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Abstract

Today, there is a growing interest in developing short-term wind power forecasting tools able to
provide reliable information about particular, so-called ”extreme” situations. One of them is the large
and sharp variation of the production a wind farm can experience within a few hours called ramp event.
Developing forecast information specially dedicated to ramps is of primary interest both because of the
difficulties usual models have to predict them, and the potential risk they represent in the management
of a power system. First, we propose a methodology to characterize ramps of wind power production
with a derivative filtering approach derived from the edge detection literature. Then, we investigate
the skill of numerical weather prediction ensembles to make probabilistic forecasts of ramp occurrence.
Through conditioning probability forecasts of ramp occurrence to the number of ensemble members
forecasting a ramp in time intervals, we show how ensembles can be used to provide reliable forecasts
of ramps with sharpness. Our study relies on 18 months of wind power measures from a 8 MW wind
farm located in France and forecasts ensemble of 51 members from the Ensemble Prediction System
(EPS) of the European Center for Medium-Range Weather Forecasts (ECMWEF).

1 Introduction

Wind energy is the fastest growing renewable energy source in the world. The total installed capacity has
increased impressively during the last decade, passing from 10 GW in 1998 to 158 GW in QOOﬂ This is
an encouraging development if we consider the issue of managing power systems with high penetration
of wind power. Indeed, the variable nature of wind generation makes it difficult to reach the basic
requirement of balancing the electricity demand by an equal production. Short-term forecasts of wind
power production up to 2 or 3 days ahead can facilitate the management of power systems by operators.
Wind power forecasts are useful for performing various power system management functions, like the
dynamic quantification of reserves or the optimization of combined wind-hydro power plant scheduling
[1L 2]. They also prove valuable when incorporated into bidding strategies for participating in electricity
markets [3] 4].

Most existing wind power forecasting models are designed to provide point forecasts of expected future
wind farm production. In recent years, research work has focused on associating uncertainty estimation
with this type of point forecast. New forecasting approaches (often called probabilistic forecasting meth-
ods) have recently emerged that provide estimations of the entire distribution of future production. In
such methods, forecasts may take the form of either quantile estimations [5] [6, [7] or density estimations
[8,[9]. Two extensive reviews of the state of the art in wind power forecasting are given in [10] [I1].
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Nowadays, wind power forecasting systems are used operationally by end-users. It is increasingly
apparent, however, that current forecasting technology cannot properly handle extreme situations related
to wind generation. Extreme situations may take different forms, corresponding either to extreme weather
phenomena or to critical periods for power system operation [12]. An example is the steep and high
increase or drop in production that a wind farm can experience in the space of a few hours, commonly
known as a ramp event. Operational systems’ performance in forecasting large variations of wind power
production is often reported to be significantly lower than usual [I3, [14]. This means that we either need
to improve forecasting tools’ performance in these situations, or develop new dedicated forecasting tools.
This paper investigates the development of a new tool to forecast ramps and the associated uncertainty.

In literature related to wind energy, the term “ramp” may refer to wind power variations taking
place over different time scales. It sometimes refers to intra-hourly variations, e.g. 10 to 60 minute
variations [I5] [16] [I7]. In this paper, we use it to refer to significant changes in wind generation over one
or several hours. An accurate prediction of this type of variation for the next few hours up to several days
ahead therefore relies on weather forecasts provided by Numerical Weather Prediction (NWP) models
[13, 14, 18]. Making a reliable forecast of exactly when such events will occur is a significant challenge.
Indeed, errors in predicting the underlying weather conditions made by NWP models often result in
inaccurate forecasting of ramp timing [19]. An error in forecasting ramp timing is referred to as a phase
error. There is a growing interest in developing forecasting approaches dedicated to ramps. A survey of
these approaches is presented in [20].

The way standard forecasting approaches provide uncertainty estimations cannot be adapted when
focusing on the temporal uncertainty of ramp events. For instance, prediction intervals are commonly
provided on a per-horizon basis, and are dedicated to uncertainty estimations associated to power level
forecasts (see [2I] for instance). While such forecasts may be easily integrated into a decision-making
process, they do not provide an explicit estimation of the temporal uncertainty associated with a particular
ramp event. Pioneer work in [I9] associates an estimation of the phase error distribution with point
forecasts of wind power production. These estimations take the form of a probability density function
with finite support. This kind of support is designed to contain all ramps. However, evaluation results
indicate poor reliability since numerous ramps are observed outside the support. Another limitation of
the methodology in [19] is the unconditional estimation of the phase error distribution.

