In this study, we come back on some characteristics of linear time invariant control laws and we show how the single input single output (SISO) adapted model algorithm control (AMAC) is a technique for designing such a law.

Given a mathematical model of a process, functionnal operator between an input and an output, given a set of specifications, given a method to compute a control input, the problem of synthesis may be defined as follows : find the parameters used in the computation of the control input such that the mathematical process with that input meets all the specifications. We spoke about a mathematical model of a process and not about a real physical process. We will say a law of command to be robust if it can be used on a physical process.

More precisely we call robustness the coherence between approximations of a mathematical representation of a physical process, and the sensi tivi ty of performance criteria defined by the specifications, to variations of this representation.

Let

Po be the nominal mathematical process, the control input is designed for, if the performance criteria are continuous in PO' we can expect the satisfaction of the specifications for any P in the vicinity of PO. Then, the physical process we want to command must have representations each in this vicini ty.

Another way to formulate the problem is : the set of mathematical processes, images of the physical process, must be enclosed in the set of mathematical processes which verify the specifications for a given control law.

A-l Introduction

Let us return on what is the problem of sampled-data control systems synthesis.

Given a mathematical model of a process, operator between an input and an output, given a set of specifications, given a method ta compute a control input, the problem of synthesis may be defined as follows : find the parameters used in the computation of the control input su ch that the mathematical process with that input meets aIl the specifications. We spoke about a mathematical model of a process and not about a real physical process. We will say a law of command ta be robust if it can he used on a physical process.

More precisely we calI robustness the coherence between approximations of a mathematical representation of a physical process, and the sensitivity of performance criteria defined by the specifications, ta variations of this representation.

Let Po be the nominal mathematical process, the control input is designed for, if the performance criteria are continuous in PO' we can expect the satisfaction of the specifications for any P in the vicinity of PO' Then, the physical process we want ta command must have representations each in this vicinity.

Another way ta farmulate the problem is : the set of mathematical processes, images of the physical proces::., must be enelosed in the set of mathematical processes which verify the specifications for a given control law.

So we will successively -define a mathematical process -define a set of specifications -find relationships between parameters of the -study the sensitivity of the performance criteria. We suppose P to be a linear time invariant operator which is of rational type and asymptotically stable. Moreover we suppose a non zero static gain.

A-2 Definitions

A-2.1 Definition of the mathematical model of a process A-2.1.1

We define here a dis crete time mathematical model a process as a transformation of a set of sequences inputs Into another set of sequences called ouputs.

We differentiate three types of signaIs between We suppose p to be a linear time invariant operator which is of rational type and asymptotically stable. Moreover we suppose a non zero static gain.

A-2.1. 2.2

Hypo:thesis on disturbances (H2) :

We suppose both measured and unmeasured disturbances to be causal and to admit z-transforms which verify conditions of final value therorem [lJ.

If the disturbances are represented as stochastic processes, these hypotheses are made on the mathematical expectations and all the following deterministic resul ts must be considered in mathematical expectation.

Moreover we suppose the output to be lineraly time-invariant dependant on the disturbances. So we introduce a new linear, time invariant, asymptotically stable operator Q between the measured disturbance and the output. Neglecting the initial conditions (justified by asymptotic stability) , we can represent (Il in a more concise way using z -transforms

s [z) =p (z) e (z) +Q (z) V (z) +w (z) (1) 
(2) 

p (z) p(z)=_n_ Pd (z) N N -i qd (z) .Pn (z) = L gi zg , i=O qn (z) (3) 
N P d (z) •qd (z) = t i=O N -i f f i Z and
Or using z-transforms, we wr i te : In fact we have only here the least constraints ta set any system of control. The synthesis of such a system must also take into account the hehaviour of this convergence and need performance criteria [2]. From greater variability we keep ourselves within the convergence criterion.

c (z) e (z) =r (z )u (z) -d (z) S (z) -b (z) v (z) (6 

A-2.3 Definition of the control law

A-2.3.l Definition

We calI control law a method ta compute future con troIs given the observation of aIl the measurahle past signaIs. Ta We study the closed loop-system in its asymptotic behaviour. So we are going to express the various between external and internal signals :

The closed loop system is represented by figure 3 FIGURE 3-Closed-loop system

s (z) =Sa (z) U (z) +Srv (a )v (z) +Srw (z) w (z ) e (z) =E a (z) u (z) +E rv (z) v (z) +E rw (z) w(z)
with : the tracking transfers

E a (z) c (z) p (z) (7) 
(8) (9) 
(10)

A-3 Relations between parameter5 of the contTol A -3 • 1 S t u h",",-"=,,,"-",' "'C Y"'"Cot e"",m behaviour.

Wc study the going ta loop-systcm in its asymptotic the various transfers between extern"l and internal signals The closed loop system is represented by figure 3 FIGURE 3 -Closed-laop system

We have the z -transform r\'?lations s (z) "'Sa (z) u (z) +Srv(z) v (z) +Srw (z) wez) [START_REF] Bolland | Introduction ta the Theory of Entire Functions[END_REF] e ( 2) =Ea (z) U (z) +Erv (z) V (z) +Erw (z) W (z) (8) the tracking transfers (9) (10 )

and the regulation feedback and feed forward transfers

c (z) c (z) +d (z) P (z) b (z) +d (z) Q (z) c (z) +d (z) P (z) d (z) c (z) +d (z) P (z) (11) (12) (13) (14) 
We can see that the poles of any transfer are given by the roots of the expression c(z)+d(z)P(z). Moreover from the stability of P(z), Q(z) and the hypothesis of mutual primeness, a necessary and sufficient condition of internal stability is given by the stability of the control and more precisely by the stability of the E a (z) transfer.

We shall note that given the stability conditions, sensor d(z) determine the Erw(Z) regulation transfer, the 

l'le can see that the poles of any transfer are given by the roots of the expression c(z)+d(z)P(z). Moreover stability of P (z), Q (z) and the hypothesis of mutual primeness, a necessary and suffi aient condition of internaI stability ls given by the stability of the control and more precise!y by the stability of the Ea (z) transfer.

We shall note that given the stability conditions, sensor d(z) determine the Erw(z) regulation transfer, the 

(25).

We verify expression (20) if we impose identical static gains for both sensor and reference. So as in (23), from now on, we will write the reference as kr (z) 

A-3.3 Tracking constraint

Ws verify expression (20) if we impose identical static gains for bath sensar and referenes. So as in (23), from now on, we will write the referenee as k rIz) with : km(1)P(11> 0 (stability condition)

with pel) equal ta the static gain of the proces5.

