Ram Somaraju 
  
Mazyar Mirrahimi 
  
Pierre Rouchon 
  
Approximate stabilization of an infinite dimensional quantum stochastic system

We propose a feedback scheme for preparation of photon number states in a microwave cavity. Quantum Non-Demolition (QND) measurements of the cavity field and a control signal consisting of a microwave pulse injected into the cavity are used to drive the system towards a desired target photon number state. Unlike previous work, we do not use the Galerkin approximation of truncating the infinite-dimensional system Hilbert space into a finite-dimensional subspace. We use an (unbounded) strict Lyapunov function and prove that a feedback scheme that minimizes the expectation value of the Lyapunov function at each time step stabilizes the system at the desired photon number state with (a pre-specified) arbitrarily high probability. Simulations of this scheme demonstrate that we improve the performance of the controller by reducing "leakage" to high photon numbers.

I. INTRODUCTION

Quantum Non-Demolition (QND) measurements have been used to detect and/or produce highly non-classical states of light in trapped super-conducting cavities [START_REF] Deléglise | Reconstruction of non-classical cavity field states with snapshots of their decoherence[END_REF], [START_REF] Gleyzes | Quantum jumps of light recording the birth and death of a photon in a cavity[END_REF], [START_REF] Guerlin | Progressive field-state collapse and quantum non-demolition photon counting[END_REF] (see [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF]Ch. 5] for a description of such quantum electrodynamical systems and [START_REF] Brune | Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of "Schrödinger cat"states[END_REF] for detailed physical models with QND measures of light using atoms). In this paper we examine the feedback stabilization of such experimental setups near a pre-specified target photon number state. Such photon number states, with a precisely defined number of photons, are highly non-classical and have potential applications in quantum information and computation.

The state of the cavity may be described on a Fock space H, which is a particular type of Hilbert space that is used to describe the dynamics of a quantum harmonic oscillator (see e.g. [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF]Sec 3.1]). The cannonical orthonormal basis for this Hilbert space consists of the set of Fock states {|0 , |1 , |2 , . . .}. Physically, the state |n corresponds to a cavity state with precisely n photons. In this paper we study the possibility of driving the state of the system to some prespecified target state |n . The feedback scheme uses the so called measurement back action and a control signal, which is a coherent light pulse injected into the cavity, to stabilize the system at the target state with high probability. Ram Such feedback schemes for this experimental setup were examined previously in [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF], [START_REF] Dotsenko | Quantum feedback by discrete quantum nondemolition measurements: towards on-demand generation of photonnumber states[END_REF]. The overall control structure used in [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF] is a quantum adaptation of the observer/controller structure widely used for classical systems (see, e.g. [START_REF] Kailath | Linear Systems[END_REF]Ch. 4]). The observer part consists of a discrete-time quantum filter, based on the observed detector clicks, to estimate the quantum-state of the cavity field. This estimated state is then used in a state-feedback based on Lyapunov design, the controller part.

As the Hilbert space H is infinite dimensional it is difficult to design feedback controllers to drive the system towards a target state (because closed and bounded subsets of H are not compact). In [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF], the controller was designed by approximating the underlying Hilbert space H with a finitedimensional Galerkin approximation H Nmax . Here, H Nmax is the linear subspace of H spanned by the basis vectors |0 , |1 , . . . , |N max and N max n, our target sate. Physically this assumption leads to an artificial bound N max on the maximum number of photons that may be inside the cavity. In this paper we wish to design a controller for the full Hilbert space H without using the finite dimensional approximation. The need to consider the full Hilbert space is motivated by simulations (see Section IV) which indicate that using the controller designed on a finite dimensional approximation results in "leakage" to higher photon numbers with some finite probability.