In this paper, we propose to forecast ramps on the basis of a specific timing, plus the probability of
observing a ramp within a set of time intervals (hereafter referred to as “prediction intervals”) centered on
that timing. Thus, our approach aims at providing a suitable uncertainty estimation associated with the
forecast of a ramp timing. The proposed methodology relies on numerical weather prediction ensembles.
Ensembles are alternative numerical weather predictions that are produced by perturbing the initial
conditions, or a different parameterization of a numerical weather prediction model. The unperturbed
prediction is referred to as control forecast and, in general, provides the most accurate wind production
forecasts. Ensembles have already been used to derive probabilistic forecasts of wind generation [22, 23],
and to assess future large-scale weather patterns [24]. Forecasts of wind power variations made by high-
resolution ensembles have been evaluated to some extent in offshore conditions [25]. They have also been
considered in a prototype ramp forecasting system [26]. In the latter, NWP ensembles are used to derive
hourly distribution forecasts of wind generation. Then, statistical random sampling on two consecutive
distribution forecasts makes it possible to estimate the distribution of production changes from one hour
to the next. The main limitation of this methodology is that the correlation between two consecutive wind
generation distribution forecasts is not properly captured, resulting in unrealistic forecasts of hourly wind
power changes. The methodology proposed here is completely different, since it is based on collecting
ramp forecasts from the members of the wind power ensembles. These forecasts are then clustered into
coherent groups, each of them resulting in a unique forecast event. The use of the ensembles from an
event-based point of view allows us to go further in evaluating the merits of the ensembles themselves as
weather forecast products [27].

The paper is organized as follows. In Section 2] we discuss the definition of a ramp and introduce a
methodology to detect and characterize a ramp event from a wind power time series. The definition pro-
posed relies on considerations from the signal processing field and uses a filtering/thresholding approach.



In Section [3] we start by discussing how to identify a forecast ramp event among an ensemble of wind
power forecast time series. Then, we introduce the proposed ramp forecasting methodology. Section
gives an evaluation of the proposed methodology. Conclusions and perspectives are given in Section

2 Definition and characterization of a ramp event

In the related literature, a change in wind power production is considered as a ramp if it exceeds a given
threshold in a period shorter than a given maximum duration. This threshold is sometimes expressed as
a percentage of the nominal capacity of the wind farm. Thus, detecting a ramp relies on computing the
difference between the minimum and maximum production during the considered period. This computing
approach seems to be followed by [I3] [I4] [19], where it is explained in a descriptive way rather than using
an explicit mathematical formulation. In general, this approach is expected to be highly noise sensitive
given the high variability of wind power production. In this section, we propose a methodology for
defining and detecting a ramp in a wind power time series, based on a linear filtering approach that aims
to handle the above mentioned noise issue. As a result, we achieve a ramp characterization using a set
of three parameters: the support, timing and intensity of the ramp.

2.1 Measuring time variations of wind power

The wind power production signal is characterized by high variability. For ramps, we need to propose
a definition of such events that relies on a robust and computationally efficient way of measuring high
and steep power variations, while appropriately handling the inherent noise in the process. Measuring
variations, and detecting edges in a signal have been widely considered in the field of signal processing (for
a literature overview we refer to [28]). The most common approach consists in estimating the first order
derivative of the signal through filtering. The filtering considered associates the operations of smoothing
and differentiating the signal. Following standard practice, we maintained a measure that would make
interpretations easy and then chose to smooth the wind power signal using a moving average linear filter
before computing the first order finite differences.

1 n 1 n—1
pl = - };pt-‘rh - };}pt-‘rh—n (1)

where p; is a wind power time series and n is both the order of the moving average filter and the time
step of finite differences. The filtered power p{ is merely the difference between the levels of average power
from both sides of the instant ¢. Smoothing data allows us to regularize the differentiation operation,
making it robust against noise [29]. The resulting variation measure can be rewritten by convolving the
power signal p; with the commonly known difference of boxes edge detector fpop

f

p; = pe* fpos (2)
0 ift=0or|t|>n
fDOB(t) = 1/7’7, if0<t§n (3)

—1/n if0>t>-n

Canny [30] introduced three criteria to evaluate edge detectors based on to their ability to detect
and localize edges. Considering a model composed by an ideal step edge and white Gaussian noise, he
theoretically showed the good performances of the considered edge detector fpop to detect step edges
such as ramps.

