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Damping Behaviour of Vibrating Shape Memory Alloy Rods Investigated
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Hysteretic behaviour of shape memory alloys (SMAs) is highly important for design and applicability of these materials
in active structural elements like rods. Especially the damping performance of SMAs depend strongly on their hysteretic
characteristics. Experimental investigations show the influences of stress on the hysteretic cycle. The current study shows
some computational results of a constitutive model which is capable to investigate the effect of an external applied stress field
on the hysteretic cycle according to a recently developed method on the basis of statistical mechanics method.
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1 INTRODUCTION

Smart materials especially shape memory alloys (SMAs) have become highly important during the last years. Nowadays there
exist several applications in engineering [4]. As a consequence of the highly distinct hysteretic behavior SMAs are used in
vibration control devices for civil structures [7]. The understanding of the temperature induced and stress assisted martensitic
phase transformation is the key for explaining and modeling their constitutive behavior. [1]. The high damping capabilities of
SMAs are a direct consequence of their hysteretic behavior.

2 THEORY AND MODEL

Based on statistical physics Oberaigner et.al [2, 6] developed a theory for a system of quasiparticles. Each of them stands for
a single crystal and its thermal interactions. A polycrystal is built by a system of quasiparticles. From the canonical Gibbs-
Potential of the polycrystal, all properties of interest can be derived. The Gibbs-Potential G is given by the natural logarithm
of the partition function which itself is a trace over Boltzmann weights of thermodynamical states. In case of a one variant
model the partition function depends only on the interface Hamiltonians HAM ≥ HAA ≥ HMM and on the Hamiltonian HA

of the austenitic phase and HM of the martensitic phase HM . They are given by:

HA(T, σ) = FA(T )−
1

2ηA
σ : CA : σ = GA(T, σ) , (1)

HM (T, σ) = FM (T )− 1

2ηM
σ : CM : σ − 1

ηM
σ : εtr

cryst = GM (T, σ) . (2)

The Hamiltonians are defined classically and are therefore functions of stress σ and temperature T . In Eq.1 and Eq.2 the
functions FA(T ) and FM (T ) are the free energies of the pure phases. They are computed in a thermodynamical consistent
form from the heat capacity of a NiTiNb single crystal [8]. Furthermore the Hamiltonians are based on measurable properties
of the pure phases like elastic moduli or compliancies CA, CM molar densities ηA, ηM and crystallographic transformation

strain εtr
cryst.

3 RESULTS AND DISCUSSION

In Fig.1 to Fig.3 cycles for a temperature driven phase transformation at different external applied stresses levels (20MPa
to 160MPa) are shown. As computed results the total strain (Fig.1), the martensitic phase fraction evolution (Fig.2) and
the stress-strain loops (Fig.3) are presented. A three-dimensional representation of the temperature dependent stress-strain
loops is given in Fig.4. The calculated results agree qualitatively well with experimental observations and as it is observed
in experiments [3], the martensitic start temperature shifts to higher temperatures if the applied stress is increased. Based
on the developed statistical physics theory the stress dependent hysteretic behavior of the NiTiNb alloy can be calculated
which agrees with experimental observations qualitatively well. In dynamical applications the damping behavior of SMAs is
characterized by the enclosed area of the hysteresis. It is well known from experiments that at higher stress levels the area
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404 Section 6: Material modeling in solid mechanics
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Fig. 1 Total strain ε(T, σ)

0.0

0.2

0.4

0.6

0.8

1.0

150 200 250 300 350 400

ξ M
in

1

T in K

20MPa

40MPa

60MPa

80MPa

160MPa

Fig. 2 Martensitic phase fraction ξM (T, σ)
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Fig. 3 Hysteretic stress-strain behaviour, σ(T, ε) Fig. 4 Surface of thermomechanical states, σ = f(T, ε)

increases. The presented model can predict this behavior (Fig.1). Due to the fact that all results of the model are available in an
analytical form, it is straightforward to calculate the enclosed area and further quantities like strain and phase fraction rates [5].
Furthermore this form allows a more computational efficient treatment of vibration, stress wave and damping problems.

4 CONCLUSION

In the current study the application of a recently developed method based on statistical physics for the calculation of stress
dependent hysteretic behavior of SMA polycrystals is shown. The information of the phase changes at different temperatures
for cooling and heating is included in the experimentally obtained heat capacity of SMAs, an artificial phase triggering is not
required. The model is capable to determine the hysteretic behavior of SMAs in a correct manner.
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