
HAL Id: hal-00664882
https://minesparis-psl.hal.science/hal-00664882v1

Submitted on 7 Feb 2012 (v1), last revised 9 Feb 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating the abilities of various building in handling
power sheddings

Paul Malisani, Bérenger Favre, Stéphane Thiers, Bruno Peuportier, François
Chaplais, Nicolas Petit

To cite this version:
Paul Malisani, Bérenger Favre, Stéphane Thiers, Bruno Peuportier, François Chaplais, et al..
Investigating the abilities of various building in handling power sheddings. 2011 IEEE Power
Engineering and Automation Conference (PEAM), Sep 2011, Wuhan, China. pp.393 - 397,
�10.1109/PEAM.2011.6134968�. �hal-00664882v1�

https://minesparis-psl.hal.science/hal-00664882v1
https://hal.archives-ouvertes.fr


Investigating the abilities of various building in

handling power sheddings
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Abstract—Nowadays, several insulation configurations exist
in residential buildings, and during renovation works of these
buildings, different investment can be considered. The contri-
bution of this article is a method of evaluation of the ability
of each configuration to remain within a comfort zone during
load sheddings period. This question is of importance in the
relationship, and then in the price setting, between the user
(inhabitant of the house) and the energy provider who uses these
load sheddings period to optimize his production on a national
or regional scale.
We proceed to the evaluation as follows: an optimization method
is used to compute, in a dynamical context, the best heating
strategy. The weather conditions and the comfort constraints
define (through a dynamical optimization problem) the actual
ability of the building to guarantee a satisfying comfort during
load sheddings period independently of the regulation strategy.

I. INTRODUCTION

Nowadays significant efforts are made to reduce electricity

peak demand. In Europe these peaks occur especially during

winter time, and are thus due to a large extent to heating

systems. In order to guarantee the grid’s stability, studies are

carried out on load reduction. This reduction can be achieved

thanks to a careful housing design that can both capture and

restore efficiently the solar gains [1]. An advanced heating

control could be another solution. This control can be based on

power tarification [2] and can use the building’s thermal mass

as an asset to shift the building’s consumption, thus reducing

the peak consumption [3], [4].

This article follows this approach by studying the load shed-

ding opportunities on five thermal models from poorly to well

insulated buildings. This article’s contribution consists in an

under constraints dynamic optimization method in continuous

time allowing us to accurately compute optimal trajectories

(when they exist) satisfying the constraints [5], [6], [7], [8].

By acting on the load shedding’s duration, we can figure out

the maximum duration of a complete heating load shedding

capable of maintaining an acceptable level of comfort while

shifting the consumption. The results obtained show that the

thermal mass of a poorly insulated building is not sufficient

to perform load sheddings superior to ten minutes. Thus, the

use of buildings as power stocks only seems efficient in the

case of sufficiently insulated buildings which can handle load

sheddings of several hours.

II. BUILDING MODEL

A. Building description

The building under study is a French single-family house.

The actual building is an experimental passive house part of

INCAS platform built in Bourget du Lac, France. For our

study, five version low performance versions of the building

are considered. The reference version corresponds to a house

build before the first French thermal regulation. The four

other versions corresponds to different renovations levels of

the reference version. It is then possible to study the effects

of renovation on the peak load management. The reference

version has two floors for a total living floor area of 89 m2.

34% of its south facade surface is glazed while the north

facade has only two small windows. All the windows are

simple glazed. The south facade is also equipped with solar

protections for the summer period. The external walls are

made with a 30 cm-thick layer of concrete blocks and the

floor is composed of 20 cm reinforced concrete. There is no

insulation in the building except for the 10 cm of glass-wool

in the attic. According to thermal simulation results using

Pléiades+COMFIE [9], the heating load is 253 kWh/(m2.year)

which is typical for such type of house. Comparisons had

been performed during the design phase on the passive house

version of this building with other simulation tools like Energy

Plus and TRNSYS [10].