Note that from continuity, the existence of a vicinity of k can be transposed on the existence of a vicinity of P (z) as we will see in a next section, and so this permits the study of robustness as it was formulated in the introduc-

Introduction of a non linearity on the control

We will extend here the results of Rouhani [4J.

introduce a non linear compensator defined as follows (figure 4). yn be the input signal of the compensator, compute the control en through the expression :

N-l e n+ 1 =f n (n%-(y n + L (m i -w i + 1) e n_ i +mNe n_ N » i=O W(Z)=f m i zN-i i=O f n (x) a real time varying function FIGURE 4-Non linear compensator (29)
To study the behaviour of the closed-loop system, we give an asymptotic value u to the set point, we compute a theoretic asymptotic value e of the control :

p(l)e=u (30)
suppose the disturbances be bounded and the processes to be a M.A. system (P(z)=z P Pn(z)),

A-3.6 Introduction of a non linearity on the control

We will extend here the results of Rouhani [41.

introduce a non linear compensator defined as follows (figure 4).

y n be the input signal of the compensatar, compute the control en through the expression We suppose the disturbances be bounded and the processes to be a M.A. system (p (z) =Z P Po (z». Then we can say (Proof in Appendix 2) ,

N-1 (Yn+L (mi-mi+l)en_i+mNen_N » i"'O with m(z)'" f mi zN-i i"'O f n (x)
Let? be the greatest modulus of the roots of (z-l)m(z)zNp+kd(Z)Pn(Z), if for any n we have for a certain for which the convergence criterion is satisfied. To keep the validity of our approach, we will take P, Q in the class of linear time invariant processes.

X o X o < k k(l ( 
At once let us remark that only the stability constraint uses hypothesis on P and Q, so we can conclude to insensitivity of the tracking and regulation constraints.

And from now on we will look at the stability problem.

From expressions (9) to (14) it is easy to conclude that for any asymptotically stable Q, we will stability. So, in fact, there is no sensitivity to Q.

A-4.2 Sensitivity to P

In the hypothesis HI we have imposed P additional constraints to those on Q, particularly rational type and non zero static gain. The latter was essential in regulation and stability constraints. So we must impose variations of P to maintain the sign of the static gain. The former was a theoretic facility but it can be relaxed.

A-4. 2.1 P of rational type

In that case we have to find all the pairs of polynomials (Pn (z), Pd Cz ) such that :

A-4 Sensitivity of the convergence criterion Following our introduction we are going to study the sensitivity of our preceding results to variations of P and Q. In fact given the parameters m,r,k,d,m of the control law, we are looking for the set of P,Q operatorE for which the convergence criterion is satisfied. To keep the validity of our approach, we will take P,Q in the class of 11near time invariant pro cesses .

At once let us remark that only the stability constraint uses hypothesis on P and Q, 50 we can conclude to insensitivity of the tracking and regulation constraints.

And from now on IVe will look at the stability problern.

A-4.1 Sensitivity to Q From expressions (9) te ( 14) it is easy te conclude that for any asymptotically stable Q, we will internaI stability. so, in fact, there is no sensitivity to 

G is linearly dependant on P.

Otherwise, given the highest degree coefficient of m(z) Pd (z), from the continuity of the coefficients on the roots, we can say that the set of admissible Gs which represent polynomials whose roots are in the unit circle is closed, bounded and connected. Moreover from the presence of (z-l), we can say that M is on the frontier of this Thus we have the situation given by figure 5. Then g (±) and h (±) are analytic in and on the uni t circle and with the Rouche Theorem [START_REF] Bolland | Introduction ta the Theory of Entire Functions[END_REF] , we can for any process P(z)=PO(z)+Ap(z) such that (34)

(35) sf [-n, n) (36)
we will have internal stability.

We have in fact here another presentation of resul t of Doyle [8) in the SI SO case.

A-4. IAP(e iG )1 2 = t 6.Pj API cos(j_l}e

j ,1=0 (39) 2 N 
IAP(e!!})1 «L 

S(z) p(z)e(z) + Q(z)v(z) + wez) (1) 
and the use of adapted rnodels of the operators P,Q. . .

On -sn -iIo mci"e n _i -ilo nCi"V n _ i Now from the past v n and w n ' we want to predict [START_REF] Jury | Theory and Application of t.he z-Transfonn Method[END_REF]. From dis crete parameter prediction theory [10], vn(l) and wn(l) can be computed with prediction filters. Using lI-transforms they may be expressed as vell (z) = Fv(z) vez) '" vez)

",here fwn(z), fwd(z), fvn(z), fvd(z) are polynomials in z, the degree of fwd(resp fvd) being greater than the degree of fwn(resp fvn). Moreover, ta be able ta predict the continuous compone.nt of the disturbances, we impose unit static gain predictors.

Thus we get the z-transform of BUn (1) :

su(l) (z) = Nc(z) v(z) + Fw(z) w(z)
with Nc' (z) computed from N c and F v through the relation:

00 00 ncO v n (1) + nC i v n + l-i = v n_ i
Now from z-transform of (6) we have the final relation:

(8) (9) su(l)(z) = FW(z) (s(z) -Mc(z)e(z)) + -Fw(z)Nc(z))v(z) (10) 
or equivalently in the time domain:

where * represents the discrete convolution operator.

B-1.3 Set Point Prediction (ll)

To get a better behavior of the closed-loop system, at time n we need future set points.

In some cases they are available (particularly when there is a hierarchical control). But generally we need a predictor.

Let us take it in the form of a rational filter Fu(z) with fU i as impulse response and with unit static gain.

u(l)(z) = Fu(z)u(z) = u(z) (12) 
impose unit static gain predietors.

Thus we get the z-transfonn of sUn (1):

suCl) (z) NeCz) vez) + Fw(z) f./(z) (8) with Ne'(z) (nei) computed from Ne and Fv through the relation:

. .

ne a vn(l) + ne i v n + l _ i = nei v n _ i (9) 
Now from z-transform of (6) we have the final relation:

8u(1)(z) -Fw(z)(s(z) -Me(z)e(z» + -Fw(z)Ne(z»v(z) (10) 
or equivalently in the time domain:

where il: represents the discrete convolution operator.

B-1.3 Set Point Prediction

To get a better behavior of the closed-loop system, at time n we need future set points. In 60me cases tbey are available (particularly when there i8 a hierarchical control). But generally we need a predietor.

Let us take it in the form of a rational fil ter Fu(z) with fUi as impulse response and with unit statie gain.

û(l)(2) = Fu(z)u(z) = u(z) (12) 
with fun(z), fud(z) polynomials in z, with the degree of fud(z) greater than or equal to the degree of fun(z).

B-1.4 Expression and Properties of the 5150 AMAC Law

From expressions (3), ( 11) and ( 13) we get the 5150 AMAC law (14) This prediction is used as the future control e n + l. Thus we get the z-transform representation of the 5150 AMAC law:

(zoMd(z) -Fw(z) oMc(z»e(z) = Fu(z) ou(z) -Fw(z)s(z) -(Nc' (z) -Fw(z)Nc(z) )v(z) (15) 
Then we find the expression of the four polynomials of our general linear time invariant control law: The regulation and tracking constraints (see Part A) are verified since we have imposed:

c(z) = zoMd(z) -Fw(z)Mc(z) r(z) = Fu(z) (16 
Md(l) = Mc(l) Fu(l) = Fv(l) = Fw(l) = 1 Nc'(l) = Nc(l) (17) 
The stability constraint (Appendix 4) can be verified by a modification of the dynamic of the unmeasured disturbance predictor if: the different models and predictors are stable, the numerator of the deconvolution model has all its roots strictly in the unit circle, the following inequality is satisfied: Md(l) 'P(l) > o. (18)

Now assuming a perfect knowledge of the process and the measured disturbance filter:

Mc(z) = P(z); Nc(z) = Q(z) (19)
we can write the expected closed-loop tracking and regulation transfer: The block representation of the SISO AMAC is given by Figure 6. 