In the literature on signal processing, the parameter n is generally introduced as a smoothing pa-
rameter controlling the trade off between noise reduction in the signal p; and interference mitigation in
detecting consecutive edges [31]. To avoid such interferences, n should be chosen to be no greater than
the time period separating the two consecutive edges we are interested in. The choice of the value of n
is described in more detail in the case-study presented in Section [4.1



2.2 Ramp detection and characterization

Variations in the power signal p; coincide with local extrema of the filtered power signal p{ (see Figure
. Such extrema can be seen as a combined measure of both the magnitude and the steepness of the
wind power variations. We consider that a variation is high and steep enough to be regarded as a ramp
if the absolute value of p{ is higher than a given threshold 7 > 0

f
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Figure 1: Example of an hourly wind power time series p; covering 48 hours of production from a French
wind farm. The measures have been normalized based on the wind farm nominal capacity P,. The
absolute value of the filtered production p{ (red dashed line) upwardly crosses the threshold 7 (black
dashed line) twice. First, a decreasing ramp is detected. Its timing is located at ¢, = 19 hours, its
intensity represents 64,0% of the nominal capacity of the wind farm and its support is 6 hours long. It is
followed by an increasing ramp at t, = 36 hours, with an intensity 45.8% of P, and a support of 4 hours.

The complex geometry of a wind power variation may result in the absolute value of the filtered signal
p{ fluctuating around the threshold 7. This phenomenon, which is responsible for breaking up edges, is
known as “streaking” in literature on edge detection [30]. To palliate it, a common practice is to apply
a so-called hysteresis thresholding. Rather than a single value 7, two thresholds are then considered.
Filtered outputs above the highest threshold are immediately considered as associated with an edge, as
are those connected to them and lying between the two thresholds. In our study, we noticed that the
streaking phenomenon occurs only rarely. For the sake of simplicity, we decided not to use this type of
thresholding methodology.

A ramp is a time-limited event that can be characterized by a starting time ¢; and an ending time
te. They are defined here by the instants at which the absolute value of the filtered signal p{ crosses
upwards and downwards the threshold 7. The period between these two instants [¢s, t.] then defines
the support of the ramp. It is clear that the length of the support depends on the value of the threshold.
In fact, ramp support should be considered as a requisite characteristic for developing our forecasting
approach but is not essential to the definition of the event. Even when a ramp is not localized in time,
it is useful to associate a particular timestamp to a ramp. We choose to associate to a ramp event the
time t, (ts < ¢, < t.), called timing of the ramp, for which the absolute value of the filtered signal pf
reaches its maximal magnitude. If there are several maxima, the one associated to the nearest instant
from the starting time ¢, is chosen. This maximum defines the intensity of the ramp. To summarize,
three quantities are defined to characterize a ramp event: support, timing and intensity.



3 Forecasting ramp events using ensemble wind power forecasts

The detection methodology of ramps that we introduced in the previous section relies on a filter-
ing/thresholding approach applied to a measured wind power signal. In subsection we discuss its
use to detect ramps in a point forecast time series and then in an ensemble of forecast time series. In
the latter case, an ensemble of ramp characteristics is produced, which may be related to different ramp
events. In subsection we propose solutions to cluster ramp forecasts obtained by different ensemble
members into coherent groups. This enables us to discriminate between forecasts and associate them
with separate events. The characteristics of the forecast events are then exploited in subsection to
produce probability forecasts of ramp occurrence in a set of prediction intervals.

3.1 Forecasting an ensemble of ramp characteristics

The methodology presented in the previous section was introduced for detecting ramps in a time series
of measured wind power. Its application to a single or ensemble of wind power forecast time series is
straightforward. In the case of ensembles, it is assumed that the methodology is applied to each member
separately. However, it is not obvious whether the parameters, and namely the value of the threshold,
used to detect ramps in a time series of measurements can be used as such to detect ramps in a time
series of forecasts. Hereafter, we denote as 7 the threshold used to detect ramps in forecast time series.

