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Abstract—In modern constructions, several insulation configu-
rations and technologies exist for residential buildings. Therefore,
during renovation of these buildings, various investments can
be considered. In this article, we consider building equipped
with electric heaters. The contribution of this article is a
method for evaluating the ability of each configuration to keep
the inhabitants comfortable during load shifting periods. This
question is of importance in the relationship, and then in the
price setting, between the user (inhabitant of the house) and the
energy provider who uses these load shifting periods to optimize
his production on a regional or national scale.
We proceed as follows: an optimization method is used to
compute, in a dynamical context, the best heating strategy. The
weather conditions and the comfort constraints define (through
the solution of the dynamical optimization problem) the actual
ability of the building to guarantee a satisfying comfort during
load shifting periods independently on the regulation strategy.
The conclusion is that for poorly insulated building (≈ 58% of the
french stock) it is impossible to achieve load shifting superior to
20 minutes in winter time, even when using advanced regulation
strategy of the heating system.

I. INTRODUCTION

Recently significant efforts have been made to reduce
electricity peak demand. In Europe these peaks mostly occur
during winter time, and are mainly due to heating systems.
In order to guarantee the grid stability, numerous studies are
carried out on the overall load reduction. At the level of the
individual houses, this reduction can be achieved thanks to a
careful building design that can efficiently capture and restore
the solar gains [1]. An advanced heating control strategy also
be a solution. Such control can be based on power tariff [2]
and can use the building thermal mass as an asset to shift the
building consumption, reducing the peak consumption [3], [4]
in turn.

This article follows this approach and studies the load shift-
ing opportunities on five thermal models ranging from poorly
to well insulated buildings. The contribution consists in a
dynamic optimization under constraints method in continuous
time allowing to accurately compute optimal trajectories (when
they exist) [5], [6], [7], [8]. By acting on the duration of
load shifting, one can figure out the maximum duration of a
complete heating load shifting while maintaining an acceptable
level of comfort and shifting the consumption. The results
obtained in this study show that the thermal mass of a poorly
insulated building is not sufficient to perform load shiftings

superior to ten minutes. Thus, the use of buildings as power
stocks only seems relevant in the case of sufficiently insulated
buildings which can handle load shiftings of several hours.
Practical cases of interest are presented.

In Section II, a description of the considered building
is given, together with the numerical method to obtain a
high order linear model of the system. In Section III, the
reduction method is described together with the constraints of
the optimization. In Section IV, the algorithm of constrained
dynamical optimization is presented. In Section V, the results
on the abilities of the different considered system are presented
together with the maximum bearable duration of daily load
shiftings for each model. Finally in Section VI the conclusion
and the perspectives of the study are presented.

II. BUILDING MODEL

A. Building description

The building under study is a single-family house. It corre-
sponds to an actual experimental passive house being part of
the INCAS platform built in Le Bourget du Lac, France (see
Figure 1). For our study, five low performance versions of the
building are considered. The reference version corresponds to
a house built before the first French thermal regulation (1975).
This reference version used to represent 58% of the french
stock in 2008. The four other versions correspond to different
renovation levels of the reference. It is then possible to study
the effects of renovation on the peak load management. The
reference has two floors for a total living area of 89 m2. Only
34% of its south facade surface is glazed while the north
facade has only two small windows. All the windows are
single-glazed. The south facade is also equipped with solar
protections for the summer period. The external walls are made
of a 30 cm-thick layer of concrete blocks and the floor is
composed of 20 cm reinforced concrete. There is no insulation
in the building except for the 10 cm of glass-wool in the attic.
According to thermal simulation results using the software
Pléiades+COMFIE [9], the heating load is 253 kWh/(m2.year)
which is typical for such type of house. Comparisons have
been performed during the design phase on the passive house
version of this building with other simulation tools like Energy
Plus and TRNSYS [10] and have shown similar results.