Sa (z) = Srw(z) = 1- Srv (z) = Q{z ) -Nc (20) 

B-2.1

The Optimum Control System of Phillipson [11] Let us suppose no measured disturbance and an asymptotically stable process with a delay of 2 samples. We take a convolution model with a delay of k samples, k underestimation of 2:

Mc(z) = (23) 
with Md(z) supposed to have all its roots strictly in the unit circle.

Then if we take a unit gain element as a set point predictor, and a k-step-predictor for the disturbance, we obtain the optimal control system of Phillipson (Figure 7) which is an improvement over the Smith con troller.

Figure 7. Optimum Control System of Phillipson

As mentioned by Phillipson, this system used in regulation is equivalent to the Box-Jenkins-Astrom minimum-variance control [9] or to the Kalman linear regulator [12]. Thus, this system is essentially made for regulation. Moreover, the use of the inverse model as controller since this will be a high-pass filter, amplifies noise, causes violent changes in the control signal and perhaps frequent saturation. That is why the A}lAC uses here an adapted model and

B-2.1 The Optimum Control System of Fhillipson [llJ

Let us suppose no lIIeasured disrurbance and an aSYlllptotically stable process with a delay of JI.. samples. We take a convolution model with a delay of k samples, k underestimation of J/..:

Me(z) "" (23) 
with Md(z) supposed to have aIL !ts roots strictly in the unit circ.le.

Then if we take a unit: gain element as a set: point: predictor. and a k-step-predictor for t:he disturbance. we ob tain the opt:imal control syst:em of Fhillipson (Figure 7) which is an improvement over the Smith con troller.

Figure 7. Optimum Control System of Phillipson

As mentioned by Fhillipson. this system uBed in regulation is equivalent to the Box-Jenkins-Astrom minimum-variance eontrol [9] or t:o the Kalman linear regulat:or [12].

Thus, t:his system is essentially made for regulation. Moreover, the use of the inverse model as controller since this will be a high-pass filt:er, amplifies noise, causes violent changes in the control signal and perhaps fraquent saturation. That is why the A}!AC uses here an adapted model and avoids rapid changes in set point thanks to the set point predictor.

Predictor H can be easily computed when the disturbance can be described as the output of a known rational filter whose input is an independent zero-mean random sequence. But to verify internal stability we must not forget the constraints on the denominator of H.

Here Phillipson suggests the use of exponential smoothing for prediction to solve the problem. That way, we can answer satisfactorily the output regulation but not so properly the output tracking. The model predictive heuristic control which follows attempts to answer the two questions introducing a set point predictor and deducing the disturbance predictor.

B-2.2

Model Predic tive Heuristic Control (MPHC) [13] We give here a simplified study of this method; the very general study can be found in [14]. Suppose no measured disturbance (MPHC can be extended to this case) and a convolution model having a moving average (MA) structure with all its roots strictly in the unit circle, we take:

M(z) = Mc(z) = Md(z)
For the set point and disturbance predictors, we choose

1-G(l) F u (z) = 1-z -lG(z) (24) ( 25 
)
where G(z) is a nonzero static gain transfer such that Fu(z) and Fw(z) satisfy stability conditions. 30 avalds rapld changes in set point thanks to the set point predictor.

Predlctor H cao be easily c01llputed when the disturbance cao be described as the output of a known rational fil ter whose input 18 an independent zero-mean random sequence. But to ver if y interna! stability we must not forget the constraints on the denominator of H. Here Phillipson 8uggests the use of exponential smoothing for prediction ta solve the problem. That way. ws cao suswer satisfactorily the output regulation but not so properly the output tracking. The model predictive heuristic control which follows attempts to auswer the two questions introducing a set point predictor and deducing the disturbance predictor.

B-2.2

Model Predictive Heuristic Control (MPHC) [13] We give here a simplified study of this method; the very general study can be found in [14]. Suppose no measured disturbance (MPHC can be extended to this case) and a convolution model having a moving average (MA) structure with all its roots strictly in the unit circle. we take:

M(z) '" Mc(z) '" Md.(z)
For the set point and disturbance predictors, we choose

1-G(l) Fu(z) -l_z-lG(z) (24) (25) 
where G(z) 1s a nonzero statie gain transfer such that Pu(z) and Fw(z) satisfy stability conditions.

Then from (15) we get the MPHC law:

)'M(z)'e(z) = --:-1-[(l-G(l»u(z) -(l-G(z»s(z)] 1-z G(z) 1-z G(z) (25) (z-l)'M(z)'e(z) + s(z) = (l-G(l»u(z) + G(z)s(z) (26) 
Let us develop the strategy of this relation.

Both terms are similar to outputs. We call the left-hand term a predicted output sp(z) and the right-hand term a reference output sR(z), predicted outputs are on a connecting trajectory. Its block representation is given by Figure 8.

Then trom (15) we get the MPHC law:

(z -1-) "M(z) oe(z) '" --:-, -

[(1 _ G(l))u(z) _ (1 -G(z» s(z)] 1-z G(z) 1 -z G(z) (25) (z-l)oM(z)"e(z) + s(z) m (l-G(l»u(z) + G(z)s(z) (26) 
Let us develop the strategy of this relation.

Bath t.erms are similar ta outputs. We calI the left-hand tenu a predicted output. sp (z) and the right-hand term a reference output sR(z), From Sp(Z) '"' zM(z)e(z)

+ (8(Z) -M(z)e(z» (27) 
we define the predicted output as the output of the mode! at time (n+1) corrected of the estimation Q-(n) of the disturbance with sM(n+l) output of the mode! with a predicted input en(I). The reference output sR(z) ls given by a trajectory connecting the past outputs of the process ta the present set point.

. . 

SR (n+1) = (1 -gi)U n + i!O gi sn-i ( 

MPHC Representation with G(z) as Connecting Trajectory Generator

From part A, we will satisfy the convergence criterion if M(z) has all its roots strictly in the unit circle and (l-G(l)) is taken as the stability coefficient. But again, the transfers are not independent, for instance in a perfect modeling we have:

(30) (31) 
The regulation transfer is the discrete differentia tion of the tracking transfer. Moreover, if the model does not verify the stability condition, the strategy must be seriously questioned but it has been extended to this case by the introduction of the notion of adapted model [14].

B-3. Choice of the Deconvolution Model

We have seen that the most general linear time invariant control law contains five independent physical components. Theoretically each can be obtained from a modeling (system or spectrum). But the deconvolution model is a special case because its use is not a physical one. We are

Un

Figure 8. MPHC Representation with G(z) as Connecting Trajectory Generator

From part: A. we will satisfy the convergence criterion if MCz) has aIl tts roots strictly in the unit circle and CI-G(l» la taken as the stability coefficient. But again, the transfers are not independent, for instance in a perfect modeling we have:

Sa Cz ) (30) 
Srw(z) = 1 -= SaCz) (31) 
The regulation transfer 18 the discrete differentiation of the tracking transfer. Moreover, if the model does not verity the stability condition, the strategy must be seriously questioned but lt has bean extended to this case by the introduction of the notion of adapted model I14].

B-3. Choice of the Deconvolution Model

\ole have seen that the mast generai iinear time invariant control law cantains five independent physical components. Theoretically each can be obtained from a modeling (system or spectrum). But the deconvolut:ion model is a special case because its use is not a physical one. We are going to show where the problem is and how to solve it.

