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Please first of all note that this communication is 

more an invitation for foreign contributors to join this 

“french” benchmark exercise than a pure scientific 

paper with fully new matter. We presented very 

similar calls and matter in previous events in France 

(CFM Marseille and SFT Le Touquet, MATERIAUX 

Nantes, Congresses) or outside (MCWASP 

Vancouver, TMS Symp.,, EUROMAT Glasgow). 
 
 
Abstract 
 
During the solidification of metal alloys, chemical 

heterogeneities at the product scale (macro-

segregation) develop. Numerical simulation tools are 

beginning to appear in the industry, however their 

predictive capabilities are still limited. We present a 

numerical benchmark exercise treating the 

performance of models in the prediction of 

macrosegregation. In a first stage we defined a 

“minimal” (i.e. maximally simplified) solidification 

model, describing the coupling of the solidification of 

a binary alloy and of the transport phenomena (heat, 

solute transport and fluid flow) that lead to 

macrosegregation in a fully columnar ingot with a 

fixed solid phase. This model is solved by four 

different numerical codes, employing different 

numerical methods (FVM and FEM) and various 

solution schemes. We compare the predictions of the 

evolution of macrosegregation in a small (10×6 cm) 

ingot of Sn-10wt%Pb alloys. Further, we present the 

sensitivities concerning the prediction of instabilities 

leading to banded channel mesosegregations. 
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Introduction 
 

 

One of the principal challenges of the solidification 

stage in metal processing is the control of structural 

and chemical heterogeneities at the product scale –

macrosegregations. These defects can critically alter 

the final product properties and quality. Numerical 

simulation can be an important tool of progress in 

process control to mitigate these defects. 

Nevertheless, at the present development level of 

simulation codes we still do not have reliable 

prediction tools. The complexity of the prediction of 

macrosegregation is a consequence of the fact that 

the macrosegregation results from the entire history 

of the strongly coupled processes of heat and mass 

transfer from the liquid state up to the end of 

solidification. It depends particularly on the 

structuring of the phase-change zone (mushy zone) 

and the relative motion of the solid and liquid phases. 

Temperature and composition gradients in the liquid 

induce fluid flow driven by thermal and solutal natural 

convection. These phenomena are in a strongly 

nonlinear and delicate coupling, especially in liquid 

metals, where the disparity of diffusion scales of heat, 

momentum and mass is particularly large 

(characterized by very low Prandtl numbers of the 

order of 10
-2

 and very high Lewis numbers of the 

order of 10
4
). Certain transport properties, essential 

for a good prediction performance of the models, are 

still poorly characterized. Foremost, the description of 

the permeability of the porous solid matrix in the 

mushy zone. The present work is a part of the 

SMACS project1, the objective of which is to develop 

better predictive capabilities of macrosegregation 

models. The methodology on the way there is 

twofold, following the verification & validation 

paradigm [1]. On the one hand, we analyze the 

accuracy performance of numerical models in the 

prediction of macrosegregation and thermal and 

solutal natural convection and try to provide 

numerical benchmark reference results. On the other 

hand, we perform carefully controlled experiments, to 

obtain reference results that can be used as a 

benchmark to characterize the predictive capabilities 

of the models. This communication presents a part of 

the results of the SMACS project: the comparison of 

numerical simulation results for a reference case of 

solidification of a binary Sn-10 wt%Pb alloy. It is a 

continuation of the publication of the first series of 



 

results published in [2] that was obtained for the 

same geometry, but for a Pb-18 wt%Sn alloy. 

 
 

1. Test-case presentation 
 
The solidifying ingot is contained in a two-
dimensional rectangular mold of 0:10m width and 
0:06m height, which is shown in Fig. 1. The mold is 
initially filled with a quiescent and homogeneous 
liquid Sn-10 wt%Pb alloy at the liquidus temperature 
corresponding to the initial composition (T0 = 219:14 
°C). The task is to simulate the solidification of this 
alloy, considering that the mold is cooled 
symmetrically by a Fourier boundary condition, 
identical on both vertical walls, with a uniform and 
imposed heat transfer coefficient and chill 
temperature. The top and bottom walls are adiabatic. 
We suppose a no-slip condition for the velocity of the 
liquid on all mold walls. Due to the symmetry of the 
geometry we assume a symmetry of the solution and 
we hence solve the problem on a half of the full mold 
geometry. 
 