Controlling infinite dimensional quantum systems have previously been examined in the deterministic setting without measurements. Various approaches have been used to overcome the non-compactness of closed and bounded sets. One approach consists of proving approximate convergence results which show convergence to a neighborhood of the target state [START_REF] Beauchard | Practical stabilization of a quantum particle in a one-dimensional infinite square potential well[END_REF], [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF]. Alternatively, one examines weak convergence for example, in [START_REF] Beauchard | Semi-global weak stabilization of bilinear Schrödinger equations[END_REF]. Other approaches such as using strict Lyapunov functions or strong convergence under restrictions on possible trajectories to compact sets have also been used in the context of infinite dimensional state-space for example in [START_REF] Coron | Stabilization of a rotating body beam without damping[END_REF], [START_REF] Coron | A strict lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF].

The situation in our paper is different in the sense that the system under consideration is inherently stochastic due to quantum measurements. The system may be described using a discrete time Markov process on the set of unit vectors in the system Hilbert space as explained in Section II. We use a strict Lyapunov function that restricts the system trajectories with high probability to compact sets as explained in Section III. We use the properties of weak-convergence of measures to show approximate convergence (i.e. with probability of convergence approaching one) of the discrete time Markov process towards the target state.

We use a similar overall feedback scheme that is used in [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF]. The entire feedback system is split into an observer part, a quantum filter, and a controller part based on a Lyapunov function. The quantum filter used to estimate the state is identical to the one used in [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF] and we do not discuss the filter further in this paper. However we do not use the Galerkin approximation to design the controller. We show in Theorem 3.2 that given any > 0, we can drive our system to the target state n with probability greater than 1-. Simulations (see Section IV) indicate that this controller provides improved performance with lower probability of having trajectory escaping towards infinite photon numbers. The precise choice of Lyapunov function is motivated by [START_REF] Amini | Design of strict controllyapunov functions for quantum systems with qnd measurements[END_REF] that uses a similar form of the Lyapunov function in a finite dimensional setting.

A. Outline

The remainder of the paper is organised as follows: in the following Section we describe the experimental setup and the Markovian jump dynamics of the system state. In Section III we state the main result of our paper including an outline of the proof of Theorem 3.2. We then present our simulation results in Section IV and then our conclusions in the final Section.

II. SYSTEM DESCRIPTION

The system, illustrated in Figure 1, consists of 1) a high-Q microwave cavity C, 2) an atom source B that produces Rydberg atoms, 3) two low-Q Ramsey cavities R 1 and R 2 , 4) an atom detector D and 5) a microwave source S. The system may be modeled by a discrete-time Markov process, which takes into account the backaction of the measurement process (see e.g. [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities and Photons[END_REF]Ch. 4] and [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF]).

Rydberg Atoms are sent from B, interact with the cavity C, entangling the state of the atom with that of the cavity and are then detected in D. Each time-step, indexed by the integer k, corresponds to atom number k crossing the cavity and interacting with the cavity. The state of the cavity in time step k is described by a unit vector |ψ k ∈ B1 for k = 1, 2, . . .. Here, B1 = {|ψ ∈ H : |ψ = 1} is the set of possible cavity states. The change of the cavity state |ψ k at time-step k to the state |ψ k+1 at time-step k + 1 consists of two parts corresponding to the projective measurement of the cavity state, by detecting the state of the Rydberg atom in detector D and also due to an appropriate coherent pulse (the control) injected into C.

Let a and a † be the photon annihilation and creation operators where a |n = √ n |n -1 and a † is the Hermition conjugate of a. Also, let N = a † a be the diagonal number operator satisfying N |n = n |n . Let D α = exp(α(a † -a)) be the displacement operator which is a unitary operator that corresponds to the input of a coherent control field of amplitude α that is injected into the cavity. The amplitude α of the coherent field is the control that is used to manipulate the system. Let M g = cos(θ+N φ) and M e = sin(θ+N φ) be the measurement operators, where θ and φ are experimental parameters. Physically, the measurement operator M s , s ∈ {e, g} correspond to the state of the detected atom in either the ground state |g or the excited state |e .