Short-term wind power point forecasting models tend to overestimate production within a low wind
speed range, and underestimate it at high wind speeds. This phenomenon, which is related to the wind-to-
power conversion process, was demonstrated in [32] for five power prediction models based on ”statistical”
and ”physical” approaches (with model output statistics correction), all using spot NWPs as input, and
tuned to minimize the overall Root Mean Squared Error (RMSE). As a consequence, it is expected
that the variations in power forecasts will on average be lower than those of the measurements. When
such forecasting methods are applied to NWP ensembles, the resulting power ensembles may be poorly
calibrated. In most applications, a form of recalibration is required [22] 23]. Here, in order to correctly
identify ramps detected on both forecasts and observations as the same event, we can use a lower threshold
value 7 < 7 to detect forecast ramps. One possible approach is to adjust this second threshold, so that
the same amount of ramps are detected on both forecasts and observations. An alternative approach is to
select the value of this threshold with respect to some other desirable properties of the considered ramp
forecasting methodology. In this case, we need to keep in mind that increasing 7 decreases the number of
forecast events, resulting in both less captured ramps and a reduced number of wrongly forecast events.
In Section [4] we investigate the performance of the proposed approach to forecast ramps for different
values of this threshold.

Once we have chosen a suitable value for the threshold parameter 7, the filtering/thresholding ap-
proach can be applied to each member of the ensemble of wind power forecast time series. This procedure
results in the production of an ensemble of ramp forecast characteristics (timing, support, intensity).
These characteristics then need to be clustered into coherent groups, each of which corresponds to a
unique forecast event.

3.2 Clustering an ensemble of ramp characteristics

When the ramp detection procedure is applied to each member of the forecast power ensembles, it is
expected that the ramps detected using each member will correspond to the same ramp event when all or
part of their characteristics (intensity, support and timing) are close enough to each other. Thus, for each
lead time, we propose to compute the number of ensemble members with an absolute value of filtered
power higher than 7. For a given lead time, this corresponds to the number of ensemble members with
overlapping ramp supports. An example of the resulting signal is given in Figure 2| for respectively the
increasing and decreasing forecast ramps.

Based on this signal, we propose two alternative approaches for clustering the ramp characteristics.
In the first approach, denoted hereafter as A1, we cluster forecast ramps with overlapping supports
into a unique event. In the second approach, denoted as A2, any local maximum in the number of



overlapping ramp supports defines a single event. In the example of Figure [2] the first approach gives
two forecast events: an increasing ramp followed by a decreasing one. On the other hand, the second
approach gives three forecast events: an increasing ramp and two decreasing ones. Although the second
approach may result in forecasting more ramps than observed, it may allow us to capture more events.
The two approaches are evaluated in Section [4]

Once forecast events have been identified using one of the proposed clustering approaches, we count
the number of forecasting members for each of them, taking care not to count each member more than
once (e.g. a member could forecast the event two or more times because of the streaking phenomenon).
We also forecast a mean timing ¢, of the event by averaging the timings forecast by the ensemble members.
If we consider the mean intensity, we end up obtaining a full characterization of the forecast event from
the ensemble of forecast time series.
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Figure 2: Example of an ensemble of wind power production forecasts composed by the control forecast
and 50 members. The figure on the left depicts the hourly time series of measured and forecast wind power
up to 72 hours ahead. The right-hand figure shows the number of ensemble members with overlapping
ramp supports for increasing forecast ramps (blue curve) and decreasing forecast ramps (red curve).
Ramps have been detected using a time scale parameter of n = 5 hours and a threshold parameter
7 = 30% of the wind farm’s nominal capacity P,.

3.3 Making probabilistic forecasts of ramp occurrence using ensembles

In the proposed approach, we produce probabilistic forecasts of ramp occurrence using a set of prediction
intervals {I5, d = 1,...,0maz } centered on the average forecast timing ¢,, with associated probabilities ps.
The intervals’ radius § are fixed beforehand and the probabilities of observing a ramp in these intervals
are estimated. The maximum interval radius considered d,,.x i a parameter of the procedure which can
be configured as a function of the end-user requirements. Unlike the proposal made in [19], characterizing
the phase error distribution using a set of prediction intervals with associated probabilities allows us to
account for the non-occurrence of a ramp.