Fig. 1. 3D view of the house (west and south facades)

Four different renovations of this building are presented in

Table I:



TABLE I
VERSIONS OF THE CONSIDERED BUILDINGS THROUGHOUT THE

RENOVATIONS WORKS

Version Renovation Heating
applied consumption

(kWh/m2.year)

Original none
(1) 253

Roof (1)+ 30cm of
insulation glass-wool in the attic 246

(2)

Triple glazing (2)+Triple glazed
(3) windows 215

Insulation of (3)+ 15cm of glass-
external walls wool for external walls 93

(4)

Heat recovery (4)+HRV with an
ventilation (HRV) efficiency of 0.5 80

(5)

B. Thermal model

The thermal modeling of the building is made by dividing

it in zones of homogenous temperature. For each zone, each

wall is then divided in meshes small enough to have also a

homogeneous temperature. There is one more mesh for the

air and furniture of the zone. Eventually, a thermal balance is

done on each mesh within the building. The thermal balance

takes into account:

• Pcond: the loss (or gain) by conduction in walls, floor and

ceiling.

• Psol: the gain due to solar irradiance through the windows

• Pconv: the loss (or gain) due to convection at walls surface

• Pin: the internal gain due to heating, occupancy and other

loads (only for zone air mesh)

• Pbridges: heat losses through thermal bridges, no associated

for thermal mass

• Pventil : heat loss due to air exchange

If applied to the mesh corresponding to the air of the zone,

the thermal balance equation is:

CairṪair = Pin + Pcond + Pbridges + Pventil + Psol + Pconv (1)

with the thermal capacity of the node air (including furni-

ture) and the temperature of the mesh. The equation (1) is

repeated for each mesh of each zone to obtain the following

matrix system [10]:

CṪ (t) = AT (t) + EU(t)

Y (t) = JT (t) + GU(t)

with:

• T mesh temperatures vector

• U driving forces vector (climate parameters, heating, etc.)

• Y outputs vector (here, temperature of the air nodes)

• C thermal capacity diagonal matrix

• A, E, J, G matrix linking every previous matrix

In order to simulate such a model, it is important to

know the occupancy of the building, which defines partly

Pin with the emission of heat by the inhabitants and the

appliances. The second part of heat emission in Pin is due to

the heating system. Another important aspect is the weather

model. It defines the loss due to heat transfer with the ambient

temperature and the gain with solar irradiance. All the data of

the occupancy and weather models are contained in the driving

forces vector U .

III. MODEL AND CONSTRAINTS

A. Model reduction

A high order linear model is now available. But in a opti-

mization purpose its state dimension is too big to allow a fast

convergence of the optimization algorithm. Thus a reduction

method is used to reduce this state dimension and to make the

algorithm faster. To reduce this dimension, several methods

exist such as singular perturbations [11], or identification

methods [12]. But in this case, an efficient method is the

balanced truncation [13]. Indeed, this truncation consists in

removing the state variables which receive the less energy

from the input and give the less energy to the output. That

is to say, the state variables that are easily negligible from

an energetic view-point. Now, to determine the order of the

reduced model, we compare the error between the high order

model and the reduced ones over one year in terms of mean

and standard deviation and we take the minimal order such

that these statistical properties are both inferior to 0.1. In our

case all models are at least third orders, and one of them is a

fourth order one.

On table II, one can find the different time constants of the

considered models. It is noticeable that the main effect of the

renovation works bears on the slow time constant, particularly

the adjunction of insulation. Moreover, one can also see that a

thermal building model is clearly a three separated time scales

model [11].

TABLE II
VALUE OF THE TIME CONSTANTS OF THE FIVE DIFFERENT MODELS.

1
st

2
nd

3
rd

4
th

5
th

Time 8min. 7min. 8min. 9min. 9min.
constants 13h. 13h. 2h. 24h. 15h.

95h. 98h. 8h. 180h. 170h.
91h.

B. Model and constraints

1) Model notations: In the following, we use the classical

linear state space representation to represent the model:

ẋ(t) = Ax(t) + Bu(t) + d(t) (2)

y(t) = Cx(t) (3)

where x is the state of the model, y is the inside temperature,

d represents the influence of the outside temperature and the

solar fluxes on the heating of the house and u represents the

heating flux on the air node and is the control variable.

2) Constraints:



a) Inside temperature constraints: The temperature con-

straints are 24 hours periodic and are:

• y ≤ 24◦C
• y ≥ 14◦C between 9 a.m. and 5 p.m.

• y ≥ 20◦C otherwise.

To simplify the notations for the algorithm, we write the

temperature constraints as follows:

y−
≤ y ≤ y+ (4)

b) Control constraints: The control constraints are not

the same for all systems:

• 0 ≤ u ≤ 20 kW for the buildings whose walls have not

been insulated.

