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linear time invariant laws.

Application to an adapted models algorithm control
(AMAC) .

Abstract : In this study, we come back on some charac-
teristics of linear time invariant control laws and we
show how the single input single output (SIS0) adapted
model algorithm control (AMAC) is a technique for
designing such a law.
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A - RETURN ON LINEAR TIME INVARIANT LAWS OF CONTROL

A-1 Introduction

Let us return on what is the problem of sampled-data

control systems synthesis.

Given a mathematical model of a process, functionnal
operator between an input and an output, given a set of
specifications, given a method to compute a control input,
the problem of synthesis may be defined as follows : find
the parameters used in the computation of the control input
such that the mathematical process with that input meets
all the specifications. We spoke about a mathematical model
of a process and not about a real physical process. We will
say a law of command to be robust if it can be used on a

physical process.

More precisely we call robustness the coherence between
approximations of a mathematical representation of a physical
process, and the sensitivity of performance criteria defined
by the specifications, to variations of this representation.

Let Po be the nominal mathematical process, the control
input is designed for, if the performance criteria are continuous
in PO, we can expect the satisfaction of the specifications

for any P in the vicinity of P Then, the physical process

0"
we want to command must have representations each in this

vicinity.

Another way to formulate the problem is : the set of
mathematical processes, images of the physical process, must
be enclosed in the set of mathematical processes which verify

the specifications for a given control law.



So we will successively

define a mathematical process

define a set of specifications

define a control law

find relationships between parameters of the control

law

study the sensitivity of the performance criteria.



A-2 Definitions

A-2.1 Definition of the mathematical model of a process

A-2.1.1 Definition

We define here a discrete time mathematical model
of a process as a transformation of a set of sequences called

inputs into another set of sequences called ouputs.

We differentiate three typesof signals between

the input sequences :

a controlable measured signal called control and

noted e
n

an uncontrolable but measured signal called

measured disturbance, and noted Vn

an uncontrolable unmeasured signal called

disturbance and noted wn

For single input single output systems e,v,w

are scalars and so is the output noted S+

So, if P 1is an operator on seguences, we have

the relation between inputs and output :
s(.)=P(e(.),v(.),w(.)).

A-2.1.2 Hypotheses

A-2.1.2.1 Hypothesis on P(H1):

We suppose P to be a linear time
invariant operator which is of rational type and asymptoti-

cally stable. Moreover we suppose a non zero static gain.



A-2.1.2.2 Hypothesis on disturbances (H2) :

We suppose both measured and unmeasured
disturbances to be causal and to admit 2z - transforms which

verify conditions of final value therorem [1].

If the disturbances are represented as
stochastic processes, these hypotheses are made on the
mathematical expectationsand all the following deterministic

results must be considered in mathematical expectation.

Moreover we suppose the output to be
lineraly time-invariant dependant on the disturbances. So we

introduce a new linear, time invariant, asymptotically stable

operator Q between the measured disturbance and the output.

A-2.1.3 Representation of the mathematical model

of the process

With hypotheses H1, H2, we compute the

output s(n), from the inputs e(n),v(n),w(n) by the recursive

equation :
M Yo t
2 £, s '=>L g. e_ .+ 2_ h, v_ |,
i "n-i i "n-i i n-1i
i=0 i=0 i=0
Ng
+ X £, ow (1)
z i "n-i
1:
where (fi)ie(O,.,Nf)' (gi)ie(O,.,N )’
g
(hi)ie(O,.,N ) are time invariant scalars.

h

Neglecting the initial conditions
(justified by asymptotic stability), we can represent (1)

in a more concise way using =z - transforms

s(z)=P(z)e(z)+Q(z)v(z)+w(2) (2)



where :
p, (2)
Plz) oy
Pd z
N Ng-i
qd(z).pn(z)= i g, z ,
i=0
q_(z)
n
Q(z):—————— ’
qd(Z)
(3)
N Nh—i
p4(2) .qn(z)=i h,ozo
i=0
N Nf—l
Pd(Z).qd(Z)= E'i fi Z '
i=0

and from the causality principle, degree of pn(resp. qn) is less

than degree of pd(resp. qd).

Moreover from the hypotheses, the roots of pd(z)

and qd(z) are strictly in the unit circle.

So we get the block representation given by

figure 1 :

w
Vp—— 4 Q(2) n
L
+ +
en P(z) | % +\\/ Sp

FIGURE 1 -~ Representation of the process




A-2.2 Definition of a set of specifications

A-2.2.1 Output regulation

We want the effect of non decreasing distur-
bances on the process to be, in some sense, minimized or

eliminated.

A-2.2.2 Output tracking

Given an extermnal non diminishing signal
called the set point and noted u , we want the output
sn to track u, with minimal or ideally, zero steady
state error. For this problem, we impose a causal set point
with z - transform which verifies conditions of the final

value theorem.

A-2.2.3 Internal stability

In both cases it is also imperative that
an appropriate control law be designed in such a way as to
insure an asymptotically stable design i.e. the relations
between the external signals (set point, measured and
unmeasured inputs) and the internal signals (control,output)

must be stable in some sense.

A-2.2.4 Asymptotic convergence

We will summarize the preceding definitions
by the asymptotic convergence of the output sn to the

set point un

lim (u_-s)=0 (4)
n - n



In fact we have only here the least constraints
to set any system of control. The synthesis of such a system
must also take into account the behaviour of this convergence
and need performance criteria [2]. From greater variability we

keep ourselves within the convergence criterion.

A-2.3 Definition of the control law

A-2.3.1 Definition

We call control law a method to compute future controls
given the observation of all the measurable past signals. To

get a very general linear time-invariant control, we compute

a future control en+1  given the past measured signals
(e , s, u , v ; m¢n) as a finite 1linear combination :
m m m m N
N N N N
e(n+1)=—§ a, e .- ; d, s_ .+ E r, u_ .- E b, v .
i n-i /_ i "n-i i n-i i n-i
i=0 i=0 i=0 i=0
(5)
Or using =z - transforms, we write
c(z)e(z)=r(z)u(z)-d(z)s(z)-b(z)v(z) (6)

with c(z), r(z), d(z), b(z) z - polynomials such that
degree of c(z) is greater than degree of r(z), d(z) or b(z)

and c(z) is mutually prime with r(z), d(z) and b(z).

Note that from the homogeneity of equation (6), there

is no use to take rational functions instead of polynomials.