 
 

Figure 1: Schematics of the problem 
 

 
At this stage of the comparison exercise we want to 
characterize the performance of the numerical 
solution methods. Therefore, the model describing 
the solidification was imposed, so that each 
contributor solves the same equation system. The 
conservation equations for heat, mass, momentum 
and solute mass (Eqs. (1–4)) were established by the 
volume averaging method and are given in Table I. 
The microsegregation model corresponds to the 
assumption of a full thermodynamic equilibrium of the 
solid and liquid phases – lever rule – Eq. (5). The 
density of the liquid phase in the buoyancy term 
follows a linear variation with the temperature  and 
the solute concentration, Eq. (6). The permeability of 
the porous mushy zone depends on the liquid fraction 
and the secondary dendrite arm spacing λ2, which is 
a fixed parameter, and follows the Kozeny-Carman 
law, Eq. (7). The detailed specification of the test 
configuration, the full set of thermophysical 

parameters, as well as the specifications of the 
output data are given in Bellet et al. [3] and are 
published on the website of the benchmark project:  
 
http://www.ijl.nancy-universite.fr/benchmark-

solidification. 
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2. General description of the 
solidification process 
 
 
Before presenting the comparison of the results, we 
will show the evolution of the solidification on the 
example of one of the simulations. Figure 2 shows 
the solute concentration at two different stages of the 
solidification, t = 40 s and t = 120 s. 
 
We can see that the main features of the macro-
segregation develop early through the solidification 
process. After a time t of about 100 s the principal 
characteristics can be recognized: a positive 
segregation band along the symmetry axis (left 
boundary), a negative segregation pocket in the 
upper central part of the ingot, and the formation of 
channel segregates, inclined at about 45°, in the 
bottom central part. The time evolution of the liquid 
fraction and of the average concentration in point E, 
shown in Fig. 2(b), however shows that the 
macrosegregation continues to evolve even up to 
small liquid fractions (approximately until gl =  0:3).  
 
 



 

     

 

 
Figure 2 – Concentration maps  at t = 120 s (top) and 

t = 600 s (bottom). 
 
 
Observing the beginning of solidification, we can see 
that the channels in the mushy zone start to form 
very early, in a zone where the convective flow is 
particularly intense (Fig. 3(a) showing the situation at 
t = 40 s). The flow here is driven by the thermal 
convection, which is induced by the thermal gradient 
between the cooled wall on the right and the hot 
liquid on the left, and drives the flow in a clockwise 
direction. On the other hand, the solute rejection into 
the liquid, a consequence of the solidification, causes 
a lead enrichment of the liquid in the mushy zone. 

This creates an additional buoyancy gradient that 
drives the flow in the same sense as the thermal 
buoyancy. The cooperating thermal and solutal 
forces induce a flow circulation in the fully liquid zone, 
which is shown in Fig. 3(a) together with the liquid 
fractions in the mushy zone. The latter already show 
an onset of a destabilization in the bottom zone that 
starts to develop into channels. A horizontal channel 
is also formed along the bottom wall. The formation 
of these channels is related to the flow direction of 
the liquid. The solute enrichment caused by the flow 
of enriched liquid from the interior of the mushy zone 
into the bulk liquid zone induces a local delay of 
solidification and the formation of channels in the 
mushy zone. The re-build-up of the flow that now 
passes preferentially through the channels, due to 
their lower hydrodynamic resistance, creates a 
positive segregation in the channels. At t = 120 s the 
channels are well developed, as shown in Fig. 3(b). 
The liquid fraction in the channels is now 0:99, while 
it is of the order of 0:5 in their vicinity. As solidification 
continues, the channel segregates and the positive 
segregation band at the left boundary develop until 
the final macrosegregation, shown in Fig 5. 
 