B-3.l Terms of the Problem and Mathematical Solution

Let Md(z) be this deconvolution model

Md(z) = (32) 
with mdn(z). mdd(z) polynomials in z such that with expectation (4) degree of mdd(z) is equal to degree of mdn(z).

Mc(z) is the knowledge of the process, Le., the convolution model:

Mc(z) = (33) 
with mcn(z), mcd(z) polynomials in z, with degree of mcd(z) greater than degree of mcn(z). The differences between these models are in their use.

Let e, s be the input and the output, we write

s(z) = e(z)
similarly to the process, but:

e(z) = sIz)
is a reversed relation compared with the process.

(34)

As we want a stationary control law, following Box and Jenkins [9],

we have to improve the stability of both transfers and .

The former can be ensured from the stability of the process. But the 33 going ta show where the problem 15 and how ta solve it.

B-3.1 Tenus of the problem and Mathematical Solution

Let MdCz) be this deconvolution model

(32)
with mdn(z). mdd(z) polynornials in z sueh that with expectation (4) degree of mdclez) la equal ta degree of mdu(z).

Mc(z) la the knowledge of the pracess, Le., the convolution mode!:

(33)

with men(z). mcd(z) polynomials in z, with degree of mcd(z) greater than degree of menez). The differences between these modela are in their use. As we want a stationary control law, fol1owing Box and Jenkins [9].

we have to improve the stabil:ity of both transfers aud •

The former can bec ensured from the stability of the process. But the latter has no physical significance and we have seen that we must impose mcn(z) to have all its roots strictly in the unit circle.

As mdd(z) has no constraint in the deconvolution use, we can take:

md(z) = mdd(z) = mcd(z) (36) 
Moreover, to get a zero static gain compensator, with expression (16), we must impose:

mdn(l) = men (1) (37) 
Thus the problem is: knowing the model of the process mcn(z), how to choose mdn(z) such that it keeps the significance of a model and it satisfies the stability condition.

If mcn(z) has all its roots strictly in the unit circle, we take obviously:

mdn(z) = mcn(z) (38) 
So the real problem occurs when mcn(z) has roots on both sides of the unit circle. Let us factorize mcn(z) into:

mcn(z) = min(z) •mon(z) (39) 
where min(z) has all its roots strictly inside the unit circle. mon(z) has all its roots strictly outside the unit circle. We don't deal with modulus roots. As mdn(z) is used as a denominator, let us consider:

mid(z) = ( 40 
)
latter has no physical significance and we have seen that we must impose menez) ta have aIL its roots strictly in the unit circle.

As mdd(z) has no constraint in the deconvolution use, we cau take:

md(z) mdd(z) = mcdez) (36) 
Moreover, ta get a zero stat:le gain compensatol.". with (16), we must impose: mIn(l) "' menel) (37)

Thus the problem is: knowing the model of the process menez), how to choa se mdn(z) such that it keeps the significance of a mode1and it satisfies the stability condition.

If mcn(z) has aIL its roots strictly in the unit circle. we take obviously: Le., for the one step ahead prediction input, we need j-step predictions of the set point and the non-deterministic output for all positive integers j. This is a mathematical result; the physical problem is that predictions are not real values. Thus the strategy of the 5150 AMAC cannot be totally ensured.

mdn(z) = mcnez) (38 
We are going to show how this mathematical solution can be used to design the control law.

To simplify the statement, we will suppose no measured disturbance and as suggested by Phillipson and MPHC applications, we take exponential smoothing for prediction: (46) 50 we will work with the block representation given by Figure 9 and the AMAC law given by the relations (47)

i.e •• for the one step ahead prediction input, we need j-step predictions of the set point and the non-deterministic output for aIl positive integers j. This is a mathematical result; the physical problem i8 that predictions are nat real values. Thus the strategy of the S1S0 AMAC cannat be ta tally ensured.

We are going ta show how this mathematical solution can be used ta design the control law.

Ta simplify the statement. we will suppose no measured disturbance and as suggested by Phil1ipson and MPHC applications, we take exponentia1 smoothing for prediction:

= Fw(z) = 11_-r:-1 (45) 
with t.r cal1ed tracking or regulation coefficients. Moreover. as there is no problem on the mode1's denominator, we suppose an MA. model (with p the number of coefficient!)

Mc(z) (46) 
with mc(z) factorized in mi(z)"mo(z).

Sa we will work with the black representation given by Figure 9 and the AMAC law given by the relations 

With 0 the number of roots of mon(z). Thus, the prescribed behaviors can be followed only after the response time of mon(z).

B-3.3 k-Step Prediction

Our mathematical presentation tells us that to compute en(l) we need further predictions. So one idea is to rewrite the AMAC strategy as

with no a priori distinction between the models.

Then (47) gives k-l P mC i en(k-i) ;-e n + k-i + unCI) -sun(l)

Thus the control enCl) depends on the predicted inputs en(j) and we have to solve a linear system with k unknown quantities. To get a unique solution one could introduce a criterion on the predicted inputs.

Let us look for a solution linearly dependent on the right term as: 

Witb 0 the number of roots of mon(z). Thus, the prescribed behaviors can be followed only after the re8ponse Ume of mon(;,>:).

B-3.3 k-Step Prediction

Our mathematical presentation tells us that to compute en(l) we need further predictions. So one idea i8 ta rewrite the AMAC strategy as

with no a priori distinction between the models.

Then (47) gives

Thus the control en(l) depends on the predicted inputs en(j) and we have tO solve a linear system with k unknown quantities. To get a unique solution one could introduce a criterion on the predicted inputs.

Let us look for a solution linearly dependent on the right term as: 

Then the problem is how to ehoose the integer k in such a way as Md(z) has aIl its roots strictly in the unit circle. Obviously there is at least the solution k = P. but then the prescribed behavior can be followed only aftet the time response of the process. This solution is not interesting but the deconvolution model can be easily computed.

This k-step prediction strategy can be extended. Given a set I of positive inters, we impose:

(60)

This leads as previously to a linear system whose unknown quantities are the predicted inputs.

It can be solved in various ways, but the solution must give a deconvolution model satisfying the stability conditions [14].

The advantage of such an approach is in the constrained control case:

let n be the time invariant set of admissible inputs. we write the extended k-step prediction stra tegy as:

Min J(s (k) -u (k); ke I) en(j)€ (/ nn
where J is a criterion.

This optimization problem gives predicted inputs satisfying the constraints. Thus, one can expect to get a better behavior owing to the fact that predicted constraints are taken into account.

B-3.4 Choice from Behavior Analysis

The deconvolution model defines the tracking behavior with the following transfer obtained in a perfect modeling hypothesis.

(62)

When we can take Md(z) equal to P(z) the set point predictor plays the but the deconvolution model can be easi!y computed.

This k-step prediction strategy can be extended. Given a set t of positive inters, we impose:

(60)

This leads as previously to ft linear system whose UllknOwn quantities are the predicted inputs. It can be solved in various ways. but the solution must give a deconvolution model satisfying the stabl1ity conditions [14].

The advantage of such an approach Is in the constrained control case: let fi be the time invariant set of admissible inputs, we write the extended k-step prediction strategy as:

Min J(s(k)-u(k);ket) en(j)eQ n n (61) 
where J ls a criterion.