A-2.3.2 Interpretation

Equation (6) has the block diagram representation given

in figure 2.



u— s r(z)

Voi— b(z)

FIGURE 2 - Control law structure

So we can interpret the four parameters c,r,d,b of the

control law as [3] :
c(z) is a compensator
d(z) is a sensor
r(z) is a reference

b(z) is a feed-forward input



A-3 Relations between parameters of the control law

A-3.1

behaviour.

Study of the closed loop-system

We study the closed loop-system in its asymptotic

So we are going to express the various transfers

between external and internal signals

The closed loop system is represented by figure 3

Vn w

n—-———

n
b(z) Q(z)
_ ) + +
r(z) 1 p(z)|__* .-;i{j>____
N c(z)
d(z)
FIGURE 3 - Closed-loop system
We have the z - transform relations :

s(z)=S_(z)u(z)+s__(z)v(z)+S__ (z)w(z)
a rv rw
e(z)=Ea(z)u(z)+Erv(z)v(z)+Erw(z)w(z)

with : the tracking transfers

r{(z)pP(z)

S, =T ra=mp(2)
r(z)
E B =y ra() P (2)

(7)

(8)

(9)

(10)
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and the regulation feedback and feedforward transfers :

_c(2z)0(z)-b(z)P(2)

Sry(B)="Clz)+a(z) P (2) (11)
Srw(Z)=c(z)+§§z;p(z) (12)
x4 =S Gy va ey (2) (13
Erw(zh'c(z)fé?)z)p(z) (14)
We can see that the poles of any transfer are
given by the roots of the expression c(z)+d(z)P(z). Moreover

from the stability of P(z), Q(z) and the hypothesis of
mutual primeness, a necessary and sufficient condition of
internal stability is given by the stability of the control

and more precisely by the stability of the Ea(z) transfer.

We shall note that given the stability conditions,

the sensor d(z) determine the E regulation transfer, the

ry (2)
compensator c(z) determines the Srw(z) regulation transfer
and 1r(z) determines the Ea(z) tracking transfer. With

the error tracking transfer :

(d(z)-r(z))P(=z)
c(z)+d(z)P(z)

1 - 5_(2)=5¢ (2)+ (15)

we remark that the difference between d(z) and r(z)

differenciates between regulation and tracking behaviours.
Whith expression (11), if it is possible to get :

c(z)Q(z)=b(z)P(z) (16)

we will be able to compensate completely the measured distur-

bance.
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From expressions (9), (11), (12), we can write

expression (4) using the final value theorem :

lim (1~-2)( s (z)-u(z))=0 (17)

—_—
z 1+

Supposing s{z),u(z) to be defined in the ring
(1,+ @ ). In order to separate set-point, measured and
unmeasured disturbances actions, we will transpose the set

of specifications into four constraints :

regulation constraints :

c(1) _
Sry, D =cvamen - ° (18)

c(1)0(1)-b(1)P (1)

Sro (D ="M vahr (1) 0 (19)
tracking constraint :
r(l1)p (1) (20)

S, V=l ranhs ()

And stability constraint :

The roots of c(z) pd(z)+d(z)pn(z) are strictly

in the unit cercle.

A-3.2 Regulation constraints

A-3.2.1 Passive regulation

We want to impose relation (18). With the
hypothesis on the process and if the sensor has a non

zero static gain, it is necessary and sufficient that :

c(1)=0 (21)
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So, we must impose a factorization of the

compensator in :

c(z)=(z-1)m(z2) (22)

Moreover, from now on, we will write the

sensor as k d(z) with

d(l)=1, k=0 (23)

A-3.2.2 Active regulation

From the preceding results, we must

impose :

b(1)=0 (24)

So, we have the following factorization

b(z)=(z-1)n(z) (25) .

A-3.3 Tracking constraint

We verify expression (20) if we impose identical
static gains for both sensor and reference. So as in (23),

from now on, we will write the reference as k r(z) with :

r(1)=1, k0 (26)

A-3.4 Remark

With expressions (22), (23), (25) and (26), (6) must

be rewritten as

zm(z)e(z)=m(z)e(z)+(z-1)n(z)v(z) +k(r(z)u(z)-d(z)s(z)) (27)
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So the control is computed in a recursive way.

A-3.5 Stability constraint

We study the polynomial :
(z—l)m(Z)pd(Z)+kd(Z)pn(Z)
We know already :

- pd(z) has all its roots strictly in the unit circle

k,d(l),pn(l) are different from zero
- degree of m(z) is greater than degree of d(z)

- degree of p_(z) is greater than degree of pn(z)

d
with no more hypothesis on the process, we can give a sufficient

condition of internal stability (Proof in Appendix 1).

If m(z) has all its roots strictly in the unit
circle, it exists a vicinity of zero V(0) such that if
k is in V(0)-(0), internal asymptotic stability is ensured

if and only if :

km(1)P(1)> O (stability condition) (28)

with P(1l) equal to the static gain of the process.

Note that from continuity, the existence of a vicinity
of k «can be transposed on the existence of a vicinity of
P(z) as we will see in a next section, and so this permits
the study of robustness as it was formulated in the introduc-

tion.
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A-3.6 Introduction of a non linearity on the control

We will extend here the results of Rouhani [4]. We
introduce a non linear compensator defined as follows

(figure 4).

Let Y, be the input signal of the compensator, we

compute the control e, through the expression :

N-1
- (L N
en+1—fn(m (yn+é;_(mi mi+1)en—i+mNen—N ) (29)
0 :
i=0
N
with m(z)= E mi zN_l

£ (.)
y 4 - €41
n (z-1)m(z) n
FIGURE 4 - Non linear compensator

To study the behaviour of the closed-loop system, we
give an asymptotic value U to the set point, we compute

a theoretic asymptotic value e of the control :
P(l)e=u (30)

We suppose the disturbances to be bounded and the

processes to be a M.A. system (P(z)=§NP pn(z)).



Then we can say (Proof in Appendix 2)

Let p be the greatest modulus of the roots of
(z-l)m(z)zNP+kd(z)pn(z), if for any n we have for a certain

norm

0 0
k
- . , k1 (31)
X - X -
Np-1 f N, 1
f (xy +€)~e x
n "Np Np

then the non linear system is stable.

In fact here (with the hypothesis on the disturbances)
the stability is taken in the sense of bounded input bounded
output (bibo). But if the external signals (set-point,
disturbances) become constant, it will become an asymptotic

stability and verify relation (4).



