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Abstract 
 

Calibration of damage parameters is an important issue for the use of damage laws, 

and particularly for industrial manufacturing processes. This paper deals with an 

adapted procedure to identify Lemaitre damage parameters using tensile tests. An 

adapted objective function is built, and Efficient Global Optimisation (EGO) 

algorithm is chosen to solve the minimisation problem. This procedure is 

investigated by constructing a landscape of the objective function. This global 

sensitivity analysis enables to compare different solutions. The sensitivity analysis 

exhibits some pathological identification issues: multiple extrema and weak 

gradient. This sensitivity analysis shows some limitations of identification using 

load-displacement curves: In particularly the non-uniqueness of the set of 

parameters. The identification procedure is finally validated for an HSS S355MC 

steel material used in industrial joining application. 

 

Keywords: Parameters identification, inverse analysis, global optimisation, 

sensitivity analysis, ductile damage, global measurement. 

 

1  Introduction 
 

An actual industrial issue is the study of material ductility for complex forming 

operations. The prediction of structural strength of manufactured part requires to 

couple a forming process and a structural analysis within a numerical virtual chain. 

To use this virtual chain simulation, material properties must be known. In the cases 

of mechanical joining processes such as riveting or clinching, materials are 

submitted to large plastic deformation. The mechanical strength of these joining 

points is related to the yield and damage history of materials during the joining 

process [1]. To predict the assembly final mechanical strength, reliable damage 

parameters are important.  
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In this paper we present a methodology to identify material parameters using inverse 

analysis. Our study focuses on the Lemaitre damage model. To identify Lemaitre 

damage parameters, local or global measurements can be used. Using global data 

allows performing non standardized test; for example, a punch test can be exploited 

[2]. These measures, local or global, are then used in an inverse analysis procedure. 

Our study aims at working on global measurements resulting from tensile tests. 

First, tensile test modelling and the Lemaitre damage model are briefly described in 

order to construct an adapted objective function. Second, a sensitivity analysis is 

performed on Lemaitre damage parameters. Finally, an adapted inverse analysis 

procedure is presented. This procedure enables to obtain accurate results for an high 

strength steel grade.   

 

2 Direct model  
 

First steps to build an inverse analysis procedure are to define the direct model, the 

experimental test and the objective function. The goal of the objective function is to 

evaluate differences between numerical and experiment results. Once these three 

points defined, the objective is to match numerical results on experimental results. 

This correlation is achieved by modifying material parameters using an optimisation 

algorithm. This global inverse analysis procedure is presented in figure 1.  

 

 
Figure 1: Flow-chart of the inverse method 
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2.1 The Lemaitre damage model 
 

An elastic-plastic law coupled with a ductile damage model is chosen to describe the 

mechanical behaviour of the S355MC steel grade studies in this paper. A brief 

description of the elastic-plastic behaviour and ductile Lemaitre damage model is 

given here. 

Hardening law: 
 

 
( )ns K εεσσ ++= 00  (1) 

Evolution damage law: 
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The equivalent stress
0σ  is described by a hardening law equation (1), with 

sσ  yield 

stress, K consistency, 
0ε a regularization parameter, ε the equivalent plastic strain, 

and n the hardening exponent. The evolution law for the damage parameter w  is 

given by equation (2), 
dε  is the plastic strain threshold for damage growth, plλ the 

plastic multiplier, Y the strain energy release rate, 
0S  and b are material damage 

parameters. More details about this model are given in [4]. The mechanical 

behaviour is coupled with the damage parameter by computing an effective stress 

σ~ , as shown in equation (3). A “weak” coupling is used, meaning that value of the 
damage parameter is updated at end of each increment.  

 w−
=
1

~ σσ
 (3) 

The damage value w  gives information on the material health. w  equal zero for an 

undamaged material and grows toward 1 which is reached for complete fracture.  

The objective of the identification is to determine the parameters values for the 

damage law. In this paper, we focus on the identification of three damage parameters 

dε , 
0S  and b. 

 

2.2 Finite elements modelling 

 
As said previously, the objective of the inverse analysis is to find a set of damage 

parameters for which the numerical and experimental observables are as close as 
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possible. The first condition of success is to build a numerical modelling 

representative of the experimental test. The tensile test is chosen here. 