• 0 ≤ u ≤ 10 kW for the buildings whose walls are

insulated.

To simplify the notations for the algorithm, we write the

control constraints as follows:

0 ≤ u ≤ u+ (5)

c) Load shedding: The load sheddings consist in daily

time period where the heating of the house is not allowed

to consume any energy. In our case the load sheddings are

24 hours periodic and start everyday at 5 pm. The objective

of the paper is to know the maximum duration of these load

sheddings such that it becomes impossible to satisfy both (4)

and (5).

IV. METHOD AND ALGORITHM

A. Method

In order to characterize the duration of load shedding

which allows the inside temperature to satisfy (4) while the

heating power satisfies (5), a state constrained optimal control

approach is used. Indeed, setting (4) and (5) as constraints

allows us to quantify (from an intrinsic view-point) the max-

imum load shedding duration feasible without degradation

of the comfort. Indeed, when there exists no solution for

the constrained optimal control problem, we know that the

load sheddings are too long and this does not depend on the

regulation system but only on the capacity of the building to

store energy.

To know the maximum duration of the load shedding, the

procedure consists in solving a sequence of optimal control

problems with load shedding period getting longer and longer

until there exists no solution satisfying the constraints (4) and

(5).

B. Algorithm

For this problem, the constraints are (4) and (5) and the

considered criterion is the energy consumed over the whole

week. To solve the state constraint optimal control problem

a maximum principle-based interior method is used [5], [14],

[6], [7], [8], which has been adapted for the energy consump-

tion problem. The criterion is given by the following:

J = min
u∈[0,u+]

∫ T

0

u(t)dt (6)

with the dynamics and the state constraint y ∈ [y−, y+] seen

above, and where T = 7 days.

The first step, in this algorithm is to operate the following

change in variable on the control variable u:

u , φ(ν) = u+

(

ekν

1 + ekν

)

(7)

This change in variable is such that φ : R 7→ (0, u+), thus ν

is an unconstrained variable and the optimization problem is

now:

J = min
ν∈R

∫ T

0

φ(ν)dt (8)

To solve this problem, an indirect method using an adjoint

vector p is used. This adjoint vector p has the same dimension

than the state x of the reduced dynamical system (2) and is

such that:

dp

dt
(t) = −Atp(t) − Ctγ′

y(Cx(t)) (9)

where γ′

y is the derivative of the following function

γy(y(t)) =

(

y+(t) − y−(t)
√

(y+(t) − y(t))(y(t) − y−(t))
− 1

)2.1

(10)

Now, to compute the optimal control, an interior method

is used. It consists in solving a sequence of optimal control

problem, depending on a parameter ǫn, converging to the

optimal solution of the problem. The iterative algorithm is

the following:

• Step 1: Initialize the functions x(t) and p(t) such that the

initial Cx(t) ∈ (y−(t), y+(t)) for all t ∈ [0, T ], and set

ǫ = ǫ0. Note that x(t) and p(t) do not need to satisfy any

differential equations at this stage, even if it is better if

they do. Often, p can be chosen identically equal to zero

at first step.

• Step 2: Compute ν∗

ǫ = sinh−1
(

−
1+ptB

ǫ

)

. Thus the

optimal solution u∗

ǫ = φ−1(ν∗

ǫ ) is given using equation

(7) with k = 0.8.

• Step 3: Solve the 2 differential systems of equation dx
dt

=

Ax + Bu∗

ǫ and dp

dt
= −Atp − Ctγ′

y(Cx) forming a two

point boundary values problem using bvp4c (see [15]),

with the following boundary constraints x(0) = x0 and

p(T ) = 0.

• Step 4: Decrease ǫ, initialize x(t) and p(t) with the

solutions found at Step 3 and restart at Step 2.

In our case, the sequence (ǫn) has been chosen such that

ǫn = 10−
n

10 with n = 0 · · · 40. The proof of convergence of

this algorithm can be found in [8].

V. RESULTS

The considered optimization takes place in winter over one

week where the outside temperature is given on Figure 2.

On Figures 3 and 4, one can see the influence of the load

sheddings on the inside temperature of the buildings.