A-4 Sensitivity of the convergence criterion

Following our introduction we are going to study the
sensitivity of our preceding results to variations of P
and Q. In fact given the parameters m,r,k,d,m of the
control law, we are looking for the set of P,Q operators
for which the convergence criterion is satisfied. To keep
the validity of our approach, we will take P,Q in the

class of linear time invariant processes.

At once let us remark that only the stability constraint
uses hypothesis on P and Q, so we can conclude to
insensitivity of the tracking and regulation constraints.

And from now on we will look at the stability problem.

A-4.1 Sensitivity to QO

From expressions (9) to (14) it is easy to
conclude that for any asymptotically stable Q, we will have

internal stability. So, in fact, there is no sensitivity to

0.

A-4.2 Sensitivity to P

In the hypothesis H1 we have imposed P additional
constraints to those on Q, particularly rational type and non
zero static gain. The latter was essential in regulation
and stability constraints. So we must impose variations of
P to maintain the sign of the static gain. The former was

a theoretic facility but it can be relaxed.

A-4.2.1 P of rational type

In that case we have to find all the pairs of

polynomials (pn(z), pd(z)) such that :
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degree of pd is greater than degree of P, and the roots
of pd(z) and (z-1)m(z)pd(z)+kpn(z)d(z) are strictly in the

unit circle.

Given pd(z) and the number(N§+1) of coefficients

of pn(z), suppose m(z) has all its roots in the unit circle,

we look for the coefficients po,.....,pNP such that the
polynomial :
N N _-i
- N P
g(Z)—(z—l)m(Z)pd(Z)+kd(Z):L_ p, z (32)
i=0

has all its roots in the unit circle.

Let us work in the g(z) coefficients space.

Let G be a vector representative of g(z),

=)
o’
®

representative of (z—l)m(z)pd(z),

ol
o
o

representative of pn(z),

D be a matrix representative of the action

of d(z) on pl(z).
We have :
- = -
G=M+kD.P, (33)
—> >
G 1is linearly dependant on P.

Otherwise, given the highest degree coefficient
of m(z) pd(z), from the continuity of the coefficients on
the roots, we can say that the set of admissible Gs which
represent polynomials whose roots are in the unit circle
is closed, bounded and connected. Moreover from the presence
of (z-1), we can say that M is on the frontier of this set.

Thus we have the situation given by figure 5.
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Set of admissible gs

zero static

gain locus

FIGURE 5 - Coefficient representation of stability

constraint

So from the knowledge of the set of admissible
6%, we can find the set of admissible Ps. The first set has
been studied by Markov [6] in the continuous case. Particu-
larly we can't make sure of convexity of the set, so from
the linearity we don't know if the set of admissible Ps is

connected.

This approach gives the roles of m, d or k :
m corresponds to a translation, d is very similar to a
rotation and k to a linear displacement. Moreover we can

see the coupling between vicinities of k and P.
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A-4.2.2 P in the vicinity of a rational PO—

Suppose the parameters of the control law to

be fitted to a nominal process PO of rational type. We
are looking for variations AP around PO' such that we
have internal stability.

If we suppose P(z) to be an analytic function

outside a domain strictly contained in the unit circle and

if we note :
g(Z)=(z—1)m(Z)+kd(Z)PO(Z) (34)
h(z)=kd(z)AP(z) (35)

Then g(é) and h(%) are analytic in and on the
unit circle and with the Rouché Theorem [7] , wWe can say

that for any process P(z)=PO(z)+AP(z) such that :

16 ce [-1, n] (36)

lg(e**) > |n(e

we will have intermnal stability.

We have in fact here another presentation of

the result of Doyle [8] in the SISO case.

A-4.2.3 Application to a polynomial variation

Let us take AP(z) of the form :

N
AP(z)=Z Apsz‘j (37)
j=0

Expression (36) means :

keia—l)m(eig)+kd(eiQ)Po(eis)t>kid(eiQ)HAP(eie)“BB)

ve e[-n, ]
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But we have with appendix 3

2

i .
|AP(e )| = Z: Apj Apl cos(j-1)p (39)
3,1=0
6. |2 o 2, N+1_ 1} Sin (N+1)6 |
i ~— + in (N+
lap ™) ] <57 ari G g (40)
j=0

So we can get an upper bound of the modulus :

1
M 2 i ie ie ie
2 i -1 +k
(Z apl) < min l(e ym(e™ ) d(e )Po(e )_Il_
o ge [-1 ,+11]k|d(eie)| (Nl 1ySin (N+1)e) 2
J T2 72V sine |
(41)
Practically an FFT algorithm will provide all
these spectra.
A-4.2.4 Convergence criterion sensitivity index (CCI)
Given a process PO and the parameters of the
control law we define an absolute index by
ie is
_Min (e -1)m(e™ ) ie
CCI(PO,m,k,d)— ee[_n +n] N d(ele) +Po(e ) (42)

From expression (36) this index gives an upper
bound on the possible spectrum variation to verify convergence
criterion. So we call it a convergence criterion sensitivity
index. To insure robustness, it has to be compared with an
equivalent approximation index given by the P model

0
estimation phase.
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A-5 Summary

In this first part, we came back on the problem of
linear control. The most important results have been
reformulated in a very general way : results on the structure
of the control law, results on stability in the linear case
and in a simple non linear case and at last results on a

measure of the sensitivity of stability.



B. THE SINGLE INPUT-SINGLE OUTPUT (SISO)
ADAPTED MODEL ALGORITHM CONTROL (AMAC)

We have just presented a linear time invariant control law in a
general fashion. It is an abstract approach which serves only to ensure
the convergence criterion. In an attempt to get behavior criteria, we are
going to give a physical presentation through a SISO control based on

the mathematical representation of the process of paragraph A-2.1.3:

s(z) = P(2)e(2z) + Q(z)v(z) + w(z) (D)

and the use of adapted models of the operators P,Q.

B-1. General SISO AMAC Presentation

B-1.1 Definition of the Strategy

At time n, given the past measurable signals, the SISO AMAC computes
a control such that a predicted output of the process is identical to a
predicted set point.