Dimensions and shape of the specimen are given in figure 2a, (L0=61mm, 

D=20mm). The specimen’s thickness is equal to 5.78mm. L0 is the initial size of the 

extensometer area. The test is carried out on a classical tensile test machine; the 

load-displacement curve is recorded (figure 3) with an extensometer.  

This tensile test is modelling using the CIMLib® library. CIMLib® is a parallel 

finite element library developed at Cemef. It is based on a mixed velocity/pressure 

formulation. More details about damage implementation in a mixed 

velocity/pressure formulation are given in [3]. 

For the numerical tensile test, a displacement is prescribed at the specimen ends. But 

the observable measurement is the measurement given by the extensometer, so a 

numerical extensometer must be used (figure 2b). 

Due to loss of symmetry at end of the test, only one symmetry plan has been used, 

as shown in figure 2b. 

 

 
Figure 2: (a) tensile test specimen, (b) finite element modelling (black dots represent 

captor used for numerical extensometer) 

 

 
2.3 Construction of an adapted objective function 

 
To evaluate the difference between experimental and numerical results we must 

compute an adapted objective function. We use a formulation based on a least 

square equation. The discrete formulation of the objective function ϕ  is given by 
equation (4). expy are experimental values and numy  are numerical values. The 

objective function is normalized by the integral of the experimental result. 
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Some precaution must be taken in order to catch the softening part of the load-

displacement curve. Otherwise the objective function can be non-smooth, which is 

problematic regarding the optimisation procedure. 

 
Figure 3: tensile test load-displacement curve, (a) numerical fracture appears for a 

larger displacement value than for the experimental curve, (b) numerical fracture 

appears for a smaller displacement than the experimental fracture displacement 

 

Our first approach was to compute the objective function with the available data. ϕ  
(equation (5)) is evaluate between 0=x  and ( )fd

num

fd xxx ,min exp= . fdxexp  is the 

experimental fracture displacement and fd

numx  is the numerical fracture displacement. 

But this formulation leads to a non-smooth objective function as shown in figure 4a. 

Besides, in some cases, the objective function tends towards zero even if the two 

curves are different. This case appears when the softening part is very short, so that 

the objective function is computed only on the hardening part. The identified 

parameters are therefore wrong. 

 

 

To solve this problem of wrong objective function, we present here a new objective 

function. Two particular cases have to be deal with. On the one hand, when the 

numerical fracture appears for a larger value than the experimental one (figure 3a). 

And on the other hand when the numerical fracture displacement appears for a 

smaller displacement than the experimental one (figure 3b). The objective 
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functionϕ , defined in equation (4), comes from an integral formulation (equation 
(5)). To handle both particular cases, specific integration domain must be defined. 
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First case: experimental data are completed with one new point defined as follows. 

The breaking load remains the same whereas the displacement value is chosen to be 

much higher than the fracture displacement (figure 3a, blue line). 

Second case: numerical data are completed by new points defined as follows. 

Numerical loads remain equal to the numerical fracture load, whereas the 

displacement value grows from the numerical fracture displacement to the 

experimental fracture displacement (figure 3b, red line).  

This adapted formulation gives a smooth and more reliable objective function. The 

difference between the two formulations is shown in figure 4. The adapted objective 

function (figure 4b) is smoother than the first one (figure 4a). It makes the 

optimisation procedure easier. 
 (a) 

 
 

Figure 4: focus on the objective function, (a) first objective function, (b) adapted 

objective function 

 

 

3  Landscape of the objective function 
 

To illustrate the methodology, the sensitivity analysis focuses only on 2 parameters: 

dε and
0S . The numerical load-displacement curve is compared to a “virtual” 

experimental curve generated using the parameters presented in table 1. 121 
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simulations are preformed here to build a landscape view of the objective function 

(figure 4). 

Material Parameters Value 

K 430 MPa 

sσ  46 MPa 

n 0.34 

dε  0.16 

0S  0.7 

b 1 

Table1: material parameters for the “virtual” tensile test 

 

Set of parameters dε  
0S  

s1 0.16 0.7 

s2 0.175 0.2 

Table2: optimal set of parameters 

 

This view gives interesting information to calibrate the inverse analysis procedure. 