Four different renovations of this building are presented in
Table I:



Fig. 1. 3D view of the house (west and south facades)

TABLE I
VERSIONS OF THE CONSIDERED BUILDINGS THROUGHOUT THE

RENOVATIONS WORKS

Version Renovation Heating
applied consumption

(kWh/m2.year)
Reference none

(1st) 253
Roof (1) + 30cm of

insulation glass-wool in the attic 246
(2nd)

Triple glazing (2) + Triple glazed
(3rd) windows 215

Insulation of (3) + 15cm of glass-
external walls wool in external walls 93

(4th)
Heat recovery (4) + HRV with an

ventilation (HRV) efficiency of 0.5 80
(5th) (accounting for air infiltration)

B. Thermal model

The building is modeled as spatial zones of homogenous
temperature. For each zone, each walls are divided in fine
meshes small enough to also have a homogeneous temperature.
There is one more mesh for the air and furniture in the zone.
Eventually, a thermal balance is done on each mesh within the
building. It takes into account:
• Pcond: the losses (or gains) by conduction in walls, floor

and ceiling.
• Psol: the gains due to solar irradiance through the win-

dows
• Pconv: the losses (or gains) due to convection at walls

surface
• Pin: the internal gains due to heating, occupancy and other

loads (only for zone air mesh)
• Pbridges: heat losses through thermal bridges, not associ-

ated to thermal mass
• Pventil : heat losses due to air exchange
When applied to the mesh corresponding to the air of each

zone, the thermal balance equation is:

CairṪair = Pin + Pcond + Pbridges + Pventil + Psol + Pconv (1)

with the thermal capacity of the node air (including furniture)
and the temperature of the mesh. For each zone, repeating

equation (1) for each mesh and adding an output equation
leads to the following continuous linear time-invariant system.

CṪ (t) = AT (t) + EU(t)
Y (t) = JT (t) +GU(t)

}
(2)

with:
• T mesh temperatures vector
• U driving forces vector (climate parameters, heating, etc.)
• Y outputs vector (here, temperature of the air nodes)
• C thermal capacity diagonal matrix
• A,E, J,G matrices relating the vectors of the dynamics.
In order to simulate such a model, it is important to

know the occupancy of the building, which defines partly
Pin with the emission of heat by the inhabitants and the
appliances. The second part of heat emission in Pin is due to
the heating system. Another important aspect is the weather
model. It defines the loss due to heat transfer with the ambient
temperature and the gain with solar irradiance. All the data of
the occupancy and weather models are contained in the input
vector U .

III. MODEL REDUCTION AND CONSTRAINTS

A. Model reduction

A high order linear model (2) is now available. In view
of application of optimization methods, its state dimension
is too large to allow a fast convergence of the optimization
algorithm. A reduction method is applied to lower the state
dimension and thus to make the algorithm faster. To reduce
the dimension of the dynamics, several methods exist such as,
e.g., singular perturbations [11], or identification methods [12].
In our case, an efficient method is the balanced truncation [13].
Indeed, this truncation consists in removing the state variables
which receive the effort from the input and contribute the less
to the variations of the output, that is to say, the state variables
easily negligible from an energetic view-point1. To determine
the order of the reduced model, one can compare the error
between the high order model and the reduced ones over one
year in terms of mean and standard deviation. Here, we decide
to take the minimal order such that these statistical properties
are both inferior to 0.1. In our case, all models are at least
third order, and one of them is fourth order.
In table II, one can find the various time constants of the
considered models. It is noticeable that the main effects of
the renovation is to enlarge the slow time constant. This is
particularly true for the adjunction of insulation. Moreover,
one can also see that a thermal building model clearly has
three well separated time scales [11].

B. Model and constraints

1) Model notations: In the following, we use the classical
linear state space representation to represent the model:

ẋ(t) = Ax(t) +Bu(t) + d(t) (3)
y(t) = Cx(t) (4)

1We refer the interested reader to [13]



TABLE II
VALUE OF THE TIME CONSTANTS OF THE FIVE DIFFERENT MODELS.

1st 2nd 3rd 4th 5th

Time 8min. 7min. 8min. 9min. 9min.
constants 13h. 13h. 2h. 13h. 18h.

95h. 98h. 8h. 160h. 180h.
91h.

where x is the state of the model, y is the inside temperature,
d represents the influence of the outside temperature and the
solar fluxes on the heating of the house and u represents the
heating flux on the air node and is the control variable.

2) Constraints:
a) Inside temperature constraints: The temperature con-

straints are 24 hours periodic and are:
• y ≤ 24◦C at all times.
• y ≥ 14◦C between 9 a.m. and 5 p.m.
• y ≥ 20◦C otherwise.