We model these dynamics by a Markov process

ψ k+1/2 = M s |ψ k M s |ψ k with prob. M s |ψ k 2 (1) 
|ψ k+1 = D α k ψ k+1/2 . (2) 
Here s ∈ {e, g} and the control α k ∈ R. Remark 2.1: The time evolution from the step k to k + 1, consists of two types of evolutions: a projective measurement by the operators M s and a coherent injection involving operator D α . For the sake of simplicity, we will use the notation of ψ k+1/2 to illustrate this intermediate step.

Remark 2.2: Let M 1 be the set of all probability measures on B1 . Then the Equations ( 1) and (2) determine a stochastic flow in M 1 and we denote by Γ k (µ 0 ) the probability distribution of |ψ k , given µ 0 , the probability distribution of |ψ 0 .

III. GLOBAL (APPROXIMATE) FEEDBACK STABILIZATION

We wish to use the control α k to drive the system into a pre-specified target state |n with high probability. That is, we wish to show that the sequence Γ k (µ) converges to the set of probability measures

Ω ∞ where for all µ ∞ ∈ Ω ∞ , µ ∞ (|n ) is big.
In order to achieve this we use a Lyapunov function (5) and at each time step k we choose the feedback control α k to minimize the Lyapunov function. Before discussing the choice of the Lyapunov function in Subsection III-B we recall some facts concerning the convergence of probability measures

A. Convergence of probability measures

We refer the interested reader to [START_REF] Merkle | Topics in weak convergence of probability measures[END_REF], [START_REF] Billingsley | Convergence of Probability Measures[END_REF] for results pertaining to convergence of probability measures. We denote by C the set of all continuous bounded functions on B1 . Definition 3.1: We say that a sequence of probability measure

{µ n } ∞ n=1 ⊂ M 1 converges (weak- * ) to a probability measure µ ∈ M 1 if for all f ∈ C lim n→∞ E µn [f ] = E µ [f ]
and we write

µ n → µ. It can be shown that if µ n → µ ∞ then for all open sets W , lim inf n→∞ µ n (W ) ≥ µ ∞ (W ). (3) 
A set of probability measures S ⊂ M 1 is said to be tight [16, p. 9] if for all > 0 there exists a compact set K ⊂ B1 such that for all µ ∈ S, µ(K ) > 1 -. Theorem 3.1 (Prohorov's theorem): Any tight sequence of probability measures has a (weak- * ) converging subsequence. We also recall Doob's inequality. Let X n be a Markov process on some state space X. Suppose that there is a non-negative function

V (x) satisfying E[V (X 1 )|X 0 = x)] - V (x) ≤ 0, then Doob's inequality states P sup n≥0 V (X n ) ≥ γ|X 0 = x ≤ V (x) γ . (4) 

B. Lyapunov function and control signal α k

We now introduce our Lyapunov function V and explain the intuition behind this peculiar form of this function. The function,

V : B1 → [0, ∞] is defined V (|ψ ) = ∞ n=0 σ n | ψ|n | 2 + δ(cos 4 (φ n) + sin 4 (φ n)) -δ M g |ψ 4 + M e |ψ 4 . (5) 
Here

φ n = θ + nφ,
δ > 0 is a small positive number and

σ n =        1 8 + n k=1 1 k -1 k 2 , if n = 0 n k=n+1 1 k -1 k 2 , if 1 ≤ n < n 0, if n = n n k=n+1 1 k + 1 k 2 , if n > n (6) 
We set D(V ) ⊂ B1 to be the set of all |ψ ∈ B1 where the above Lyapunov function is finite. We note that coherent states, which are states that are of relevance in practical experiments are in D(V ).

We choose a feedback that minimizes the expectation value of the Lyapunov function in every time-step k. Indeed, applying the result of the k'th measurement, we know the state ψ k+1/2 and we choose α k as follows

α k = argmin α∈[-ᾱ, ᾱ] V D α ψ k+1/2 (7) 
for some positive constant ᾱ. Remark 3.1: The Lyapunov function is chosen to be this specific form to serve three purposes - 

C. Main Result

We make the following assumption. A1 The eigenvalues of M g and M e are non-degenerate. This is equivalent to the assumption that π/φ is not a rational number. The quantum filter uses the statistics of the measurement of whether the atom is in the ground or excited state to estimate the cavity's state. Therefore if one of the eigenvalues of M g (or M e ) is degenerate then the measurement statistics will be the same for more than one photon number state. Therefore it is not possible to control the system effectively in this case (However, as explained in Remark 3.2 below, we may weaken this assumption slightly).