Figure 5 shows that the minimisation problem has multiple optima (2 in this case), 

and weak gradient area. Optimisation algorithm must be robust enough to deal with 

multiple extrema and weak gradient. 

The sensitivity analysis gives other interesting information: multiple set of 

parameters can give a valid solution regarding load displacement-curve (2 in this 

case). The first optimum is located at s1 which are the right parameters (table 2). 

The second optimum is located at s2. The limit of parameters identification base on 

the load-displacement curve appears. The information contained in load-

displacement curve is too poor to identify damage parameters. This is due in 

particular to the fact that the softening part of load-displacement curve is due both to 

damage growth and to necking. A second observable would be necessary to reduce 

the number of solution to one. 
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Figure 5: objective function landscape 

 

To reduce the number of solutions, a new observable is computed: necking. Indeed, 

as said previously, the softening of the tensile load is due both to damage growth 

and to necking. A new objective function is computed in the same way as for the 

load-displacement curve (equation 4), but with accounting for necking-displacement 

experimental and numerical curves. The landscape is presented in figure 6. Using 

this new objective function, the second solution obtained previously (parameter set 

s2) can be eliminated since it is not a minimum of the necking objective function 

landscape. The necking objective function has for set s1 an optimum, and a large 

area ( 14.00 ≤≤ dε , 8.02.0 0 ≤≤ S ) where the objective function is weak. But has 

shown by the objective function based on load –displacement curve this area is not a 

minimum. So necking-displacement can not be used alone, but it is complementary 

to load-displacement observable. This first numerical test shows that adding one 

observable is a good way to reduce the number of solutions. 
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Figure 6: necking objective function landscape 

 

 

4 Identification by inverse analysis 
 

4.1   An adapted optimisation method  
 

Identification of damage parameters requires the use of an advanced optimisation 

procedure.TheEfficient Global Optimisation (EGO) algorithm is used [5]. This 

algorithm is based on an iterative update kriging meta-model. We use here a meta-

model assisted method in order to reduce the computation time. 

Figure 7 shows optimisation results obtained using the EGO algorithm. An optimal 

solution is found after 40 objective function exact evaluations. The 2 local minima 
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are explored. Areas of weak gradient are mapped with multiple points. This test 

prove that the chosen algorithm is adapted to our identification problem.  

 
Figure 7: minimisation of the objective function (meta-model contour, black dot: 

master points, red line: optimum way) 

 

4.2   Application   

 
This calibration enables to identify damage parameters from real experimental 

results. Here a HSS S355MC steel is tested. The identification procedure gives 

accurate results (figure 8). Identified damage parameters are 
0S =0.71 and dε =0.16 (b 

is set to 1); the final objective function is equal to 3e-4.  

The only difference, appearing at the beginning of the softening part comes from the 

incapacity of the chosen damage model to represent the initial softening, whatever 

the damage parameters used. In such cases, it would be recommended to modify the 

formulation of damage growth in the model. However, such as a difference is of the 

same order than uncertainty measurement or material variability. The solution is 

thus acceptable. Finally, as show in the previous part, there is no proof of the result 

uniqueness.   
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Figure 8: load-displacement curve identification result (cross: experimental data, 

line: identify solution) 

 

 

5 Conclusion 
 
In this paper, an objective function adapted to mechanical softening behaviour 

identification has been presented. This adapted objective function allows obtaining a 

smooth and reliable optimisation problem. 

Then, a global sensitivity analysis has been performed on two damage parameters. 

The major observation done by this sensitivity analysis is that the minimisation 

problem has multiple extrema and weak gradient area. This means that information 

contained in the load-displacement curve are not rich enough to get a unique 

solution. This issue can be tackled by using enhanced experimental data. The global 

softening behaviour of load-displacement curves is due both to damage and necking. 

Measuring necking evolution during the tensile test enriches the objective function 

and reduces the number of solutions. Another technique would be to use field 

measurement in the deformed area, in order to get more local and accurate 

information. 
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