To provide forecast information depending on forecast conditions, we propose to estimate ps condi-
tioned to the number of ensemble members N,,.,, forecasting the ramp. For the sake of simplicity, and
to produce parsimonious base-line models, we consider N,,e.,, to be the only predictor. However, as a
perspective of this work, one could imagine more complex models with additional inputs (e.g. average
intensity forecast made by the ensemble members).



For a given interval’s width 24, and since the center of the intervals is already forecast, it is possible
to reformulate the problem of estimating ps in terms of a statistical regression problem. Consider the
binary random variable Yy that equals 1 if a ramp occurs in I5 and 0 otherwise. Thus, the probability
Ds,m of observing a ramp in I5 given that m ensemble members are forecasting the ramp is given by the
following regression formula

DPsm = P(}%:1|Nmem:m)
= E[%|Nmem:m] (5)

The estimation procedure Estimating ps,, as given by Equation is a particular instance of a
regression problem. As a consequence, there are numerous alternative estimation procedures that could
be used here. In our case however, there are some particular properties that should be taken into account:

® D5 is a probability and there are regression models dedicated to this kind of estimation problem.

e The distribution of the random variable N, used as an explanatory variable is strongly right-
skewed. In other words, a ramp is more likely to be forecast by a small rather than a large number
of ensemble members.

Based on these considerations, we choose to apply two alternative statistical estimation procedures,
which are evaluated in Section First, a Nadarya-Watson estimator is used with a varying bandwidth
to introduce flexibility into our estimations and to adapt to the particular sampling of the explanatory
variable Ny,em. Then, we consider the alternative of a logistic regression model specifically dedicated to
estimating probabilities.

Nadarya-Watson estimator A Nadarya-Watson estimator makes estimations according to the fol-
lowing generic formula

_ Z?:l K (mi’ m)Yéz
Pom = S K (ma ) ©)

where n is the size of the data set dedicated to probability estimations and Ky is a kernel function.
Regression techniques using kernels fit a local model around each target point m. The value KCx(m;, m)
gives the weighting of points m; in the neighborhood of the target point m. The kernel’s bandwidth A
gives the size of such a neighborhood and controls the estimation bias-variance trade off. Increasing A
results in averaging more observations and lowers the variance (but increases the bias) in each target point
estimation. These techniques are very popular as they do not require any parametric assumption. In our
study, we consider a tricube kernel and select A by making it vary with m according to a nearest-neighbors
procedure

)\(m) = |m — m[k]| +1 (7)

where my;) is the kth closest point from the target m. The parameter k is selected from a 10-fold
cross-validation procedure. A local choice of A allows us to incorporate more information about the
probability law generating data points m; and often gives better results when estimating curves with a
complex shape [33]. For an overview on kernel smoothers and bandwidth selection procedures we refer
to [34] 135].

Logistic regression The logistic regression model allows us to infer ramp occurrence probabilities
from a linear function of the number of ensemble members m forecasting a ramp

DPsm

—Y =asm+ 8
T pom Bs (8)

log



where a5 and 5 are the model parameters to estimate. To ensure that the estimated probabilities
remain within [0, 1], the modeling requires us to express such probabilities as a linear function of m
through a logit transformation. The model is fit by maximum likelihood, assuming the conditional
distribution of Ys given Ny,er, is binomial. For all values of §, a statistical test (the Wald test) rejects
the hypothesis that assumes a null value of coefficients as and Bs with a significance level of 5%. For an
introduction to logistic and generalized linear models, we refer to [34] [36].

4 Evaluation framework and results

4.1 The Case-Study

In order to evaluate the proposed methodology, we considered a wind farm with a nominal capacity of
8MW, located on a complex terrain in the south of France (a few dozen kilometers from the Mediterranean
Sea). Power measurements delivered by the SCADA system of the wind farm were considered. They
covered a period of 18 months from July 2004 to December 2005 with a 10-min temporal resolution. For
the purpose of the study, the data was averaged to hourly values.