Taking the notation of Box and Jenkins [9], we write this:

s (1) = u_(1) 2

the prediction being here of one point ahead. From the representation
of the process (1) we decompose the predicted output into two parts: a
deterministic part which functionally depends on the inputs and a non-
deterministic part sun(l) resulting from the disturbances. Let M(en(l),

ez; 2<n) be a model of the operator P which defines the deterministic
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output from the future and past controls, we deduce from (2) the control

law as:

M(e (1), ep; £2<n) =u (1) - su (1) (3)

Then to compute the control en(l) we have three different problems:
inversion of M, estimation and prediction of the non-deterministic out-

put, and prediction of the set point.

B-1.2 Inversion of the Model M

From its definition, M is a model of the process. Note that to
compute en(l), we use this model in a reversed way compared to the physical
transfer, s0 we require M to be invertible in the sense defined by Box
and Jenkins [9] and we call it a deconvolution model. Thus with the
linear time invariant hypothesis the model of the process is taken linear,
time invariant, asymptotically stable, of rational type and invertible.

Let mdi or Md(z) be the impulse response and the rational z-transform
of this deconvolution model. We obtain from (3)

00

me.en(l) = - iZlmdi.en+l—i + un(l) B sun(l) (4)

and md0 must be different from zero.

B-1.3 Estimation and Prediction of the Non-Deterministic Output

From expression (1) the non-deterministic output is the sum of both
a filtered measured disturbance vn and an unmeasured disturbance wn.

Suppose we have an estimation Qn of v and a convolution model of the
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measured disturbance filter Q : nci(Nc(z)), then if vn(l) and Qn(l) are

predictions of measured and unmeasured disturbances, we compute:

©o

sun(l) - ncovn(l) + izl nc:i'vn_l_l__i + Qn(l) (5)
So we first need the estimation wn(l) of the unmeasured disturbance and
secondly measured and unmeasured disturbance predictors.

We already introduced a convolution model Nc of Q. Let us take also
a new model mci(Mc(z)) of the process P. This time we need a model to be
used in the same way as the process so Mc(z) is a convolution model com-
pared with Md(z), a deconvolution model. Similarly to expression (1), we
compute the estimation ﬁn by

[oo] o

% =s - ) me,ce .- ) nc,v__.
n n . i n-i . i n-i
i=0 i=0
Now from the past v and Qh’ we want to predict sun(l). From discrete
parameter prediction theory [10], vn(l) and ﬁn(l) can be computed with

prediction filters. Using z-transforms they may be expressed as

8 (D (2) = Fo(2) () = 2B a(2)

N
v(1)(z) = F _(2) v(z) = %;%V(Z)

where fwn(z), fwd(z), fvn(z), fvd(z) are polynomials in z, the degree of
fwd(resp fvd) being greater than the degree of fwn(resp fvn). Moreover,

to be able to predict the continuous component of the disturbances, we
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impose unit static gain predictors.

Thus we get the z-transform of sun(l):
su(l) (2z) = Nc(z) v(z) + Fu(z) @(z) (8)
with Nc¢'(z) (nci) computed from Nc and Fv through the relation:

(o] oo

— ]
nc, vn(l) + 'z ne, Vo4 < .z ney Vo (9)
i=1 i=0

Now from z-transform of (6) we have the final relation:

su(1)(2) = F_(2)(s(2) -Mc(2)e(2)) + (N (z) - F_(2)N_(2))v(z)  (10)

or equivalently in the time domain:

= * - * v _ * *
sun(l) fwi (si mc, ei) + (nc:.L fwi nci) vy (11)

where * represents the discrete convolution operator.

B-1.3 Set Point Prediction

To get a better behavior of the closed-loop system, at time n we
need future set points. In some cases they are available (particularly
when there is a hierarchical control). But generally we need a predictor.
Let us take it in the form of a rational filter Fu(z) with fui as impulse

response and with unit static gain.

G(1) (2) = Fu(z)u(z) = Jﬁﬁggz—;— u(z) (12)

or
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i k] *
un(l) fui uy (13)

with fun(z), fud(z) polynomials in z, with the degree of fud(z) greater than

ar equal to the degree of fun(z).

B-1.4 Expression and Properties of the SISO AMAC Law

From expressions (3), (11) and (13) we get the SISO AMAC law

1
- — * - * + * - * - L * *
e (l) ] [(fw. mcl md.) e, fu,*u, fw.*s, ('ﬂC. fw{ DC.) V.]

(14)

This prediction is used as the future control e Thus we get the

n+l’

z—-transform representation of the SISO AMAC law:

(z*Md(z) — Fw(z) *Mc(z))e(z) = Fu(z)*u(z) - Fw(z)s(z)

- (Ne'(2z) - Fw(z)Nc(z))v(z) (15)

Then we find the expression of the four polynomials of our general linear

time invariant control law:

c(z) = z*Md(z) - Fw(z)Mc(z)
r(z) = Fu(z)
(16)
d(z) = Fw(z)
b(z) = Nc'(z) - Fw(z)Nc(z)

Thus we can give a physical interpretation to these polynomials. Moreover,
we see that from a physical point of view ¢, r, d and b are not mutually

independent, but Md or Mc, Nc, Fu, Fv and Fw are.
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The regulation and tracking constraints (see Part A) are verified

since we have imposed:

Md (1)

Mc (1)

Fu(l) Fv(l) = Fw(l) = 1 (17)

il

Ne'(1) = Ne(l)

The stability constraint (Appendix 4) can be verified by a modification
of the dynamic of the unmeasured disturbance predictor if: the different
models and predictors are stable, the numerator of the deconvolution
model has all its roots strictly in the unit circle, the following in-
equality is satisfied: Md(1)°*P(1) >0. (18)

Now assuming a perfect knowledge of the process and the measured

disturbance filter:

Mc(z) = P(2); Nc(z) = Q(z) (19)

we can write the expected closed-loop tracking and regulation transfer:

Fu(z)P(z)

$a(2) = 1z (20)
_ Fw(z)Mc(z)
Srw(z) =1l-= Md(z) (21
_ Ne'(z)Me(z)
5., (2) =Q(z) - 2 Mi(z) (22)

So the closed-loop tracking tramsfer is the product of the set point pre-
dictor and the deconvolution model mismatch of the process. Similarly we
get the closed-loop regulation transfer. Thus in a perfect matching,

the various predictors specify the tracking and regulation closed-loop

transfers.



The block representation of the SISO AMAC is given by Figure 6.