A. Summary of the results

The behavior of the five systems described in Table I are as

follows:

• First Building: The maximum duration of daily load

shedding is of 10 minutes. These daily load sheddings

induce an increasing of 11% of the consumed energy over

one week compared to the optimization of this building

without load shedding (1527 kWh without load sheddings

and 1688 kWh with daily 10 minutes load sheddings).

Moreover, one can see that it is impossible to store a

sufficient amount of energy in this building within 24

hours to allow the building to be comfortable and to bear

load sheddings longer than 10 minutes.

• Second Building: The maximum duration of daily load

shedding is of 20 minutes. These daily load sheddings

induce an increasing of 18% of the consumed energy over

one week compared to the optimization of this building

without load shedding (1514 kWh without load sheddings

and 1778 kWh with daily 20 minutes load sheddings).

Moreover, one can see that it is impossible to store a

sufficient amount of energy in this building within 24

hours to allow the building to be comfortable and to bear

load sheddings longer than 20 minutes.

• Third Building: The maximum duration of daily load

shedding is of 20 minutes. These daily load sheddings

induce an increasing of 20% of the consumed energy over

one week compared to the optimization of this building

without load shedding (1163 kWh without load sheddings

and 1390 kWh with daily 20 minutes load sheddings).

Moreover, one can see that it is impossible to store a

sufficient amount of energy in this building within 24

hours to allow the building to be comfortable and to

bear load sheddings longer than 20 minutes. But, the

adjunction of this triple glazing induces a global reduction

of the consumed energy of 30%.

• Fourth Building: This configuration can handle daily

load sheddings of duration superior to 5 hours. These

daily load sheddings induce an increasing of 16% of

the consumed energy over one week compared to the

optimization of this building without load shedding (555

kWh without load sheddings and 641 kWh with daily

5 hours load sheddings). Moreover, one can see that

this configuration allows the building to handle long

daily load sheddings without a strong degradation of the

comfort. Here, the increasing of the insulation induces

a global reduction of the consumed energy of 50%
compared to the configuration of the third building.

• Fifth Building: This configuration can handle daily

load sheddings of duration superior to 5 hours. These

daily load sheddings induce an increasing of 17% of

the consumed energy over one week compared to the

optimization of this building without load shedding (526

kWh without load sheddings and 617 kWh with daily

5 hours load sheddings). Moreover, one can see that

this configuration allows the building to handle long

daily load sheddings without a strong degradation of

the comfort. Here, the fifth building induces a global

reduction of the consumed energy of 5% compared to

the fourth building.

Moreover, one can see on Figure 3 the inside temperature

of each system with their respective maximum daily load

sheddings duration. Plus, on Figure 4, one can see precisely

the last load shedding response of the week.

B. Explanation of the results

As, seen on table II, one can see that the influence of

the renovation works mainly bears on the slow time constant

of the systems. It is particularly noticeable that once some

insulation has been added to the building, the load sheddings

last for several hours and the slow time constant is twice bigger

than the one of the non insulated models. Thus, the renovated

buildings tend to be slower than the original building. But, the

slow time constant does not explain totally the global behavior

of the system towards load sheddings. Indeed, as one can see

on Table III the renovations works on the building make, for

both medium and slow time scales the pole and the zero move

away from each other. As a consequence, the slow time scales

of the renovated system are more controllable than the slow

time scales of the original building. This increasing of the

controllability of the system’s slow scale, actually means that

less time is needed to store energy using the inertia of the

building and not only the inertia of the air. As a consequence,

it is possible to store efficiently energy within 24 hours and

then remain comfortable even when long (but predicted) load

shedding periods occur. The lack of controllability of the slow

time scales in the original building means that it is impossible

to store energy using the building’s inertia within 24 hours

no matter the energy management system. Then, even if these

buildings represent an important consumption of energy, they

are not the most appropriate to demand response strategy on

their heating load, due to the impossibility to use the envelope

as an efficient thermal storage.

TABLE III
VALUE OF THE POLES AND THE ZEROS OF THE DIFFERENT TIME SCALES

FOR THE FIRST AND THE FIFTH BUILDING.

1
st building 5

th building

slow pole P = −0.0105 P = −0.00588

slow zero Z = −0.0178 Z = −0.0193

medium pole P = −0.0789 P = −0.0669

medium zero Z = −0.268 Z = −0.277

VI. CONCLUSION
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