 

(a) 

 

  

(b) 

 



 

 
Figure 3: Evolution of solidification and flow: velocity 
field (vectors, the size scale in m/s is indicated with a 
norm vector) and liquid fraction iso-lines at 40 s (a) 
and 120 s (b) 
 
What the dynamics of solidification is concerned, the 
evolution of both the liquid fraction and concentration 
at certain locations (points A, B, E, H and I, see figure 
1 for corresponding coordinates) presented in Figure 
4 show that even the solidification last about until 450 
s, the composition exhibits a relatively stable 
evolution   from 200 s. The sudden decrease in liquid 
fraction corresponds to the formation of eutectic. 
Following the lever rule hypothesis, due to the value 
of 10% for the initial mass composition in Pb, 21% of 
solid shuld appear at the eutectic. Note that due to 
the variation in local solute concentration, the phase 
rate formed at eutectic varies itself: at point A for 
instance, it is greater than 40%, while at point I it is 
lower than 10%. 
  
 

  

 
 
Figure 4 – Time evolutions of liquid fraction (top) and 
concentration (bottom) at different points A, B, E, H 
and I of the cavity  
 

 

3. Comparison of numerical solutions 
 
 

The objective of this communication is to present the 
results obtained by four groups with four independent 
computational codes. One of the codes is based on 
the finite element method and was developed by 
CEMEF (R2Sol) [4]. The other three codes use the 
finite volume method. 
 
(a) R2Sol, developed in CEMEF [5]; 
(b) a code developed with the commercial software 
FluentTM6.2 in EPM-SIMAP [6]; 
(c) Solid, developed in Institut Jean Lamour (IJL) [7]; 
(d) Thetis, developed in TREFLE [8]. 
 
 
In codes (b) and (d) the heat conservation equation is 
solved in the temperature formulation, while in codes 
(a) and (c) it is solved in the enthalpy formulation, 

with the average enthalpy ⟨h⟩ as the leading variable 

[6]. In codes (a), (c) and (d) the solute conservation 
equation is solved in terms of the average 

concentration ⟨C⟩ and the coupling with the phase 

change is done according to the scheme proposed by 
Voller [10]. In code (b) the solute conservation is 
solved for each phase (solid and liquid) separately, 
employing two equations, one for each phase. The 
discretization of the convective terms is done by a 
2nd or higher order scheme in codes (b) (QUICK) 
and (d) (TVD) [9]. Code (c) uses a 1st order upwind 
scheme and code(a) a SUPG scheme, stabilized by a 
supplementary diffusive term in equation (4). 
 
 

Institutions 
Sofware 

(transport terms 
scheme) 

Grid (min 
mesh size 

(m)) 

Time step 
(s) 

CEMEF (a) 
R2SOL EF 

(SUPG) 

5763 
nœuds (2,5 

10
-4
) 

5 10
-3
 

EPM (b) 
FLUENT VF 

(Quick) 
200 x 240 
(7,14 10

-4
) 

5 10
-3
 

IJL (c) 
SOLID VF 
(Upwind) 

275 x 328 
(1,9 10

-4
) 

5 10
-3
 

TREFLE (d) 
THETIS VF 

(TVD) 
268 x 324 
(1,9 10

-4
) 

1 10
-3
 

Table I : some main characteristics of the sofware 
used for this comparison exercise  (scheme, mesh, 

time-step) 

 
The characteristics of the mesh and the time step 
used by the four contributions are reported in Table I. 
A mesh and time step sensibility study was 
conducted by each contributor. While all details of 
these studies cannot be presented here, the most 



 

important observations are summarized. The mesh 
convergence observed with respect to the maximum 
and minimum values of the solute concentration after 
completed solidification is shown in Fig. 4. The four 
codes show very similar sensibilities of the maximum 
value of the average concentration at the end of 
solidification to the mesh density. In all cases this 
value clearly approaches the theoretical limit of the 
maximum concentration – the eutectic concentration 
(Ceut −C0)/C0 = 2:81) – with an order of convergence 
smaller than one. Note that code (b) does not 
account for the eutectic reaction and thus allows a 
maximum concentration higher that the eutectic. 
Except for code (a) the sensibility of the minimum 
value to the mesh size is very weak and does not 
reach the minimum theoretical value (kpC0 − C0)/C0 = 
−0:93). 
 