The following Theorem is our main result. Theorem 3.2: If we assume A1 to be true then given any > 0 and C > 0, there exist constants δ > 0 and ᾱ such that for all µ satisfying

E µ [V ] ≤ C, Γ n (µ) converges to a limit set Ω. Moreover for all µ ∞ ∈ Ω, |ψ ∈ supp(µ ∞ ) only if |ψ is one of the Fock states |n and µ ∞ ({|n }) ≥ 1 -.
The proof is split into 5 steps:

1) V (|ψ k ) is a super-martingale that is bounded from below.

2) The sequence of measures Γ k (µ) is tight and therefore has a converging subsequence. Hence the set Ω is nonempty. 3) If Γ k l (µ) → µ ∞ then the support set of µ ∞ only consists of Fock states. 4) Let M , C > 0 be given. Then for all M ≥ m = n, δ and ᾱ may be chosen small enough such that for κ > 0 small enough and all |ψ in the neighborhood

V κ m = {|ψ : |ψ -|m < κ, V (|ψ ) > V (|m )-κ} (8) 
of |m , satisfying V (|ψ ) < C , we have for |α| < ᾱ the polynomial approximation

V (D α |ψ ) = 2 i=0 α i i! f i (|ψ ) + O( ᾱ3 ) + O(δ)
and f 2 (|ψ ) < γ < 0 for some constant γ. The term O(ᾱ 3 ) only depends on C and not on |ψ and the term O(δ) is independent of both |ψ and C . 5) Because γ is negative, we can choose ᾱ and δ small enough such that the probability of convergence to the Fock states |m for m = n may be made arbitrarily small. Therefore

µ ∞ (|n ) = 1 - ∞ m=0 m =n µ ∞ (|m )
may be made arbitrarily big. Below we sketch the proofs of each of the above steps. The interested reader is referred to [START_REF] Somaraju | Semi-global approximate stabilization of an infinite dimensional quantum stochastic system[END_REF] for further details on the proof which are beyond the scope of a short note. Proof: [Proof of step 1] We can write

E V (|ψ k+1 ) |ψ k -V (|ψ k ) = K 1 (|ψ k ) + K 2 (|ψ k )
where,

K 1 (|ψ k ) min α∈[-ᾱ, ᾱ] E V D α ψ k+1/2 |ψ k -E V ( D 0 (ψ k+1/2 ) |ψ k , K 2 (|ψ k ) E V D 0 ψ k+1/2 |ψ k -V (|ψ k ). (9) 
It is obvious that K 1 (|ψ ) ≤ 0 and after simple but tedious manipulations, we get

K 2 (|ψ ) = -2 M 2 g |ψ 2 -M g |ψ 4 2 Tr M 2 g ρ Tr {M 2 e ρ} ≤ 0. ( 10 
)
Therefore, V (ψ k ) is a super-martingale.

Proof: [Proof of step 2] Let > 0 be given. Because V (|ψ k ) is a supermartingale, Doob's inequality [START_REF] Beauchard | Semi-global weak stabilization of bilinear Schrödinger equations[END_REF] gives us

P sup k≥0 V (|ψ k ) ≥ E µ [V ] ≤ . ( 11 
)
If we set,

K = {|ψ : V (|ψ ) ≤ E µ [V ]/ }) then for all k > 0, [Γ k (µ)](K ) > -.
Because, the sequence σ n → ∞ as n → ∞, the set K can be shown to be pre-compact in H. We can now apply Prohorov's Theorem 3.1 to show that Γ n (µ) has a converging subsequence. Therefore the limit set