This optimization problem gives predicted inputs satisfying the constraints. Thus, one can expect to get a better behavior owing to the faet that predieted constraints are taken into aecount.

B-3.4 Choiee from Behavior Analysis

The deeonvolution model defines the traeking behavior with the following transfer obtain",d in a perfeet modeling hypothesis. 

Such a criterion and constraints can be computed by the Jury-Astrom algorithm [15].

This method gives a deconvolution model which depends only on the convolution model Mc and the set point predictor (tracking coefficient in the exponential smoothing case). Those computations may be numerically easier than polynomial factorization, but have to be done again if the predictor is changed.

B-3.6 Conclusion

The deconvolution problem can be solved using a prediction strategy.

This leads to a simple method but not manageable results in the k step prediction case or to more difficult computations as polynomial factorization or constrained nonlinear optimization if we want to have more manageable results.

Md(z)

(66)

The prob1em ig to approxirnate the polynomial mcn{z) whose roots are on both sides of the unit circle by a polynomial mdn(t) whose roots are inside the unit circle and (65) can be rewritten as 

+'Ir

B-3.6 Conclusion

The deconvolution problem can be solved using a prediction strategy.

This leads to a siInple method but: not: manageable results in the k step prediction case or to more diffieult eo:mputations as polynomial factorization or constrained nonlinear optimization if we waut to have more manageable results.

B-4. Summary

We have shown that a very general implementation of a linear time invariant control law can be done by the adapted model algorithm control.

This method uses five independent physical entities: two non-deterministic signal predictors which can be deduced from disturbance modelization; two mathematical representations of the process behavior which are also given by modelization; a set point predictor which can be deduced from the control law specification. The problem is complicated by the fact that one of the representations is used in a nonphysical way and thus has to be adapted by a further prediction strategy. 

Introduction

  Let us return on what is the p r o b Lc rn of sampled-data control systems synthesis.

  a discrete time mathematical model of a process as a transformation of a set of sequences inputs into another set of sequences called o u p u t.s , We differentiate three types of signals between 1. 2.1 H yp a the sis 0 n P ( H1) :

  on sequences, relation between inputs and output s ( . ) =P {e ( .) ,v (. ) ,w ( • ) ) . A-2.1.2.1 Hypothesis on l'(H1):

A- 2 . 1 . 3

 213 Representation of the mathematical model of the process With hypotheses Hl, H2, we compute the output s(n), from the inputs e(n) ,v(n) ,w(n) by the recursive equation : asymptotic stability), we can represent (1) a more concise way using z-transforms s(Z)=P(z)e(z)+Q(Z)v(Z)+w(Z) (2) A-2.1. 2.2 Hypothesis on disturbances (E2) , We suppose both measured and unmeasured disturbances to be causal and to admit z -transforms which verify conditions of final value therorem [lJ. If the disturhances are represented as stochastic processes, these hypotheses are made on the mathematical expectationsand aIl the following deterministic results must he considered in mathematical expectation. Moreover we suppose the output to be lineraly time-invariant dependant on the disturbanees. SO we introduce a new linear, time invariant, asymptotieally stable operator Q between the measured disturbance and the output. A-2. 1. 3 of the mathematieal model of the proeess With hypotheses Hl, H2, we compute the output s(n), from the inputs e(n) ,ven) ,w(n) by the recursive equation : N N fi Sn_i=f gi e n _ i + L hi v n _ i i"'O i=O are time invariant scalars.
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 22 FIGURE 2-Control law structure

  22), (23), (25) and (26), (6) must zm(z)e(z)=m(z)e(z)+(z-l)n(z)v(z) +k(r(z)u(z)-d(z)s(z» (27)

  With expressions (22), (23), (25) and (26), (6) must zm (z) e (z) =m (z) e (z) + (z-l) n (z) v (z) +k{r{z)u(z)-d(z)s{z) l (27) l)m(z)Pd(z)+kd(Z)Pn(z) We know already : -Pd (z) has all its roots strictly in the unit circle k,d(l),Pn(l) are different from zero -degree of m (z) is greater than degree of d (z) -degree of Pd (z) is greater than degree of Pn (z) wi th no more hypothesis on the process, we can give a sufficient condi tion of internal stability (Proof in Appendix 1). If m(z) has all its roots strictly in the unit circle, it exists a vicinity of zero v t o) such that if k is in V(a)-(O), internal asymptotic stability is ensured and only if : km(l)P(l» a (stability condition) P (1) equal to the static gain of the process.(28)Note that from continuity, the existence of a vicinity can be transposed on the existence of a vicinity of p (z) as we will see in a next section, and so this permits the study of robustness as it was formulated in the introduc-13 So the control 15 computed in a recursive way. A-J.5 Stabili ty constraint liIe study the polynomial (z-1) ID (z) Pd (z) +kd {z} Pn (z) \ile know already : Pd (z) has aIL its roots strictly in the unit circle k,d{1} ,Pn (1) are different from zero -degree of m(z) 16 greater than degree of d(z) -degree of Pd(z) 19 greater than degree of Pn{z) with no more hypothesis on the proci'!ss, we can give a suificient condition of internaI stability (Proof in Appendix 1). If wez) has aIL lts r-DotS strictly in the unit circle, lt exists a vicinity of zero V(O) such that if k is in V{O)-(Q), internaI asymptotic stability 15 ensured if and only if ;
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 4 FIGURE 4 -Non linear campensator

  Then we can say (Proof in Appendix 2) : Let./ be the greatest modulus of the roots of (z-1)m(z)z P+kd(z)Pn(z), if for any n then the non linear system is In fact here (with the hypothesis on the disturbances) stability is taken in the sense of bounded input bounded output (bibo). But if the external signals (set-point, disturbances) become constant, it will become an asymptotic stability and verify relation (4).

  31) XN p _l r XN p -l f n (x Np +e)-e XN p non linear system i8 In fact here (with the hypothesis on the disturbances) stabili ty is taken in the sense of bounded input bounded output (bibo). But if the external signals (set-point, disturbances) become constant, it will become an asymptotic stability and verify relation (4). Sensitivity of the convergence criterion Following our introduction we are going to study the sensitivity of our preceding results to variations of P and Q. In fact given the parameters m,r,k,d,m of the control law, we are looking for the set of P,Q operators

  the hypothesis Hl we have imposed P additional constraints ta those on Q, particularly rational type and non zero static gain. The latter was eEsential in regulation and Etability constraints. SA we must impoEe variationE of p te main tain the sLgn of the static gain. The former was a theoretic facility but it can be relaxed. A-4. 2.1 P of rational type In that case we have to find aIl the paLrs of polynomials (Pn (z), Pd (z» Euch that degree of P d is greater than degree of P n' and the roots of Pd(z) and (z-l)m(z)Pd(z)+kPn(z)d(z) are strictly in the unit circle. Pd (z) and the number (N p+l) of coefficients of Pn(z), suppose m(z) has all its roots in the unit circle, we look for the coefficients PO, ..•.. ,PN p such that the polynomial N-i L Pi zP (32) has all Let us work in the g (z) coefficients be a vector representative of g (z) , M be representative of (z-l)m(z)P d(z), P be representative of P n (z) , D be a matrix representative of the of d(z) on p(z).
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 55 FIGURE 5-Coefficient representation of stability constraint