Nc'

Figure 6. SISO AMAC Representation

Mc convolution model of the process

Md deconvolution model of the process

P deterministic part of the plant

Q stochastic part of the plant (disturbance process)

Nc convolution model of the disturbance process

Nc' predictive convolution model of the disburbance process
Fu set point predictor

Fw unmeasured disturbances (wn) predictor

B-2. SISO AMAC Examples

Following our presentation we will present two classical control
systems used whenever the convolution and deconvolution model can be iden-

tical.
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B-2.1 The Optimum Control System of Phillipson [11]

Let us suppose no measured disturbance and an asymptotically stable
process with a delay of £ samples. We take a convolution model with a

delay of k samples, k underestimation of £:

Mc(z) = zMMd(z) (23)

with Md(z) supposed to have all its roots strictly in the unit circle.
Then if we take a unit gain element as a set point predictor, and a
k-step-predictor zkH(z) for the disturbance, we obtain the optimal control

system of Phillipson (Figure 7) which is an improvement over the Smith

controller.

"
u 1 P +;PK h *
n Z Md (z) o~ A

2 KMd (z)

zkH(z) <—

Figure 7. Optimum Control System of Phillipson

As mentioned by Phillipson, this system used in regulation is equivalent
to the Box-Jenkins—-Astrom minimum-variance control [9] or to the Kalman
linear regulator [12].

Thus, this system is essentially made for regulation. Moreover, the
use of the inverse model as controller since this will be a high-pass filter,
amplifies noise, causes violent changes in the control signal and perhaps

frequent saturation. That is why the AMAC uses here an adapted model and
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avoids rapid changes in set point thanks to the set point predictor.
Predictor H can be easily computed when the disturbance can be described
as the output of a known rational filter whose input is an independent
zero-mean random sequence. But to verify internal stability we must

not forget the constraints on the denominator of H. Here Phillipson
suggests the use of exponential smoothing for prediction to solve the
problem. That way, we can answer satisfactorily the output regulation
but not so properly the output tracking. The model predictive heuristic
control which follows attempts to answer the two questions introducing

a set point predictor and deducing the disturbance predictor.

B-2.2 Model Predictive Heuristic Control (MPHC) [13]

We give here a simplified study of this method; the very general
study can be found in [14]. Suppose no measured disturbance (MPHC can
be extended to this case) and a convolution model having a moving average

(MA) structure with all its roots strictly in the unit circle, we take:

M(z) = Mc(z) = Md(z) (24)

For the set point and disturbance predictors, we choose

1-G(1)
Fu(z) = l-z_lG(z)
(25)
1-G(z)
F (z) = — 252
v 1-2Y6(2)

where G(z) is a nonzero static gain transfer such that Fu(z) and Fw(z)

satisfy stability conditions.
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Then from (15) we get the MPHC law:

1

(=222 yenz)e(z) = — S —— [(1-GM)u(2) - (1- 6(2))s(2) ]
1-z G(z) 1-2z "G(2)
(25)
(z-1)+M(2)+e(2) + s(2) = (1-6(1))u(z) + G(z)s(2) (26)

Let us develop the strategy of this relation.

Both terms are similar to outputs. We call the left-hand term a

predicted output SP(Z) and the right-hand term a reference output SR(Z)'

From

sP(z) = zM(z)e(z) + (s(z) -M(z)e(z)) (27)

we define the predicted output as the output of the model at time (n+l)

corrected of the estimation W(n) of the disturbance

with

sp(ntl) = sM(n+l) + W(n) (28)

sM(n+l) output of the model with a predicted input en(l). The ref-

erence output SR(z) is given by a trajectory connecting the past outputs

of the process to the present set point.

Thus

sp(ntl) = (1 - ] glu + ) g s . (29)
i=0 i=0

the MPHC strategy consists in computing future inputs such that

predicted outputs are on a connecting trajectory. Its block representation

is given by Figure 8.



1-G(1) + 1 €h s
A — P + n +
1-2716(z) - M(z) (=) >

M(z)

1-G(z)
l—z_lG(z)

Figure 8. MPHC Representation with G(z) as Connecting Trajectory Generator

From part A, we will satisfy the convergence criterion if M(z) has all
its roots strictly in the unit circle and (1-G(1l)) is taken as the stability
coefficient. But again, the transfers are not independent, for instance in a

perfect modeling we have:

_1-631)

Sa(z) Tz -G(2) (30)
— 1-G(z) _ =z-1 _z=1

Srw(z) =1- z-G(z) z-G(z) 1-G(1) sa(z) 31

The regulation transfer is the discrete differentiation of the tracking
transfer. Moreover, if the model does not verify the stability condition,
the strategy must be seriously questioned but it has been extended to this

case by the introduction of the notion of adapted model [14].

B-3. Choice of the Deconvolution Model

We have seen that the most general linear time invariant control law
contains five independent physical components. Theoretically each can be
obtained from a modeling (system or spectrum). But the deconvolution

model is a special case because its use is not a physical one. We are
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going to show where the problem is and how to solve it.

B-3.1 Terms of the Problem and Mathematical Solution

Let Md(z) be this deconvolution model
(32)

with mdn(z), mdd(z) polynomials in z such that with expectation (4) degree
of mdd(z) is equal to degree of mdn(z).

Mc(z) is the knowledge of the process, i.e., the convolution model:

(33)

with mcn(z), mcd(z) polynomials in z, with degree of mecd(z) greater than
degree of mcn(z). The differences between these models are in their use.
Let e,s be the input and the output, we write

5(z) = BB o(2) (34)

similarly to the process, but:

mdd (z)

e(z) = 2dn(2) s(z) (35)

is a reversed relation compared with the process.

As we want a stationary control law, following Box and Jenkins [9],

men(z) mdd (z)

we have to improve the stability of both transfers EEE?;T n EE;(;T .

The former can be ensured from the stability of the process. But the
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latter has no physical significance and we have seen that we must impose
men(z) to have all its roots strictly in the unit circle.

As mdd(z) has no constraint in the deconvolution use, we can take:
md(z) = mdd(z) = mcd(z) (36)

Moreover, to get a zero static gain compensator, with expression (16),

we must impose:
mdn(1l) = men(1) (37)

Thus the problem is: knowing the model of the process men(z), how to
choose mdn(z) such that it keeps the significance of a model and it satisfies
the stability condition.

