and 

gwd(z) has aIl its roots strictly in the unit circle. Such a factor1za-

tion exists always and moreover we have: 

- degree of gwd{z) is equal to degree of fwd(z); 

_ the highest degree coefficients of gwd(z) and fwd(z) are equal; 

- fwd(l) ""' rwd(l) (A4.8) 

Then with a modified fwdk(z) defined as: 

zofwdk(z) = f(z-l)gwd(z) + rwd(z) (A4.9) 

the characteristic polynomial can be written as: 



A-12

g(z) = (z-l) -mdn Ca) gwd(z) opd(z)

+ k[fwn(z)opn(z)omd(z) + pd(z)omdn(z)rwd(z) - pd(z)

- mcn(z)ofwn(z)]

And Appendix 1 ensures stability if k is in a vicinity of zero and

(mdn(l)ogwd(l)-pd(l»-k-(fwn(l)opn(l)-md(l» > 0

using:

mdn(l) = mcn(l)

rwd(l) = fwd (1) = fwn(l)

But ฀฀฀฀฀฀ can also be written as:

(k gwd(l) rwd(l»-(Md(l)oP(l» > 0

(A4.10)

(M.ll)

(A4.l2)

(A4.13)

where the first term is the inequality condition to have all the roots

of z-fwdk(z) strictly in the unit circle we must impose as a necessary

condition. We thus obtain the AMAC stability theorem:

Let fwdk(z) be the modified denominator of the unmeasured disturbance pre-

dictor, there exists a vicinity of zero V(O) such that if k is in V(O)-{O}

the roots of:

zoMd(z) ofwdk(z) + fwn(z) ° (P(z)-Mc(z»

are strictly in the unit circle if: Md(z) and fwdk(z) have all their roots

strictly in the unit circle and: Md(l) °P(l) > O.

A-12 

g(z} '"" (z-l}-JDdn(z) gwd(z)'pd(z) 

+ k[fwn(z) -pn(z) 'md(z) + pd(z) 'mdn(z)rwd(z) - pd(z) 

• rncn(z)'fwn(z)] 

And Appendi:K l ensures stability if k is in a vicinity of zero and 

(mdn(I)-gwd(l)'pd(l»'k'(fwn(l)'pn(lhnd(I» > 0 

using: 

mdn(l) "" mcn(l) 

rwd(l) = fwd(l) .,. fwn(l) 

But ฀฀฀฀฀฀can also be written as: 

(k gwd(l) rwd(l»-(Md(l)-P(l» > 0 

(A4.10) 

(A4.11) 

(M.12) 

(A4.13) 

where the first term is the inequality condition to have aIL the roots 

of z'fwdk(z) strictly in the unit circle we must impose as a necessary 

condition. We thus obtain the AMAC stability theorem: 

Let fwd k (z) be the Ulodifie.d denominator of the unmeasured disturbance pre-

dictor, there exists a vicinity of zero V(O) such that if k i8 in V(O)-{O} 

the roots of: 

z-Md{z) 'fwdk(z) + fwn(z)' (P(z)-Mc(z» 

are strictly in the unit circle if: Md(z) and fwdk(z) have aIL their roots 

strictly in the unit circ1e and: Md(l)'P(l) > O. 