In our study, ramp events correspond to variations detected with a filter (half) width of n = 5 hours.
Such a value is reasonable if variations under study are related to somewhat persistent changes in weather
conditions. Appropriate choices could be made by end-users focusing on shutdown events, for instanceﬂ
In this case, a lower value of n would be required. Further work could include a multi-scale analysis of
the wind power signal using multi-scale edge detection techniques [28]. For a variation to be considered
as a ramp, its minimum intensity 7 has to be set according to which proportion of the most “extreme”
(e.g. highest and steepest) variations we are interested in. We consider a value of 7 = 30% of the nominal
capacity P, of the considered wind farm. With such a value, we detected 168 ramps during the period
between 1st April 2005 and 31st December 2005, that is an average 4.2 ramps a week. Note that our
methodology is independent of the value of 7 and a more specific choice could be made by end-users. As
mentioned in Section [3.1] we will now investigate the performance of our approach to forecasting ramps
considering different threshold values 7 to detect ramps on wind power forecast ensembles.

NWP ensembles of 51 members are provided by the EPS system of ECMWF with a spatial resolution
of 1° in both longitude and latitude. This resolution corresponds to about 75 — 80 km in the East-
West direction and 110 km in the North-South direction. The NWP data is issued twice a day with a
temporal resolution of 6 hours and for a horizon of 72 hours. Hourly predictions were obtained through
interpolating the 6-hour values. To forecast wind power, we considered weather forecasts generated at the
closest grid point to the wind farm located 10 meters above ground level. We used the Random Forest
nonparametric estimation procedure to produce wind power forecasts using wind speed and direction
NWPs as input. Random Forest is a machine-learning algorithm that aggregates predictions from a
large number of regression trees, each tree being built from a bootstrap replica of the sample data and
random selection of potential predictors. Recent work on meteorological downscaling and post-processing
acknowledges the robustness of Random Forest against over-fitting and its ability to deal with nonlinearity
and complex interactions between variables [37, [38]. For more details we refer to [34, [39]. To deal with
ensembles, we applied the Random Forest procedure to each member of the NWP ensemble to obtain a
corresponding power forecast ensemble.

Our wind power forecasting model was trained over a nine-month period (July 2004 - March 2005)
and tested for another nine months (April to December 2005). In the testing set, the model provides a
root mean squared error and a mean absolute error not greater than respectively 15% and 11% of the
nominal capacity of the wind farm for the next 24h. This is a satisfactory performance given the state of
the art [40], especially if one considers the complexity of the terrain in which the wind farm is embedded
and the rather coarse resolution of the NWP data. The data sets used for training and testing the ramp
forecasting models were four and a half months long each, covering the 9-month period between April

2In situations with very high wind speeds, some or all of a wind farm’s turbines can be temporary stopped to avoid
damage due to strong mechanical constraints. Such situations can turn into high variations of decreasing and increasing
wind power production within a short period of time



and December 2005. We derive and hereafter evaluate ramp forecasts taking prediction intervals with a
maximal radius value of d,,,x = 8 hours. With such a value, we expect to describe most of the phase
error distribution from the considered set of prediction intervals.

4.2 Evaluating the capture of ramp events from ensemble-based forecasts

In this section we focus on evaluating the rate of observed ramps that are effectively forecast, denoted as
ramp capture ratio [19].
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Figure 3: Ramp capture results when forecasting ramps using the control forecast (black curve) or the
ensembles (blue curve is for clustering approach A1, red curve for approach A2). Results are for values
of 7 ranging from 2% to 50% of the wind farm nominal capacity P,, and a maximum delay between
forecast and observed ramp events of .« = 8 hours.

Figure 3] gives this ratio for ensemble-based forecasts and forecasts derived from the control member.
As noticed in Section predicting ramps from forecast variations of lower intensity (e.g. by decreasing
7), results in capturing more events. This property is valid when predicting ramps from a single wind
power scenario, but may not hold when considering ensembles. Actually, it depends on the approach used
to cluster forecasts issued by different ensemble members. When using the approach A1, low values of 7
result in ramp supports forecast by the ensemble to overlap, and ultimately in separated forecast events
to be merged. This is the reason why in Figure [3] for 7 < 20% of P, and with clustering approach A1,
the ramp capture decreases with 7.