To simplify the notations, we write the temperature constraints
above as follows:

y− ≤ y ≤ y+ (5)

b) Control constraints: The control constraints are not
the same for all systems:
• 0 ≤ u ≤ 20 kW for the buildings whose walls have not

been insulated.
• 0 ≤ u ≤ 10 kW for the buildings whose walls have been

insulated.
To simplify the notations for the algorithm, we write the
control constraints as follows:

0 ≤ u ≤ u+ (6)

c) Load shifting: In our case the load shiftings consist in
daily time period when the heating of the house is not allowed
to consume any energy. These shiftings start everyday at 5
p.m.. The objective of this study is to determine the maximum
duration of these load shiftings such that it becomes impossible
to satisfy both (5) and (6).

IV. METHOD AND ALGORITHM

A. Method

In order to characterize the duration of load shifting which
allows the inside temperature to satisfy (5) while the heating
power satisfies (6), a state constrained optimal control ap-
proach is used. Indeed, setting (5) and (6) as constraints allows
us to quantify the maximum load shifting duration feasible
without degradation of the comfort. Indeed, when there exists
no solution for the constrained optimal control problem, we
know that the load shiftings are too long. This is independent
of the regulation system but rely on the capacity of the building
to store energy.
To determine the maximum duration of the load shifting, a
sequence of optimal control problems is solved with increasing
load shifting periods until there exists no solution satisfying
the constraints (5) and (6).

B. Algorithm

For this problem, the constraints are (5) and (6) and the
considered criterion is the energy consumed over the whole
week. To solve the state constraint optimal control problem a
maximum principle-based interior method is used [5], [6], [7],
[8], [14], which has been adapted for the energy consumption
problem. The criterion is given by the following:

J = min
u∈[0,u+]

∫ T

0

u(t)dt (7)

with the dynamics and the state constraint y ∈ [y−, y+] seen
above, and where T = 7 days.
The first step, in this algorithm is to operate the following
change in variable2 on the control variable u:

u , φ(ν) = u+

(
ekν

1 + ekν

)
(8)

This change in variable is such that ν is an unconstrained
variable and the optimization problem is now:

J = min
ν∈R

∫ T

0

φ(ν)dt (9)

To solve this problem, an indirect method [16] using an adjoint
vector p is used. This adjoint vector p has the same dimension
as the state x of the reduced dynamical system (3). It satisfies

dp

dt
(t) = −Atp(t)− Ctγ′y(Cx(t)) (10)

where γ′y is the derivative of the following function

γy(y(t)) =

(
y+(t)− y−(t)√

(y+(t)− y(t))(y(t)− y−(t))
− 1

)2.1

(11)

In (11), the expression serves to keep the output away from
the constraint (see [15]). The power 2.1 guarantees the well-
behavness of the method (see [8]). Now, to compute the
optimal control, an interior method is used. It consists in
solving a sequence of optimal control problems, depending
on a parameter εn, converging to the optimal solution of the
problem. The iterative algorithm is the following:
• Step 1: Initialize the functions x(t) and p(t) such that the

initial Cx(t) ∈ (y−(t), y+(t)) for all t ∈ [0, T ], and set
ε = ε0. Note that x(t) and p(t) do not need to satisfy any
differential equations at this stage, even if it is better if
they do. Often, p can be chosen identically equal to zero
at first step.

• Step 2: Compute ν∗ε = sinh−1
(
− 1+ptB

ε

)
. Thus the

optimal solution u∗ε = φ−1(ν∗ε ) is given using equation
(8) with k = 0.8.

• Step 3: Solve the 2 differential systems of equation dx
dt =

Ax + Bu∗ε and dp
dt = −Atp − Ctγ′y(Cx) forming a two

point boundary value problem using bvp4c (see [17]),
with the following boundary constraints x(0) = x0 and
p(T ) = 0.

2Similar to the saturation function approach considered in [15]



• Step 4: Decrease ε, initialize x(t) and p(t) with the
solutions found at Step 3 and restart at Step 2.

In our case, the sequence (εn) has been chosen such that
εn = 10−

n
10 with n = 0 · · · 40. The proof of convergence of

this algorithm can be found in [8]. Details on its derivation
can also be found in [15].