Ω = {µ ∞ ∈ M 1 : Γ k l (µ) → µ ∞ } is non-empty. Proof: [Proof of step 3] Suppose some subsequence of Γ k (µ) converges to µ ∞ ∈ Ω. From step 1 we have K 1 (|ψ k ) + K 2 (|ψ k ) → 0 as k → ∞ and because K 1 and K 2 are both non-negative we have lim k→∞ E Γ k (µ) [K 2 ] = 0.
But, from [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF] and the boundedness of M g and M e , we know that K 2 is a continuous function on H. Therefore from Definition 3.1 of (weak- * ) convergence of measures we get

E µ∞ [K 2 ] = 0. ( 12 
) But K 2 (|ψ ) = 0 implies M 2 g |ψ 2 = M g |ψ 4 .
The Cauchy-Schwartz inequality gives

M 2 g |ψ 2 = M 2 g |ψ 2 |ψ 2 = ψM 2 g |M 2 g ψ • ψ|ψ ≥ | ψ|M 2 g ψ | 2 = M g |ψ 4 .
with equality if and only if |ψ and M 2 g |ψ are co-linear. Therefore K 2 (|ψ ) = 0 implies (by AssumptionA1) that |ψ is a Fock state. Hence from [START_REF] Coron | Stabilization of a rotating body beam without damping[END_REF] we can conclude that the support set of µ ∞ only consists of the set of Fock states.

Proof:

[Proof of step 4] Set V (|ψ ) ∞ n=0 σ n | D α ψ|m | 2
It can be shown [START_REF] Somaraju | Semi-global approximate stabilization of an infinite dimensional quantum stochastic system[END_REF] that

V (D α |ψ ) is an analytic function of α if |ψ satisfies V (|ψ ) < ∞.
Moreover, for all |ψ satisfying V (|ψ ) < C we have the second order polynomial approximation

V (D α |ψ ) = 2 i=0 α i i! ∇ i α V (D α |ψ ) α=0 + O(ᾱ 3 )
for all |α| < ᾱ. In particular the O(ᾱ) term only depends on C and is independent of |ψ . Here ∇ i α (•)| α=0 is the i th derivative of (•) w.r.t. α evaluated at α = 0.

If we let |ψ = ∞ n=0 c n |n and recall that D α = exp(α(a -a † )) then after some manipulations, we get

∇ 2 α V (D α |ψ ) α=0 = ∞ n=0 |c n | 2 (n + 1)σ n+1 + nσ n-1 -(2n + 1)σ n + Re{c n-1 c * n+1 } n(n + 1)(σ n-1 + σ n+1 -2σ n ). If n = n and n ≥ 2 we have (n + 1)σ n+1 + nσ n-1 -(2n + 1)σ n = -1 n(n + 1)
and for n = 0, 1 we get

(n + 1)σ n+1 + nσ n-1 -(2n + 1)σ n = -1 4 
For any Fock state |m with m = n, c n = δ mn , where δ mn is the Kronecker-delta function and we have

∇ 2 α V (D α |m ) α=0 = - 1 m(m + 1) < 0.
Because the terms n |c n | 2 and n Re{c n+1 c * n-1 } are bounded by the • -norm in H, it can be shown that for κ small enough we have

∇ 2 α V (D α |ψ ) α=0 < - 1 2m(m+1) in the neighborhood V κ m of |m , where V κ m is given as in Equation (8). But, ∇ 2 α V (D α |ψ ) α=0 = ∇ 2 α V (D α |ψ ) α=0 + O(δ).
Hence, given any M > n, step 4 above is true with γ = -1 2M (M +1) .

Proof: [Proof of step 5] Let > 0 be given. We show that µ ∞ ({|n }) ≥ 1 -. From step 3 we know that the support of µ ∞ only consists of Fock states. Therefore using (3), we only need to show that there exists an open neighborhood W of {|m : m = n} such that for k big enough the [Γ k (µ)](W ) ≤ .