As seen in Figure [3] ensembles generally outperform the control member in terms of ramp capture.
However, such improvements may coincide with a higher number of false alarms, e.g. events that are
forecast but not observed. In fact, the use of ensembles may not result in a better ramp capture/forecast
accuracy trade off. Alternative approaches to cluster ramp forecasts issued by different ensemble members
could be envisaged. We have considered other clustering approaches, such as hierarchical agglomerative
clustering with an euclidean distance [34]. However, such clustering approaches turn out to be far
more computationally demanding when the number of ramp forecasts to cluster is increased (e.g. when
decreasing 7).

4.3 Evaluating ensemble-based probability forecasts of ramp occurrence

Here we evaluate the probability forecasts for ramp occurrence. We first propose using the Brier score
(BS) [1], which is a dedicated measure of accuracy. Consider p; = pg ,,, as a probability forecast of ramp



occurrence in a prediction interval I5. Let y; = y% be equal to one if a ramp is observed in I5 and zero
otherwise, then

BS = - 3" ( — i) (9)

where n is the test set sample size. As a reference approach, we consider the climatology which, for a
given interval’s width 2§, derives unconditional probability forecasts from the empirical event frequency
y=1/n>" , y;. The relative improvement in terms of the decrease in forecasting errors, referred to as
Brier skill score with respect to climatology (BSS.jim ), is given in Table Conditioning clearly improves
forecast accuracy. Such improvement is paramount for low values of 7, e.g. for high ramp capture. When
focusing on the approach A1, such improvement also increases with the size of prediction intervals Iy,
which then results in better performances compared to the approach A2 for large values of ¢ (e.g. § = 8
hours in Table . However, the sampling uncertainty in the estimation of BSS ;;,, makes any further
discrimination between approaches A1 and A2 difficult. For the same reason, it is not easy to conclude in
favor of a particular estimation procedure between the logistic regression model and the Nadarya-Watson
estimator.

Table 1: Brier skill score with respect to climatology BSS.;,, (in percentages) of ensemble-based proba-
bility forecasts of ramp occurrence in prediction intervals Is (d is in hours). Results are given for both
the clustering approaches A1 and A2, and for the logistic regression (log. reg.) and the Nadarya-Watson
(N.W.) estimation procedures. To account for sampling uncertainty, the standard deviation of BSS i,
(given in parenthesis) has been estimated following the theoretical work of Bradley et al. [42].

log. reg. N.W.
7 (%P,) 0=2 d=5 0=28 0=2 6=5 0=8

Clustering approach A1l

10 5.5 (1.2) 11 1(1.7) 16.6 (2.2) 5.4 (1.1) 10.8 (1.5) 16.6 (2.1)
20 3.8 (1.2) 9(17) 143(2.1) 4.5(1.0) 9.8(1.4) 13.8(1.8)
30 3.7 (1.2) 0(1.7) 95(19) 42(11) 82(15 94(1.7)
40 2.9 (1.3) 5(2.6) 3.3(24) 28(1.1) 37(25) 4.8(2.3)
Clustering approach A2
10 6.0 (1.0) 10.2 (1.3) 9.2 (1.3) 6.2(0.9) 10.9(1.3) 9.9(1.3)
20 58 (1.1)  99(14) 89(1.4) 6.1(1.0) 9.7(1.3) 8.6(1.4)
30 39(1.2) 69(13) 63(14) 39(1.2) 70(1.4) 59(L5)
40 3.2 (1.21) 1.0 (1.8) 1.2 (1.7) 32(1.3) 28(2.0) 09 (21)

In addition to using the Brier score, we evaluated our forecasts according to a reliability /sharpness
paradigm [43] [44]. Results for a particular threshold value 7 = 30% of the wind farm nominal capacity,
using the clustering approach A2 and the logistic regression model, are shown in Figure ] Forecasts
show reliability (top left Figure), which does not deviate from perfect reliability (first diagonal) any more
than the sampling uncertainty does. The latter was estimated with 90% confidence intervals (vertical
segments) derived from the resampling technique proposed by Broecker and Smith [45]. An alternative
was to derive them analytically considering the Poisson-Binomial distribution of ny [46]. The results
from the two approaches were found to be very close.