If men(z) has all its roots strictly in the unit circle, we take

obviously:
mdn(z) = mcn(z) (38)

So the real problem occurs when mcn(z) has roots on both sides of the

unit circle. Let us factorize mcn(z) into:
men(z) = min(z)*mon(z) (39)

where min(z) has all its roots strictly inside the unit circle, mon(z)
has all its roots strictly outside the unit circle. We don't deal with

unit modulus roots. As mdn(z) is used as a denominator, let us consider:

mid(z) = Egiél— (40)
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1

mod(z) = ESH?ET

(40)

mid(z) is a holomorphic function defined outside a domain strictly con-
tained in the unit circle, so its Laurent expansion in the vicinity of

the unit circle is:
mid(z) = X midjz_J (41)

mid(z) corresponds to a causal impulse response and so has a physical
significance.

Inversely, mod(z) is a holpmorphic function defined in a domain
strictly containing the unit circle, so its Laurent expansion in the wvi-

cinity of the unit circle is

mod(z) =

il ~1 8

mod 23 (42)

Thus, mod(z) can be considered as corresponding to a noncausal impulse
response. And so expression (35) or (3) implies the knowledge of the
future outputs: en(l) is functionally dependent on un(k), sun(k), k € N.
Precisely, from (3) we get:

2 B2 o(5) = moa(2) [w(@) (=) - 5u(1) (2)] (43)

en(l) depends on the term

'20 mod  (u (3) -su_ (3)) (44)
J=
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i.e., for the one step ahead prediction input, we need j-step predictions
of the set point and the non-deterministic output for all positive
integers j. This is a mathematical result; the physical problem is that
predictions are not real values. Thus the strategy of the SISO AMAC cannot
be totally ensured.

We are going to show how this mathematical solution can be used to
design the control law.

To simplify the statement, we will suppose no measured disturbance
and as suggested by Phillipson and MPHC applications, we take exponential

smoothing for prediction:

F () = =7
v 1-tz L
(45)
1-
F (2) = =
l1-rz

with t,r called tracking or regulation coefficients. Moreover, as there
is no problem on the model's denominator, we suppose an MA model (with
p the number of coefficients)

Me(z) = 2e(2) (46)

2P

with mc(z) factorized in mi(z)*mo(z).
So we will work with the block representation given by Figure 9 and

the AMAC law given by the relations

ndge (1) = - E mdee o 4 *+u (1) - su (1) (47)



un(j) - un(l) = tun_l(l) + (l—r)un; uo(l) =u,

su (§) = sa (1) = tsu (1) + (I-0)¥ ;5 s,(1) =&, (47)
W o=s - Z mc,ce o
i
p “n
l—t + VA + + S
u -y — o —O— S| P(2) n_ %
n l-tz 1 s zmd (z) >
mec(z)
ZP
l-r
l-rz_
Figure 9. AMAC Representation for Study
B-3.2 Direct Application of the Mathematical Solution

From the factorization of mc(z), let mij be the impulse response
corresponding to the roots inside the circle and modj be the noncausal
impulse response corresponding to the inverse of the factor containing

the roots outside the unit circle. We write the control law as:

minge (1) = - § min3en+1_j + § mOdj(un(j)-'Sun(j)) (48)

But with our constant prediction we have:

min'en(l) = - Z min&e

0

b1y T O § mod ) (u, (1) - su, (1)) (49)

With exponential smoothing for predictions the mathematical solution gives

a deconvolution model which has among the roots of the convolution model



only those which are strictly in the unit circle.

From (20), (21)

Sa(z) = i:i gon(z)
z mon (1)
(51)
S -1 - 1-r mon(z)
r™w z-r

zomon(l)

With O the number of roots of mon(z). Thus, the prescribed behaviors can

be followed only after the response time of mon(z).

B-3.3 k-Step Prediction

Our mathematical presentation tells us that to compute en(l) we need

further predictions. So one idea is to rewrite the AMAC strategy as
s, (1) = u (k) (52)

with no a priori distinction between the models.

Then (47) gives
k-1 P
-Z me, e (k-i) = - '2 me, e . g *tu (1) - su (1) (53)
i=0 i=k

Thus the control en(l) depends on the predicted inputs en(j) and we have
to solve a linear system with k unknown quantities. To get a unique solu-
tion one could introduce a criterion on the predicted inputs.

Let us look for a solution linearly dependent on the right term as:

-1
e (1) £ >
S R R i ok (s
e (1) £
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en(l) is the single quantity of interest and we have the control law:

p
fie (1) = -_izk meoce g +tu (1) -su (1) (55)

Thus the implicit deconvolution model is:

p-k .
_ -(i+1)
Md(z) = £+ .Z me, .. 2 (56)
i=0
but with the static gain relation, we need:
p-k P
fl + '2 me. . = .z me, (57)
i=0 i=0
and necessarily,
k=1
£, = .2 me (58)
i=0

The indetermination of expression (53) is illusive. This k step prediction
strategy gives the MA deconvolution model:

k-1

- k-1
Md(z) = Z me, + z 1 E me, z t (59)

. i . i

i=0 i=k
Then the problem is how to choose the integer k in such a way as Md(z) has
all its roots strictly in the unit circle. Obviously there is at least
the solution k=p, but then the prescribed behavior can be followed only

after the time response of the process. This solution is not interesting



but the deconvolution model can be easily computed.
This k~step prediction strategy can be extended. Given a set I of

positive inters, we impose:

s (k) =u (k), Y kel (60)

This leads as previously to a linear system whose unknown quantities are
the predicted inputs. It can be solved in various ways, but the solution
must give a deconvolution model satisfying the stability conditions [14].
The advantage of such an approach is in the constrained control
case: let § be the time invariant set of admissible inputs, we write the
extended k~step prediction strategy as:
Min J(sn(k)-un(k);‘ke 1) (61)
e (3)ed
where J is a criterion.
This optimization problem gives predicted inputs satisfying the con-
straints. Thus, one can expect to get a better behavior owing to the fact

that predicted constraints are taken into account.

B-3.4 Choice from Behavior Analysis

The deconvolution model defines the tracking behavior with the following

transfer obtained in a perfect modeling hypothesis.

_ Fu(2)P(2)
5.(2) = (2 (62)

When we can take Md(z) equal to P(z) the set point predictor plays the
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same role as the reference model in the MPHC, so we can extend here the

ideas of Rouhani [4].