We construct the set W using two disjoint parts W 1 and W 2 . We first show that there exists a M big enough and a neighborhood

W 1 of {|M , |M + 1 , . . .} such that [Γ k (µ)](W 1 ) ≤ /2 for all k. We then construct a neigh- borhood W 2 of {|m : 0 ≤ m < M, m = n} such that [Γ k (µ)](W 2 ) < /2 for k large enough.
a) Construction of W 1 : Because σ m → ∞ there exists an M large enough such that for all m > M , σ m > C /4 . We can choose a small enough neighborhood W 1 of {|M , |M + 1 , . . .} such that for all |ψ in this neighborhood,

V (|ψ ) ≥ σ M 2 ≥ C /2 Because E µ [V ] ≤ C, Doob's inequality implies the proba- bility of V (|ψ k ) > C/( /2) is less than /2. Therefore, [Γ k (µ)](W 1 ) ≤ 2 . (13) 
b) Construction of W 2 : We show that for κ small enough we can choose

W 2 = M -1 m=0 m =n V κ m
where V κ m is as in [START_REF] Kailath | Linear Systems[END_REF]. From Doob's inequality, we have

[Γ k (µ)] |ψ : V (|ψ ) > C /2 ≤ /2. ( 14 
)
for all k. Therefore we can complete the proof if we show that for κ small enough

lim k→∞ [Γ k (µ)]( Vκ m ) = 0, where Vκ m = V κ m ∩ |ψ : V (|ψ ) ≤ C /2 .
In Step 4 we set C = C/( /2) and M = M and let κ be small enough so that V κ m is as given in step 4. Then, because γ < 0, we can choose ᾱ and δ small enough so that there exists a constant c > 0 such that for all |ψ ∈ Vκ m , [START_REF] Beauchard | Semi-global weak stabilization of bilinear Schrödinger equations[END_REF] the probability of this happening once is less than (V (|m ) -κ )/(V (|m ) -κ /2) < 1. Therefore the probability of this happening infinitely many times is zero. Thus lim k→∞ [Γ k (µ)]( Vκ /2 m ) = 0. This combined with ( 13) and ( 14) gives, µ ∞ {|m : m = n} ≤ .

V (D α |ψ ) -V (|ψ ) < -c,
Therefore,

µ ∞ (|n ) = 1 - ∞ m=0 m =n µ ∞ (|m ) ≥ 1 -.
Remark 3.2: In step 2 we show that the only vectors in the support of µ ∞ are those corresponding to eigenvector of M s . We then used assumption A1 to claim that the only eigenvectors of M s are the Fock states. We can however weaken this assumption to the following: eigenvalues corresponding to eigenvectors |m , m < M are non-degenerate. This is because, we can show that if some eigenvector |ψ is in the span of the set {|M , |M + 1 , . . .} then using the same argument as that used for |m , m > M , we can show that the probability of |ψ is small. This is significant for cases where M g is a more complicated non-linear function of N , as is the case in a practical system.

IV. SIMULATIONS

To illustrate Theorem 3.2, we performed closed-loop simulations of the controller designed using the finite-dimensional approximation [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF] and the one in Theorem 3.2. Both simulations were performed on a system truncated to 21 photons. However the quantum filter (and therefore the controller) was truncated to 10 photons.

The initial state was chosen to be the coherent state having an average of n = 3 photons:

|ψ 0 = e -n 2 n≥0 nn n! |n The measurement operators are M g = cos √ 2(N -n)/5 + π 4 , M e = sin √ 2(N -n)/5 + π 4 .
We take ᾱ = 1 10 and δ = (1/10(10 + 1))/2 to ensure the Lyapunov function is strictly concave near the Fock states |m , m = n. To compute the feedback law given by the minimisation (7), we approximate, for each step k, [-ᾱ, +ᾱ] α k → E V (|ψ k+1 ) |ψ k by the polynomial of degree two with the same first and second order derivatives at α k = 0. trajectories that do not converge to |n can be interpreted as the in theorem 3.2. Figure 3 is devoted to similar simulations but with the feedback law of [START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF], [START_REF] Dotsenko | Quantum feedback by discrete quantum nondemolition measurements: towards on-demand generation of photonnumber states[END_REF] based on a finite dimensional model:

α k =    ᾱ if n|ψ k+1/2
2 ≤ 1 10 ; ψ k+1/2 [|n n|,a † -a,]ψ k+1/2 4n+2 otherwise. [START_REF] Merkle | Topics in weak convergence of probability measures[END_REF] The average asymptotic value of | n|ψ | 2 is then around 0.95 with this "finite dimensional" feedback. Around 5% of the trajectories do not converge towards |n and escape towards high photon numbers. Figure 4 shows a typical example of such a trajectory which converges towards photon number 15 and 20.

V. CONCLUSION

In this paper we examine the stabilization of a quantum optical cavity at a pre-specified photon number state |n . In contrast with previous work, we designed a Lyapunov function on the entire infinite dimensional Hilbert space instead of using a truncation approximation. The Lyapunov function was chosen so that it is a strict Lyapunov function for the target state and the feedback consisted of a control that minimizes the expectation value of the Lyapunov function at each time-step. Simulations indicate that this feedback controller performs better than the one designed using the finite dimensional approximation.
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 1 Fig. 1. The microwave cavity QED setup with its feedback scheme (in green).
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 234 Fig.2. Simulation with a truncation to 20 photons of the system and 9 photons of the filter for the feedback law[START_REF] Dotsenko | Quantum feedback by discrete quantum nondemolition measurements: towards on-demand generation of photonnumber states[END_REF]; in blue| n|ψ k | 2 (n = 3) for each realization ; in red average over the 100 realizations of | n|ψ k | 2 .
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  of the Lyapunov function then the trajectories of the Markov process are restricted to a compact set in B1 with probability arbitrarily close to 1. This implies that the ω-limit set of the process is non-empty (seeStep 2 in the Proof of Theorem 3.2). 2) The term -δ( M g |ψ 4 + M g |ψ 4 ) is chosen such that the Lyapunov function is a strict Lyapunov functions for the Fock states. This implies that the support of the ω-limit set only contains Fock states (see Step 3 in the Proof of Theorem 3.2). 3) The relative magnitudes of the coefficients σ n have been chosen such that V (|n ) is a strict global minimum of V . Moreover given any M > n we can choose δ, ᾱ such that for all M ≥ m = n, and for all |ψ in a neighborhood of |m , V (D α |ψ ) does not have a local minimum at α = 0. This implies that if |ψ k is in this neighborhood of |m then we can choose an α k ∈ [-ᾱ, ᾱ] to decrease the Lyapunov function and move |ψ k away from |m by some finite distance with probability 1 (see Steps 4 and 5 in the Proof of Theorem 3.2).

[START_REF] Deléglise | Reconstruction of non-classical cavity field states with snapshots of their decoherence[END_REF] 

We choose the sequence σ n → ∞ as n → ∞. This guarantees that if we choose α k to minimize the expectation value

  for some α ∈ [-ᾱ, ᾱ]. Because M g and M e are bounded operators and M g |m = |m and M e |m = |m , κ can be chosen small enough such that if |ψ k ∈ Vκ To see this note that because for all |ψ k ∈ Vκ m , ψ k+1/2 ∈ Vκ m with probability 1 and this implies V (|ψ k+1 ) -V (|ψ k ) < -c with probability 1.

	We claim that Γ k (µ)( m ) → 0. So if |ψ k ∈ Vκ /2 Vκ /2 m then the Markov process is outside the
	set V κ m within a finite number of steps less than C /c with probability 1. So if µ k ( Vκ /2 m ) does not approach zero,
	then the Markov process must enter the set	Vκ /2 m	from
	outside the set V κ m infinitely many times. But by Doob's
	inequality		

m then ψ k+1/2 ∈ Vκ m with probability 1.
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