V. RESULTS

The considered optimization takes place in winter over one
particularly cold week where the ambient temperature is given
on Figure 2. In Figures 4 and 5, one can see the influence of
the load shiftings on the indoor temperature of the buildings.
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Fig. 2. Ambient temperature over one week of winter

A. Summary of the results

Figure 3 displays the optimal consumption of energy with
the maximum load shifting duration and without load shifting
for each building version. In Table III the maximum load
shifting duration is exhibited for each version. The behavior of
the five system towards the maximum bearable load shifting
are displayed in Figures 4 and 5.

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1600	  

1800	  

2000	  

1	   2	   3	   4	   5	  

En
er
gy
	  in
	  kW

h	  

Building	  version	  

Energy	  consump6on	  of	  the	  five	  building	  version	  

Without	  load	  shi4ing	  

With	  maximal	  load	  shi4ing	  

Fig. 3. Energy consumption over one week for the five versions of the
building. For each building the consumed energy is displayed without load
shifting and with the maximal bearable one.

First, one can see that in terms of energy consumption the
first and second versions of the building are quite similar. The
adjunction of triple glazed windows induces a significant de-
creasing of energy consumption (≈ 30%). Then, the insulation

TABLE III
VALUE OF THE MAXIMUM LOAD SHIFTING DURATION FOR EACH VERSION

OF THE BUILDING.

1st 2nd 3rd 4th 5th

Load shifting duration 15min. 20min. 20min. 4h. 6h.

152 153 154 155 156 157 158
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Building 1: load shifting 15 min
Building 2: load shifting 20 min
Building 3: load shifting 20 min
Building 4: load shifting 4 hours
Building 5: load shifting 6 hours
Minimal inside temperature

Fig. 5. Comparison of the optimal indoor temperature during the load shifting
of the last day of the week

of the external walls allows to clearly decrease the energy
consumption (≈ 50%). So, the most effective renovation in
terms of energy consumption seems to be the increasing
of insulation. But, the triple glazed windows also allows to
achieve a noticeable decreasing of energy consumption.
Now, considering the ability in handling load shiftings one
can see that the three first versions of the building cannot
handle load shifting superior to 20 minutes. Interestingly,
the adjunction of triple glazed windows does not improve
the load shifting ability whereas it is performant for energy
saving. Actually, the ability in handling load shifting becomes
important when the insulation is increased.

B. Explanation of the results

As seen on table II, the renovation mainly influences the
slow time constant of the systems. It is particularly noticeable
that once some insulation has been added to the building the
slow time constant is almost twice bigger than the one of the
non insulated models. Nevertheless, even for the first version
of the building, the slow and medium time constants are large
compared to the duration of the maximum bearable load shift-
ing (15 min.). Thus, this modification of the slow and medium
time constants through insulation does not satisfyingly explain
the results.
Actually, a role is played by the zeros of the transfer function
between the heating flux on the air node and the indoor
temperature. Table IV exhibits that the slow (resp. medium)
zero and pole of the first building version are closer from
each other than the ones of the fifth version. This increasing
distance between poles and zeros results in an increasing
controllability of the slow time scale state variables. This
increased controllability allows to store energy within 24
hours in the slow state variables. In contrast the non-insulated
building slow time scale are not controllable enough to store
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Fig. 4. Comparison of the optimal indoor temperature of each building with the maximum bearable load shiftings duration

energy within 24 hours in the slow time scale state variables,
this results in an energy storage in the fast time scale state
variable and thus in a small load shifting period.

TABLE IV
VALUE OF THE POLES AND THE ZEROS OF THE DIFFERENT TIME SCALES

FOR THE FIRST AND THE FIFTH VERSION.

1st version 5th version
slow pole P = −0.0105 P = −0.00558
slow zero Z = −0.0178 Z = −0.0174

medium pole P = −0.0789 P = −0.0548
medium zero Z = −0.268 Z = −0.251

VI. CONCLUSION

First, The state constraint dynamic optimization is a efficient
approach to study intrinsic properties of residential building,
to say, in a regulation independent fashion. Plus, the time
continuous approach allows to have precise results even when
considering fast time scales phenomenom.
Now, considering the load shifting opportunities, we have
emphasized that a non insulated residential house cannot
handle load shifting superior to 20 minutes even if an advanced
strategy of regulation is used. To allow these buildings to
handle long load shiftings, their thermal mass is not sufficient.
Thus, to achieve long load shifting duration, the buildings must
be insulated enough or have auxiliary energy storage capacity.
But, the regulation system is not sufficient to achieve long load
shifting duration.
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