B-3.4 Pole Placement

One can impose direct pole placement. In that case, from the speci-

fied polynomial pp(z) we get the deconvolution model as:

Md(z) = w(—:ﬁ%@l (63)

because, in perfect modeling, we have

_ Fu(z) mon(z)
5a(? z  pp(2) (64)

This method is very simple when the factorization (39) is known. If not,
this problem may be very difficult to solve numerically in particular

when there is a great number of roots.

B-3.5 Optimization Criterion

Another natural criterion is the minimization of a quadratic distance

between the expected and the actual responses to a set point sequence:

2
de (65)

+ ru(ei®) Mc(eie)
S a-

e Mﬁ(

) U(eie)
)

J(Md(z)) = J 5
- e
where u(ele) is a specified function.

This is equivalent to a distance between deconvolution and convolu-

tion models. Thus, if we write
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_ mdn(z)

M = Tad ()
(66)

_ men(z)

Mc(z) = —EE?EY

The problem is to approximate the polynomial men(z) whose roots are on
both sides of the unit circle by a polynomial mdn(z) whose roots are

inside the unit circle and (65) can be rewritten as

""’T

( iB) 2
J(mdn(z)) = J 1 - E‘l—‘i;é-— ar(0) (67)
- mdn(e™ )
with dF(0) a positive measure and:
mdn (1) = men(1l) (68)

Such a criterion and constraints can be computed by the Jury-Astrom al-
gorithm [15].

This method gives a deconvolution model which depends only on the
convolution model Mc and the set point predictor (tracking coefficient in
the exponential smoothing case). Those computations may be numerically
easier than polynomial factorization, but have to be done again if the

predictor is changed.

B-3.6 Conclusion

The deconvolution problem can be solved using a prediction strategy.
This leads to a simple method but not manageable results in the k step
prediction case or to more difficult computations as polynomial factori-
zation or constrained nonlinear optimization if we want to have more

manageable results.
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B~4. Summary

We have shown that a very general implementation of a linear time
invariant control law can be done by the adapted model algorithm control.
This method uses five independent physical entities: two non-deterministic
signal predictors which can be deduced from disturbance modelization;
two mathematical representations of the process behavior which are also
given by modelization; a set point predictor which can be deduced from the
control law specification. The problem is complicated by the fact that
one of the representations is used in a nonphysical way and thus has to

be adapted by a further prediction strategy.
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APPENDIX 1

Proof of the linear stability theorem.

Let Ck(z),A(z),B(z) be three polynomials with the

relation :
Ck(z)=(z-1)A(z)+k B(z) (A-1.1)
with :. degree of A(z) greater than degree of B(z)

_B(1)#0 (a-1.2)

-a the highest degree coefficient of A(z)

0

-A(z) has all its roots strictly in the unit circle

-A(z), B(z) with real coefficients.

We will show that it exists a vicinity of zero VvV (0) such
that if k is in v(0)- (0), the roots of Ck(z) are strictly

in the unit circle if and only if

k ag B(1)> 0 (a-1.3)

Proof : we use continuity results : the roots of a
polynomial of the complex variable and the maximum of their
moduli are continuous functions of its coefficients, the

highest degree coefficient being taken different from O.

So we have :

1 - For any real k, Ck(z) has (da+1) roots if da is

the degree of A(z).



2 - For k equal to zero, the roots of C

(z) are :

the da roots of A(z) which are strictly in the

unit circle

The simple root : egual to 1.
3 - From the preceding continuity properties, it
exists a vicinity V(0) of zero such that for

any %k in this vicinity, c(z) has da

strictly in the unit circle.

4 - Let us study the last root.

If the modulus is greater or equal to one,

roots

the root is

real because it is alone outside the unit circle and the

coefficients of the polynomial c(z) are real.

So let us

consider the polynomial Cc(z) of the real variable, its

only root greater than one exists iff :

c(1) C(x) >0 (A-1.4)

for large x greater than one.
But here we have :

Cc(1)=k B(1) (a-1.5)
and the sign of C(x) for large x is the one of apg so
there is no root if :

kB(1) a, > O (A-1.6)

Remark : From the hypothesis on A(z) , the signs of

A(l1l) and aO are the same.



APPENDIX 2

Proof of the non linear stability theorem.

Let us take the notations

t - - ..t
E(n) = ((en_M—e) ..(en_N—e)...(en-e))
t _ t
m = (0 ... O mN . mo)
t —.. t
s(n) = ((s -N -u) (Sn-u))
4
t t
W(n) = (wn_Nd ...... w )
t t
d = (d.  ...... a.)
Nd 0
t
v (n) = (v -1 vn_Nb . v )
t B t
b = (0 .. O bNb . bo)

t - — ., t
U (n) = ((Un_N -u) .-(un—u))
r

t t
r = (r .- )
Nr ro
M
010....0
T:"'.- M
.0
. Ty
0 0
M ~N
p «..P 0
Np 0
P= . Nd

(A-2.1)



L AY
q - { 0
Nq 0
Q= N,
0 .
a q
Nq 0
t t
t0 = (v . . .1
tt = (0 ..... 01)t
1
— t —_
u =t P ty e

With : I identity matrix

= +1
M= N N,

o
I

+N _+
Nqul

(N +1) number of coefficients of m(z)
(Nd+1) number of coefficients of d(z)
(Nr+1) numnber of coefficients of r(z)

(Nb+1) number of coefficients of b(z)
with those notations, we write-the compensator relation (29) :

-F (L t =
e =f (= [y +m (O -T) (E(n)+E t)]) (A-2.2)

n+1 0

~-the compensator input (27) :

t - t _ t
yn=k[r (U(n)+u t)-d"(5(n)+¥ ty)] -b Vv (n) (3-2.3)



~and the process output (2)

S(n)={P E(n)+ @Q V(n)+W(n) (r-2.4) .