The top right and bottom plots of Figure [f] show the sharpness property of our forecasts. We can
see that the probability of a ramp occuring in prediction intervals increases with the number of members
forecasting it. At the same time, ramps are seldom forecast with high probability. We quantified reliability
and sharpness using measures derived from the decomposition of the Brier score proposed by Murphy
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[47]. Results showed that the decreasing skill of our forecasts (see Table [1)) while 7 increases was due to
the simultaneous decrease in reliability and sharpness. In any case, high values of 7 (e.g. 7 > 40% of P,)
make it possible to mitigate false alarms, which may be desirable when making deterministic forecasts of
ramps. Following our probabilistic approach, the choice should be for lower threshold values leading to
(sometimes large numbers of) forecasts with good reliability and sharpness.

To illustrate the forecast product of the proposed methodology, the 3 days ahead forecast scenario
given in Figure [2]is represented in Figure [5] with prediction intervals and associated probability forecasts
of ramp occurrence. Forecasts were derived from the clustering approach A2 and the logistic regression
model. As we described in Section the situation considered should present two decreasing ramp
forecasts. For more visibility, however, we removed one of them.

o ] . o
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Figure 4: Reliability (top left Figure) and sharpness (top right and bottom Figures) of ensemble-based
probability forecasts of ramp occurrence in prediction intervals I5. Results are for forecasts derived from
the clustering approach A2, with 7 = 30% of P, and the logistic regression model. To take the sampling
uncertainty into account when estimating the event frequencies (top left Figure), 90% centered confidence
intervals were derived using the resampling technique proposed in [45].
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Figure 5: Prediction intervals I5,d = 1,...,8 hours for an increasing ramp forecast by 39 members,
followed by a decreasing one forecast by 15 members. Probability forecasts of ramp occurrence (given in
percentages at the top of the figure) were derived using the clustering approach A2, 7 = 30% of P,, and
the logistic regression model. The change in forecast probability depending on the number of members
forecasting a ramp provides a good illustration of the sharpness property of the proposed methodology.

5 Conclusions and Perspectives

There is growing demand for developing wind power forecasting models focusing on certain extreme
situations. One well-known situation is the so-called ramp event, which involves sharp and high variations
in production experienced by wind farms in the space of a few hours. These variations are critical for
managing power systems with high wind penetration, as they can imply complex changes in power supply.
For a power system operator, an estimation of the uncertainty of a forecast ramp should provide valuable
information for making management decisions.

The first challenge in ramp forecasting is to correctly define a ramp. We proposed a definition based
on filtering, guided by the significant signal processing literature on edge detection. Such a definition
addresses several issues inherent to defining a ramp: at what level of power and within what duration does
a variation represent a "ramp” for the end-user? We discussed these questions and proposed a detection
methodology using two parameters that make it possible to set at what time scale and magnitude a
variation is considered to be a ramp. Such parameters can be set depending on either the modeler’s or
the end-user’s opinion.

A single time series of wind power forecasts up to several days may not include enough information
to make secure management decisions related to the potential occurrence of a ramp. In this paper, we
studied the extent to which numerical weather prediction ensembles could provide information when
forecasting ramps with associated uncertainty. We showed that ensembles used with our methodology
can better capture ramp events than when considering a unique wind power scenario.

Then, we set out to estimate the uncertainty associated with ramp forecasts using a set of prediction
intervals with associated probabilities of ramp occurrence. We introduced sharpness into our forecasts
by conditioning them to the number of ensemble members forecasting a ramp. The resulting forecasts
turned out to be reliable with greater accuracy regarding climatology. Our conclusions relate to data from
a multi-megawatt wind farm located on a complex terrain in the south of France, and numerical weather
prediction ensembles of 51 members from the EPS system of ECMWFEF. In further work, an evaluation of
the methodology on more sites should help to validate our conclusions under different weather regimes.

An interesting perspective would be to compare the forecasting ramp performance of different wind
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power forecast ensembles. Indeed, the methodology we developed in this paper could be used to forecast
ramps from either the commonly known poor man’s ensembles, or from ensembles derived from multi-
variate statistical sampling, such as those proposed in [48]. The latter could provide a good alternative
to numerical weather prediction ensembles for forecasting ramps, as their generation can be far less com-
putationally expensive. Particular attention should also be paid to future potential applications of the
proposed approach in forecasting wind generation ramps from a portfolio of wind farms. Finally, we
observed that different ramp typologies occur, and the limits of a single ramp definition will need to be
explored in further work.
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