 
(a) 

 
(b) 

 
Figure 4: Mesh convergence of the averaged relative 
segregation (C−C0 in wt%Pb) at the end of 
solidification: (a) maximum of the field, (b) minimum 
of the field 

 
 

4. Analysis of the results 
 

Concentration field 
 
Maps of the average concentration field at the end of 
solidification (t = 600 s) obtained by the four 
contributors are presented in Fig. 5. The 
macrosegregation is in accordance with the 
description in the previous section and the four 
simulations are in qualitative agreement on the 
general macrosegregation map. The principal 
differences are however: 
 

1. the extent of the positive macrosegregation 
zone in the vicinity of the symmetry plane 
(left boundary), where the simulation (c) 
shows a zone less enriched in lead at the 
mid-height in this region; 

2. the position and the number of channel 
segregates, which are virtually nonexistent in 
simulation (a) and are weaker in simulation 
(d) than in (b) and (c). 

 
 
Comparisons of the concentration profiles along 
horizontal sections H1, H2 et H3 and vertical sections 
V1, V2, V3 (not shown in this communication) show 
that the values are very close in all simulations, 
except in the aforementioned zones on the left as 
well as in and around the channels. 
 
 

 
 
Figure 5: Final maps of segregation (C − C0 in 
wt%Pb) obtained by the four contributors 
 
 
Flow velocities 
 
An important element of comparison of the solutions 
is the velocity field in the liquid. Figure 6(a) shows the 
profile of the velocity magnitude in the horizontal mid-
plane (H2) at t = 120 s. These velocities are relatively 
weak (< 1 mm/s). We can note a very good 
agreement of the solutions in the right part of the 
profile, which corresponds to the mushy zone with 



 

liquid fractions smaller than 0.98. The dispersion of 
the solutions is very large, however, in the left part, 
corresponding to high liquid fractions (0:98 < gl ≤ 1). 
We have to note that the temperature and liquid 
fraction profiles are similar for the four contributions. 
In Fig. 6(b) we show the evolution of the velocity 
magnitude in point E (midpoint of profile H2) with 
time. All solutions predict overall the same evolution, 
with two peaks that occur at the same times. We find 
a good agreement of the solutions with some notable 
differences in the beginning, until about t = 30 s. This 
initial interval corresponds to the period when liquid 
fractions were high. 
 
As a summary of the analysis of the different details 
of the four solutions, we can say that the principal 
differences in terms of macrosegregation are found in 
two parts of the ingot: in the central zone (left 
boundary of the domain) and in the channel 
segregates. These are the zones most affected by 
the transport at high liquid fractions, where we 
generally observed the biggest differences between 
the solutions in terms of flow velocities. The central 
zone solidifies last and stays at high liquid fractions 
for the longest time. The channels also form at high 
liquid fractions. Hence, it is possible to attribute the 
differences observed in macrosegregation to 
differences in the solutions at high liquid fractions. 

 

 

(a)  

 

 
 
(b) 
 
 
Figure 6: Comparison of velocities a) Profiles of the 

velocity magnitude (|⃗v|) in the horizontal mid-plane 

(H2) at t = 120 s (b) Time evolutions of the velocity 

magnitude (|⃗v|) in point E (mid-point of the profile 

H2). 
 

 
Conclusion 
 
 
This communication presents the first results of the 
comparison between different numerical procedures 
in the solution of an identical “minimal” solidification 
model. More detailed analyses of the convergence of 
the solutions and of the reasons behind the 
differences that we found are still required. However, 
we can conclude that even though the qualitative 
image of the different solutions is the same, notable 
differences exist in the evolutions and local behavior. 
These show that a refinement of the computational 
tools is necessary before we can hope to achieve 
accurate predictions. Moreover, additional 
comparisons to experimental results [11] are 
necessary to assess more complex solidification 
models that can describe the physics of solidification 
in more detail.  
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