  I(eil> -1) m (e i G) +kd (e i 9) Po (e i 6' )1> k Id (e i 9) Ilh.p (e i8 ) /.(3 8 ) V9 E: [_n, 11J

  n get an upper bound of the modulus 1 (f < min l(e i':l)m(e ie )+kd(eiS)Po(eil9\ j=O rN.[-n (41) Practically an FFT algorithm will provide spectra. A-4.2.4 Convergence criterion sensi tivi ty index (CCl) Given a process Po and the parameters of control law we define an absolute index by : From expression (36) this index gives an upper bound on the possible spectrum variation to verify convergence criterion. So we call it a convergence criterion sensitivity index. To insure robustness, it has to be compared with an equivalent approximation index given by the Po model estimation phase. 20 But we have with eppendix 3 :

  11 ,+11] k Id (e 19 ) 11 2 Practically an FFT aigori thm will provide these spectra. A-4. 2.4 Convergence cri terion sensitivi ty index (CCI) Given a proc€ ss Po and the parameters of control law we define an absolute index by : the From expression (36) this index gives an upper bound on the possible spectrum variation ta verify convergence criterion. SA we calI it a convergence criterion sensitivity index. Ta in sure robustness, it has ta be compared with an equivalent approximation index given by the Po model estimation phase. In this first part, we came back on the problem of linear control. The most important results have been reformulated in a very general way: resul ts on the structure of the control law, results on stability in the linear case and in a simple non linear case and at last results on a measure of the sensitivity of stability. In th!s first part, we came back on the problem of linear control. The mest important results have been reformulated in a very general way : results on the stI"ucture of the control law, results on stability in the linear case and in a simple non linear case and at last results on a measure of the sensitivity of stability. B. THE SINGLE INPUT-SINGLE OUTPUT (SISO) ADAPTED MODEL ALGORITHM CONTROL (AMAC)We have just presented a linear time invariant control law in a general fashion.It is an abstract approach which serves only to ensure the convergence criterion.In an attempt to get behavior criteria, we are going to give a physical presentation through a SISO control based on the mathematical representation of the process of paragraph A-2.l.3:s(z) P(z)e(z) + Q(z)v(z) + w(z)and the use of adapted models of the operators P,Q.At time n, given the past measurable signals, the S1S0 AMAC computes a control such that a predicted output of the process is identical to a predicted set point.Taking the notation of Box and Jenkins[9], we write this: the prediction being here of one point ahead. From the representation of the process (1) we decompose the predicted output into two parts: a deterministic part which functionally depends on the inputs and a nondeterministic part sUn(l) resulting from the disturbances. Let M(en(l), e£: £':<:= n) be a model of the operator P which defines the deterministic B. THE SINGLE INPUT-SINGLE OUTPur (SISO) ADAPTED MODEL ALGORITHM CONTROL (AMAC) We have just presented a linear time invariant control law in a general fashion. It i8 an abstract approach which serves oniy ta ensure the convergence criterion. In an attempt ta get behavior criteria, we are going to give a physical presentation through a SISO control based on the mathematical representation of the process of paragraph A-2.1.3:
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 3355 -l. General SISO AMAC Presentation B-1.1 Definition of the Strategy At time n. given the past measurable signais, the SISO AMAC computes a control such that a predicted output of the process is identical ta a predicted set point. Taking the notation of Box and Jenkins [9J, we write this: the prediction being here of one point ahead. From the representation of the proceSB (1) we decompose the predicted output into two parts: a deterministic part which functionally depends on the inputs and a nondeterministic part sun(l) resulting fram the disturbances. Let M(en(l), e1,; R. s n) be a 1ll0del of the operator P which defines the deterministic output from the future and past controls, we deduce from (2) the control law as: (Then to compute the control en (1) we have three different problems: inversion of M, estimation and prediction of the non-deterministic output, and prediction of the set point. From its definition, M is a model of the process. Note that to compute en (1), we use this model in a reversed way compared to the physical transfer, sa we require M to be invertible in the sense defined by Box and Jenkins [9] and we call it a deconvolution model. Thus with the linear time invariant hypothesis the model of the process is taken linear, time invariant, asymptotically stable, of rational type and invertible. Let rod i or Md(z) be the impulse response and the rational z-transform of this deconvolution model. We obtain from (3) of the Non-Deterministic Output From expression (1) the non-deterministic output is the sum of both a filtered measured disturbance v n and an unmeasured disturbance w n . Suppose we have an estimation w n of w n and a convolution model of the 23 output from the future and past con troIs • Iole deduce from (2) the <'-ontrol lawas: (Then ta compute the control e n (l) Iole have three different problems: inversion of M. estimation and prediction of the output, and prediction of the set point. B-l.2 Inversion of the Model M From its def!nition, M 18 a mode! of the process. Note that: te compute en (1). Iole use this model in a reversed way compared te the physical transier, se Iole require M to be invertible in the sense defined by Box and Jenkins [9] and we calI it a deconvolution rnodel. Thus 'Io7ith the linesr time invariant hypothesis the model of the pro cess 18 taken linesr. time invariant, ssymptotically stable, of rational type and invertible. Let md! or Md(z) be the impulse response and the rational z-transform of this deeonvolution model. We obtain from (3) (4) and md O must be different from zero, B-l.3 Estimation and Predietion of the Non-Deterministie Output From expression (1) the non-detenninistic output is the SUlll of both a filtered measured disturbance v n and an unmeasured disturbance w n ' Suppose we have an estimation On of IOn and a eonvolution model of the measured disturbance filter Q: nC i (Nc(z», then if v n (1) and w n (1) are predictions of measured and unmeasured disturbances, we compute: (So we first need the estimation w n (1) of the unmeasured disturbance and secondly measured and unmeasured disturbance predictors. We already introduced a convolution model Nc of Q. Let us take also a new model mC i (Mc(z» of the process P. This time we need a model to be used in the same way as the process so Mc(z) is a convolution model compared with Md(z), a deconvolution model. Similarly to expression (1), we compute the estimation w n by 00 00 w n = sn -iI o mCi'e n_ i -iI o nCi'v n_ i Now from the past v n and w n ' we want to predict 3u n(1). From discrete parameter prediction theory [10], vn(l) and wn(l) can be computed with prediction filters. Using a-rtr ansf o rms they may be expressed as vel) (z) = Fv(Z) v(z) = v(z) (7) where fwn(z), fwd(z), fvn(z), fvd(z) are polynomials in z, the degree of fwd(resp fvd) being greater than the degree of fwn(resp fvn). Moreover, to be able to predict the continuous component of the disturbances, we measured disturbance fil ter Q : nei(Nc(z», then if vn(l) and wn(l) are predictions of measured and unmeasured disturbances, we compute: (So we first need the estimation w n (1) of the unmeasured disturbance and secondly measured and unmeasured disturbance predictors. We already introduced a convolution model Ne of Q. Let us take also a new model mci(Mc(Z» of the process P. This time we need a model to be llsed in the same way as the proeess so Mc(z) is a convolution model compared with Md(z), a deconvolution model. Similarly ta expression (1), Ioire compute the estimation W n by