From the equality of static gains of the sensor and

the reference, we have :

a rtt0=ﬁ dtt0 (A-2.5)
So

y =k r'u(n)-ka"® E(n)-(ka"Q +p5H v -ka"w(n)  (a-2.6)
And

en+1=fn(€+r_nl€ [(®(x -m)-ka® ™ YE(n)+ krtu(n)

-(kdtd? +bt)v(n)—kdtw(n)J) (a-2.7)

Thus, we have a state representation of the control

E(n+1)=Fn(;N E(n)+xnt1+€ to)—e to (A-2.8)
with
X X1
Fn x1 = x1 (a-2.9)
XO (xO)
0 1 0
A =
0 0 n (A-2.10)
t
B qrorry RSP
0 o)




t t
Xn=m_1(kr U(n)-(kkd Q +bt)v(n)-kdtw(n)) (r-2.11)
0

Now we remark that A is a companion matrix associated

to the polynomial :
N_+N_-N £
(z=-1)m(z)z +kad pn(z)

So we have a new result of stability :

Let p (A) be the spectral radius of the matrix A,

if fn satisfies the following inequality for a certain norm :

*0 *0
k
< — , k<1 (A-2.12)
XN5-1 ?(FQ) *Np-1
fn(pr+€)—€' pr

Then the system with the non linearity fn is stable.

Proof :

If the linear system is asymptotically stable, the
spectral radius of A is less than one, then it exists a
consistent norm of A which is less than one [5] .

For that norm, we have :

‘1‘? //;/ )
A %l ér(m) I x|/l ' p(m) <1 (a-2.13)

So :

IIAE(n)+xnt1H < p@ UEmll + 1x ) el (n-2.14)
But from (42), we have also :

- — k
lF, CAE M) +x & 480 -S| <y IA & (n)+x_tl (A-2.15)



So :
[x_| - Ity
lE(Mm+1)|] ¢ kx( ()N +W——) (A-2.16)
Then if xn is bounded i.e. set-point, measured

and unmeasured disturbances are bounded, we can conclude

our proof.



APPENDIX 3

Spectral analysis of the matrix (cos(i-j)6 3.

From the relation :

cos(i~j)e =cosip.cosj@ +sini@ sinjs ’ (A-3.1)

we can write :

cosi®
.

sinie@

.

(.cosjB .)+ (.sinje .)

(A-3.2)

.cos(i-jle .‘=

So we see that the matrix is semi definite positive
with only two positive eigen values. We are looking for the
eigen vectors as a linear combination :

cosjo

X +

sinj 9‘

We have to find x and y such that :

cosi® (x,i%jcoszjg +:§:cosj6 sinje@ ) Xy c;sie
) =0 5=0 ¥
+ = + (A-3.3)
. M M 2 .
sini @ (x.z cosj@ sinij@ +Zsin ji6 ) yi{sinip
. J=O J=0 .

We deduce the expressions :

XA+B=xy

xB+C= y (A-3.4)



B= sinj& cosjé (A-3.5)
j=0

M

=5 sin’46@

j=0
We get
2
x B+x(C~-A)-B=0 (A-3.6)

1
A—CJ_r((c—A)2+4B2)2

xX=

2B
(a~3.7)

1
A+c4_r((c-A)2+4132)2

y=
2

but

A+C=M+1

M
2, sin (M+1)8 M
-C= =6
A-C E cos jé& sine cosy
=0
M 2 sin (M+1)& M
2B = E sin j& = P———EEET;——4 51n§e

3=0

Il

(A-3.8)

So :

cos%B +1

Xx=—
sin%@

(A-3.9)

1 lsin (M+1)8 |

M+1 1
-2 | sin®

+
A
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APPENDIX 4

Proof of the AMAC Stability

We have to study the roots of the expression

c(2) + d(2)P(2) = z°M,(2) +F_(2) (P(2) - M_(2)) (A4.1)

Let us take:

mdn (z)
Md( ) md (z)
fwn(z)
(2 = Rd D
(AL.2)
P(z) = fn(z)
fd(z)

The characteristic polynomial is then:

g(z) = z*mdn(z)*fwd(z)*pd(z) + fwn(z)*[pn(z) *md(z) - pd(z) *mcn(z)]

(A4.3)

We see directly that if the process is known:

pn(z)*md(z) - men(z)epd(z) = 0 (AL.4)

and we have a necessary condition for stability: mdn(z), fwd(z) must have
their roots strictly in the unit circle.

In the general case, to make no more hypothesis on the process, we



A—-11

will use the result of Appendix 1. A direct application is in writing

the characteristic polynomial as:
g(z) = (z-1)A(z) + kB(z) (A4.5)

(z-1)A(2) = (z*mdn(z)*fwd(z) —-men(z)*fwn(z)) pd(z)
(A4.6)
B(z) = fwn(z)*pn(z)- md(z)

But this leads to consider the model's static gain as the stability
coefficient and thus to lose the notion of model. Moreover, the hypo-
thesis on A(z) implies coupled conditions on the models and the unmeasured
disturbance predictor and here we lose the physical independence of these
elements.

To keep the AMAC coherence, let us factorize z*fwd(z) in:
z*fwd(z) = (z-1)gwd(z) + rwd(z) (A4.7)

such that degree of gwd(z) is greater or equal to degree of rwd(z) and
gwd(z) has all its roots strictly in the unit circle. Such a factoriza-
tion exists always and moreover we have:

- degree of gwd(z) is equal to degree of fwd(z);

- the highest degree coefficients of gwd(z) and fwd(z) are equal;

- fwd(l) = rwd(l) (A4.8)

Then with a modified fwdk(z) defined as:
z'fwdk(z) = %(z—l)gwd(z) + rwd(z) (A4.9)

the characteristic polynomial can be written as:
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g(z) = (z-1)*mdn(z) gwd(z)+pd(z)
+ k[fwn(z)*pn(z)°md(z) + pd(z)°*mdn(z)rwd(z) - pd(z)

* men(z)*fwn(z)] (A4.10)

And Appendix 1 ensures stability if k is in a vicinity of zero and

(mdn(1)+gwd(1)*pd (1)) *ke (fwn(1)*pn(l)*md (1)) > O (A4.11)
using:
mdn(1l) = men(l)
(A4.12)
rwd(1l) = fwd(l) = fwn(l)

But @A4.11) can also be written as:
(k gwd(1) rwd(1))+(Md(1)+P(1)) > O (A4.13)

where the first term is the inequality conditiom to have all the roots
of z'fwdk(z) strictly in the unit circle we must impose as a necessary

condition. We thus obtain the AMAC stability theorem:

Let fwdk(z) be the modified denominator of the unmeasured disturbance pre-
dictor, there exists a vicinity of zero V(0) such that if k is in V(0)-{0}

the roots of:

z-Md(z)°fwdk(z) + fwn(z)*(P(z)-Mc(2))

are strictly in the unit circle if: Md(z) and fwdk(z) have all their roots

strictly in the unit circle and: Md(1)°P(1) >O0.