  ) d(z) = Fw(z) b(z) = Nc' (z) -Fw(z)Nc(z) Thus we can give a physical interpretation to these polynomials. Moreover, we see that from a physical point of view c, r, d and b are not mutually independent, but Md or Mc, Nc , Fu , Fv and Fw are.
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 13 with po1ynomia1s in z, with the degree of fud(z) greater than Or equal to the degree of B-l.4 Expression and Properties of the S150 !MAC LawFrom expressions (3), (11) and (13) we get the S150 !MAC 1awThis prediction is used as the future control e n + 1 • Thus we get the z-transfonn representation of the SISO !MAC law:(z'Md(z) -Fw(z) 'Mc(z»e(z) = Fu(z) 'u(z) --(Nc'(z) -Fw(z)Nc(z»v(z)Then we find the expression of the four polynomia1s of our genera1 1ineartime invariant: control 1aw! c(z) = z'Md(z) -Fw(z)Mc(z) r(z) fu(z) d(z) J'w(z) b(z) = Nc'(z) -Fw(z)Nc(z)(16)Thus we can give a physica1 interpretation to these po1ynon:da1s. Moreover, we see that :from a physiea1 point of view c, r, d and b are not mutua11yindependent, but Md or Mc, Ne, Fu, Fv and Fw are.

  the closed-loop tracking transfer is the product of the set point predictor and the deconvolution model mismatch of the process. Similarly we get the closed-loop regulation transfer. Thus in a perfect matching, the various predictors specify the tracking and regulation closed-loop transfers. The regulation and tracking constraints (see Part A) are verified since we have imposed: Md(l) Mc{l) Fu(l) Fv(l) Fw(1) = l Ne 1 (1) = NeCl) (17) The stabi1Uy constraint (Appendix 4) can be verified by a modification of the dynamic of the unmeasured disturbance predictor if: the different models and predictors are stable, the numerator of the deconvolution model has aIl its roots strictly in the unit circle, the following inequality ls satisfied: Md(l} •P(l) > O. (18) Now assuming a perfect know1edge of the process and the measured disturbance fil ter: Me(z) -P(z}; Ne(z} = Q(z} (19) we cau write the expected closed-loop tracking and regulation transfer: -Ioop tracking transfer is the product of the set. point predictor and the deconvolution model mismatch of the process. Similarly we get the c1osed-Ioop regulation transfer. Thus in a perfect matching, the various predictors specify the tracking and regulation closed-loop transfers.

  Figure 6. SISO AMAC Representation

  From sp(z) = zM(z)e(z) + (s(z) -M(z)e(z» (27) we define the predicted output as the output of the model at time (n+l) corrected of the estimation w(n) of the disturbance with sM(n+1) output of the model with a predicted input en (1). The reference output sR(z) is given by a trajectory connecting the past outputs of the process to the present set point. 00 co sR(n+1) = (1 -gi)u n + gi sn-i Thus the MPHC strategy consists in computing future inputs such that (29)

  29) ThuB the MPHC strategy consists in cOlIlputing future inputs such that predicted outputs are on a connecting trajectory. rts block representation iB given by Figure B.

Figure 8 .

 8 Figure 8.

  Let e,s be the input and the output, we write s(z) = e(z) (34) similarly ta the process, but: e(z) -S(II) (35) 18 a reversed relation compared with the process.

)

  Sa the real problem occurs when mcnez) has roots on bath sides of the unit circle. Let us factorize mcnez) into: mcnez) = minez) "monez)(39) where minez) has aIL its roots strictly inside the unit circ!e, mon(z) has aIL its roots strictly outside the unit circle. We don't deal with unit modulus roots. As mdn(z) ls used as a denominator. let us consider: is a holomorphic function defined outside a domain strictly contained in the unit circle, so its Laurent expansion in the vicinity of the unit circle is:mid(z) = L mid. z-j j=O J (41)mid(z) corresponds to a causal impulse response and so has a physical significance.Inversely, mod(z) is a holomorphic function defined in a domain strictly containing the unit circle, so its Laurent expansion in the vicinity of the unit circle is mod(z) = L mod.z j j=O J (42) Thus, mod (z) can be considered as corresponding to a noncausal impulse response. And so expression (35) or (3) implies the knowledge of the future outputs: en (1) is functionally dependent on un (k), sUn (k), kEN. Precisely, from (3) we get: z e(z) = mod(z) [u I L) (z) -su(l) (z ) 1 en (1) depends on the term L mod.(u (j) -su (jls a holomorphie function defined outside a domain strictly contained in the unit circ1e, sa its Laurent expansion in the vicinity of the unit circle ia: (41) mid(z) corresponds to a causal impulse response and so has a physical significance. Inversely, mod(z) is a holPmorphic function defined in a domain strictly containing the unit circle, sa its Laurent expansion in the vicinity of the unit circle ls mod(z) = l mod .zj j=O ](42)Thus, mod(z) cau be considered as corresponding to a noncausal impulse response. And so expression (35) or (3) implies the knowledge of the future outputs: en (1) i8 functionally dependent on un (k). sUn (k). keN.Precisely, fram (3) we get: z m!:gi e(z) = mad{z) Iu(l) (z) -su(l) (l')]

  r called tracking or regulation coefficients. Moreover, as there is no problem on the model's denominator, we suppose an MA model (with p the number of co eff Lc Lerits) Mc(z) = mc(z) zp with mc(z) factorized in mi(z) •mo(z).

Figure 9 .

 9 Figure 9. AMAC Representation for Study

  only those which are strictly in the unit circle.From (20),(21) 

p(

  -i!k mci"en+k_i + un(l) -su n (l) (54) en(l) is the single quantity of interest and we have the control law: p flen(l) =-mci•e n + k_ i + un(l) -sun(l) Thus the implicit deconvolution model is: p-k -(HI) H:I(z) = f l + mC Hk z but with the static gain relation, we need: expression (53) is illusive. This k step prediction strategy gives the MA deconvolution model: Md(z) = kt mc , + z-l r mc . zkis how to choose the integer k in such a way as Md(z) has all its roots strictly in the unit circle. Obviously there is at least the solution k = p, but then the prescribed behavior can be followed only after the time response of the process. This solution is not interesting en(l) 18 Che single quantity of InteresC and we have the control law: Thus che 1mpl1cit deconvolution model ls: but wich the statie gain relation, we need: expression (53) ls illusive. This k step prediction strategy gives the MA deconvolution model:

Sa 2 J

 2 take Md(z) equal to pez) the set point predictor plays the same role as the reference model in the MPHC, so we can extend here the ideas of Rouhani[4]. B-3.4 Pole PlacementOne can impose direct pole placement.In that case, from the spec ified polynomial pp(z) we get the deconvolution model as:Md(z) =because, in perfect modeling, we have(63)This method is very simple when the factorization (39) is known.If not, this problem may be very difficult to solve numerically in particular when there is a great number of roots.B-3.5 Optimization CriterionAnother natural criterion is the minimization of a quadratic distance between the expected and the actual responses to a set point sequence: is a specified function.This is equivalent to a distance between deconvolution and convolution models. Thus, if we write same raIe as the reference model in the MPHC, sa we can extend here the ideas of Rouhani [direct pole placement. In that case, fram the specified polynomial pp(z) Iole get the deconvolution model as: Md(z) min(z)pp(z) md(z) because, in perfect modeling, we bave (63) This method is very simple when the factorizatlon (39) ls known. If not, this problem may be very difficult to solve numerically in partlcular when there ls a great number of roots. B-3.5 0ptimizat:ion Criterion Another natural criterion is the minimization of a quadratic distance between tbe expected and the actual responses to a set point sequence: where u(e i6 ) is a specified function. This ls equlvalent to a distance between deconvolution and convolution models. Thus, if we write Md(z) = (66) Mc(z) = The problem is to approximate the polynomial mcn(z) whose roots are on both sides of the unit circle by a polynomial mdn(z) whose roots are inside the unit circle and (65) can be rewritten as +1T ie (mdn(z» = J 11mcn(e: s ) I dF(S) -'IT mdn(e) with dF(8) a positive measure and: mdn(l) = mcn(l) (67)

ie 2

 2 J{lIrln{z» -J (1mcn(\e) 1 dF(9) and constraints can be computed by the Jury-Astrom a1gorithm[15]. This method gives a deconvnlution model which depends only on the convolution model Mc and the set point predictor (tracking coefficient in the exponential smoothing caSe). Those computations may be numerically easier than polynomial factorization, but have to be done again if the predictor is changed.

  We have shawn that a very general Implementation of a linear time invariant control law cao be done by the adapted model algorithm control. This method uses five independent physical entities: t'Wo non-deterministic signal predictors which can be deduced from disturbance modelization; t'Wo mathematical representations of the praceas behavior which are also given by llIodelization; a set point predieter which cao be deduced from the control law specification. The problem 15 complicated by the fact that one of the representations 18 used in a nonphysical \Jay and thus has to be a.dapted hy a further prediction strategy. , we write-the compensator relation (29) : -the compensator input (27) : , we write-the compensator relation (29) , -the compensator input (27) ,

  

  

A-l

Proof of the linear stability theorem.

Let Ck(Z),A(Z),B(Z) be three polynomials with relation , Ck(z)=(z-l)A(Z)+k B(z) with e, degree of A (z) greater than degree of B (z)

_B(1)IO

(A-i.2)

_a O the highest degree coefficient of A (z) _A(z) has all its roots strictly in the unit circle _A(Z), B(z) with real coefficients.

We will show that it exists a vicinity of zero V (0) such that if k is in V (0) -(0), the roots of C k (z) are strictly the unit circle if and only k a O s t i) 0 (A-i.3)

Proof : we use continuity results , the roots of a polynomial of the complex variable and the maximum of moduli are continuous functions of its coefficients, the highest degree coefficient being taken different from O.

1-For any real k, Ck(z) the degree of A(z).

A-l

Proof of the linear stabili.ty theorem.

Let Ck(Z) ,A{z) ,B{z) be three polynomials with the relation :

with :_degree of A(Z) greater than degree of B(z} _ a O the highest degree coefficient of A (z) (A-l.1) _A (z) has aIl its raots strictly in the unit cirele _A{z), B{z) with real coefficients.

We will show that it exists a vicinity of zero 

large

x greater th an one.

But here we have

Rema!.!;. : From the hypothesis on A (z) , the signs of A(l) and a O are the same.

Proof of the non linear stability theorem.

Proof of the non linear stability theorem.

Let us take the notations :

From the equality of static gains of the sensor the reference, we have

Thus, we have a state representation of the control

-and the process output (2) :

From the equality of static gains of the sensor and the reference, we have

Thus, we have astate representation of the control

CA-2.S)

with :

(A-2.9)

Now we remark that fSi:" is a companion matrix associated the polynomial :

So we have a new result of stability:

Let f (1%) be the spectral radius of the matrix if f n satisfies the following inequality for a certain norm

system with the non linearity f n is stable.

If the linear system is asymptotically stable, the spectral radius of /lU is less than one, then it exists a consistent norm of A. which is less than one [5] .

For tha t norm, we have :

But from (42), we have also : For that norm, we have:

But from (42), we have aiso :

(A-2.15)

Then if

x n is bounded i. e. set-point, and unmeasured disturbances are bounded, we can conclude our proof.

A-7

(A-2.16)

Then if

x n is bounded i.e. set-point, measured and unmeasured disturbances are bounded, we can conclude our proof.

Spectral analysis of the matrix (cos(i-j)e ,.

cos (i-j)e =cosi6l. cosje sinj9 ,

(A-3.1) I(.cosjB ,(.sinje .)

So we see that the matrix is semi definite positive with only two positive eigen values. We are looking for the eigen vectors as a linear combination

We have to find x and y such that : Spectral analysis of the matrix (ccs(i-j)El ,.

From the relation : cos =c0519. cos je +sinH' sinjB , (A-3.l)

.1-10°:191 (.oosj.9 1 (.sinj9 .)

So we see that the matrix 15 sem! definite positive with only two positive eigen values. We are lookinq for the eigen vectors as a linear combinat ion

We have to find x and y such that :

sin! e (x. L cosj9 sinj9-+ L sin j9 )

• j=O

We deduee the expressions We get

A-lO

Proof of the AMAC

We have to study the roots of the expression Let us take:

The characteristic polynomial is then:

We see directly that if the process is known:

and we have a necessary condition for stability: mdn(z), fwd(z) must have their roots strictly in the unit circle.

In the general case, to make no more hypothesis on the process. we

A-lO

Proof of the AMAC Stability

We have to study the roots of the expression Let us take:

The eharaeteristie polynomial is then:

g(z) "" g"mdn(z) "fwd(z) 'pIi(z) + fwn(z) " [pn(z) "md(z) -pd(z) 'men(z)]

We see directly that if the process is known: pn(z)"md(z) -mcn(z)"pd(z) .. 0 (A4.4)

and we have a necessary condition for stability: mdn(z). fwd(z} must have their roots strictly in the unit circle.

In the general case. to make no more hypothesis on tbe process. we will use the result of Appendix 1. A direct application is in writing the characteristic polynomial as:

But this leads to consider the model's static gain as the stability coefficient and thus to lose the notion of model. Moreover, the hypothesis on A(z) implies coupled conditions on the models and the unmeasured disturbance predictor and here we lose the physical independence of these elements.

To keep the AMAC coherence, let us factorize zefwd(z) in:

such that degree of gwd(z) is greater or equal to degree of rwd(z) and gwd(z) has all its roots strictly in the unit circle. Such a factorization exists always and moreover we have:

-degree of gwd(z) is equal to degree of fwd(z); -the highest degree coefficients of gwd(z) and fwd(z) are equal;

-fwd(l) = rwd(l)

Then with a modified fwd k (z) defined as: But this leads to consider the model' s static gain as the stability coefficient and thus to lose the notion of mode!. Moreover, the hypothesis on A(z) implies coupled conditions on the models and the unmeasured disturbance predictor and here we lose the physical independence of these elements.

To keep the AMAC coherence, let us factorize zofwd(z) in:

such that degree of gwd(z) 1a greater or equal to degree of rwd{z} and gwd(z) has aIl its roots strictly in the unit circle. Such a factor1zation exists always and moreover we have:

-degree of gwd{z) is equal to degree of fwd(z); _ the highest degree coefficients of gwd(z) and fwd(z) are equal;

-fwd(l) ""' rwd(l) (A4.8)

Then with a modified fwdk(z) defined as:

the characteristic polynomial can be written as: