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Stabilization for an ensemble of half-spin systems∗

Karine Beauchard† Paulo Sérgio Pereira da Silva‡ Pierre Rouchon§

July 9, 2010

Abstract

Feedback stabilization of an ensemble of non interacting half spins described by Bloch
equations is considered. This system may be seen as a prototype for infinite dimensional
systems with continuous spectrum. We propose an explicit feedback law that stabilizes
asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of
the convergence is done locally around the equilibrium in the H1 topology. This local
convergence is shown to be a weak asymptotic convergence for the H1 topology and thus
a strong convergence for the C0 topology. The proof relies on an adaptation of the LaSalle
invariance principle to infinite dimensional systems. Numerical simulations illustrate the
efficiency of these feedback laws, even for initial conditions far from the equilibrium

Keywords: Nonlinear systems, Lyapunov stabilization, LaSalle invariance, ensemble con-
trollability, infinite dimensional systems.

1 Introduction

1.1 Infinite dimensional systems with continuous spectra

Most controllability results available for infinite dimensional bilinear systems are related to
systems with discrete spectra (see for instance, [2] for exact controllability results and [5, 13]
for approximate controllability results). As far as we know, very few controllability studies
consider systems admitting a continuous part in their spectra.

In [11] an approximate controllability result is given for a system with mixed discrete/continuous
spectrum: the Schrödinger partial differential equation of a quantum particle in an N-dimensional
decaying potential is shown to be approximately controllable (in infinite time) to the ground
bounded state when the initial state is a linear superposition of bounded states.

In [9, 10] a controllability notion, called ensemble controllability, is introduced and dis-
cussed for quantum systems described by a family of ordinary differential equations (Bloch
equations) depending continuously on a finite number of scalar parameters and with a finite
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number of control inputs. Ensemble controllability means that it is possible to find open-loop
controls that compensate for the dispersion in these scalar parameters: the goal is to simulta-
neously steer a continuum of systems between states of interest with the same control input.
Such continuous family of ordinary differential systems sharing the same control inputs can
be seen as the prototype of infinite dimensional systems with purely continuous spectra.

The article [10] highlights the role of Lie algebras and non-commutativity in the design
of a compensating control sequence and consequently in the characterization of ensemble
controllability. In [3], this analysis is completed by functional analysis methods developed
for infinite dimensional systems governed by partial differential equations (see, e.g., [8] for
samples of these methods). Several mathematical answers are given, with discrimination
between approximate and exact controllability, and finite time and infinite time controllability,
for the Bloch equation. In particular, it is proved that a priori bounded L2-controls are not
sufficient to achieve exact controllability, but unbounded controls (containing, for example
sums of Dirac masses) allow to recover controllability. For example, it is proved in [3] that
the Bloch equation is approximately controllable to e3, in H1, in finite time, with unbounded
controls. The authors also propose explicit open loop (unbounded) controls for the local exact
controllability to e3 in infinite time.

The goal of this article is to investigate feedback stabilization of such specific infinite
dimensional systems with continuous spectra. As in [11], the feedback design is based on a
Lyapunov function closely related to the norm of the state space, a Banach space.

1.2 The studied model

We consider here an ensemble of non interacting half-spins in a static field (0, 0, B0)
T in R

3,
subject to a transverse radio frequency field (ũ(t), ṽ(t), 0)T in R

3 (the control input). The
ensemble of half-spins is described by the magnetization vector M ∈ R

3 depending on time t
but also on the Larmor frequency ω = −γB0 (γ is the gyromagnetic ratio). It obeys to the
Bloch equation:

∂M

∂t
(t, ω) = (ũ(t)e1 + ṽ(t)e2 + ωe3)×M(t, ω), (1)

where −∞ < ω∗ < ω∗ < +∞, ω ∈ (ω∗, ω
∗), (e1, e2, e3) is the canonical basis of R3, × denotes

the vector product on R
3. The equation (1) is an infinite dimensional bilinear control system

in which

• the state is the function M , with, for every ω ∈ (ω∗, ω
∗), M(t, ω) ∈ S

2, the unit sphere
of R3,

• the two control inputs ũ and ṽ are real valued.

It must be stressed that ũ(t) and ṽ(t) are common controls for all the members of the ensemble,
and they cannot depend on ω. In coordinates M = (x, y, z), the Bloch equation may be written







ẋ = −ωy + ṽz,
ẏ = ωx− ũz,
ż = −ṽx+ ũy,

(2)

where ẋ stands for ∂x/∂t.
Now, let us precise the definition of a solution associated to Dirac controls. When ũ, ṽ ∈

L1
loc(R), then, for every initial condition M0 ∈ L2((ω∗, ω

∗),R3), the equation (1) has a weak
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solution in the usual sense: M ∈ C0([0,+∞), L2((ω∗, ω
∗),R3)). Let us give the definition

of a solution associated to a Dirac control. In the sequel δa(t) stands for the Dirac function
δ(t − a). If ũ = αδa(t) + u♯ and ṽ = v♯ where u♯, v♯ ∈ L1

loc(R), α > 0 and a ∈ (0,+∞), then
the solution is the classical solution on [0, a) and (a,+∞), it is discontinuous at the point a,
with the explicit discontinuity

M(a+, ω) =





1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)



M(a−, ω).

This definition corresponds to the limit, as ǫ → 0+ of solutions associated to ũ(t) = (α/ǫ)1[a,a+ǫ](t).
Formally, the spectrum of the operator A defined by

(AM)(ω) := ωe3 ×M(ω)

is −i(ω∗, ω
∗) ∪ i(ω∗, ω

∗): for every ω♯ ∈ (ω∗, ω
∗), the eigenvector associated to ±iω♯ is

(1,∓i, 0)T δω♯
(ω). Thus the Bloch equation (1) is a prototype of infinite dimensional system

with continuous spectrum.

1.3 Outline

The goal of this article it to propose a first answer to the following question.

Local Stabilization Problem. Define an explicit control law (ũ, ṽ) = (ũ(t,M), ṽ(t,M))
and a neighborhood U of −e3 (in some space of functions (ω∗, ω

∗) → S
2 to be determined)

such that, given any initial condition M0 ∈ U , the solution of the closed loop system is defined
for every t ∈ [0,+∞), is unique and converges to −e3, when t → +∞, uniformly with respect
to ω ∈ (ω∗, ω

∗).

Section 2 is devoted to control design and closed-loop simulations: the feedback law is
the sum of a Dirac comb and a time-periodic feedback law based on a Lyapunov function;
Proposition 1 proved in Appendix A guarantees that the closed-loop initial value problem is
always well defined; simulations illustrate the convergence rates observed for an initial state
formed by a quarter of the equator on the Bloch sphere. In section 3 we state and prove the
main convergence result, Theorem 1: the closed-loop convergence towards the constant profile
M(ω) = −e3 is shown to be local and weak for the H1 topology on M . The obstruction
to global stabilization is also discussed: it is based on an explicit description of the Lasalle
invariant set. Some concluding remarks are gathered in section 4.

2 Lyapunov H
1 approach

2.1 The impulse-train control

It is proved in [3] that controls containing sums of Dirac masses are crucial to achieve the
controllability of the Bloch equation. In view of the controls used in this reference, it is
natural to consider a control with the following “impulse-train” structure

ũ = u+

+∞
∑

k=1

π δkT (t), ṽ = (−1)E(
t
T )v (3)
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for some period T > 0, which is fixed in all the article (E (γ) denotes the integer part of the
real number γ). The new controls u and v belong to L1

loc(R). Then, after each impulse that
is applied at time t = kT , x remains unchanged, but y and z are moved to their opposites,
that is

(x, y, z)(kT+) = (x,−y,−z)(kT−).

The resulting state diffeomorphism

(x, y, z) 7→ (X = x,Y = −y,Z = −z) (4)

transforms (2) into

Ẋ (t) = ωY(t)− ṽ(t)Z(t),

Ẏ(t) = −ωX (t)− ũZ(t),

Ż(t) = ṽ(t)X (t) + ũ(t)Y(t).

Let ς = (−1)E(
t
T ). Considering the following change of variables

(x, y, z)(t, ω) 7→
(

x(t, ω), ζ(t)y(t, ω), ζ(t)z(t, ω)
)

one gets the following dynamics







ẋ = −ςωy + vz,
ẏ = ςωx− uz,
ż = −vx+ uy,

(5)

with the new control (u, v) as in (3). It is as if, between [kT, (k+1)T ] and [(k+1)T, (k+2)T ],
one is changing the sign of ω, but the solution, after the identification (4), remains continuous
in t (but not differentiable in t at the instants t = kT, k ∈ N). In other words, the application
of the impulses at t = kT changes the sense of rotation of the null input solution. One
would expect that this impulse-train control is reducing the average dispersion of the solution.
Roughly speaking, the dispersion observed for the open-loop system (2) with (ũ, ṽ) as input
is strongly reduced and almost canceled for the open-loop system (5) with (u, v) as input.

2.2 Heuristics of the Lyapunov-like control

Now let Z(t, ω) and Ω(t) defined by

Z = x+ iy, Ω = v − iu

where x, y, z refer to the transformed dynamics (5). Then one may write (5) in the form

{

Ż(t, ω) = iς(t)ωZ(t, ω) + Ω(t)z(t, ω),

ż(t, ω) = −ℜ
[

Ω(t)Z(t, ω)
]

,

where ℜ(ξ) (resp. ξ) denotes the real part (resp. the complex conjugate number) of a complex
number ξ ∈ C. The following transformation

Z̃(t, ω) = Z(t, ω)e−iω
∫ t
0
ς(τ)dτ
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converts the system into the driftless form

{

Ż(t, ω) = Ω(t)z(t, ω)e−iω
∫ t
0
ς ,

ż(t, ω) = −ℜ
[

Ω(t)Z(t, ω)e−iω
∫ t
0
ς
]

,
(6)

where, for notation simplicity, one lets Z(t, ω) stand for Z̃(t, ω), and one lets
∫ t
0 ς stand for

∫ t
0 ς(τ)dτ .

For the moment one shall assume that the input Ω(t) will be chosen in such a way that
the solution (Z(t, ω), z(t, ω)) of (6) does exist, it is unique and it is regular enough in a way
that one may consider that the derivatives Z ′(t, ω) = ∂Z

∂ω (t, ω) and z′(t, ω) = ∂z
∂ω (t, ω) exist

almost everywhere and they are solutions of the differential equation that is obtained by
differentiation of (6) with respect to ω, namely







Ż ′ = Ω
{[

z′ − i
(

∫ t
0 ς
)

z
]

e−iω
∫ t
0
ς
}

,

ż′ = −ℜ
{

Ω
[

Z
′ − i

(

∫ t
0 ς
)

Z
]

e−iω
∫ t
0
ς
}

,
(7)

where Ż ′ stands for ∂
∂tZ

′, and ż′ stands for ∂
∂tz

′.
Now consider the following Lyapunov-like functional:

L =
1

2

ω∗
∫

ω∗

{

|Z ′|2 + (z′)2 + 2G(z + 1)
}

dω (8)

where G is a positive real number and Z(t, ω), Z ′(t, ω) and z′(t, ω) refer to the solutions
respectively of (6) and (7). One may write

d

dt
L(t) = ℜ





ω∗
∫

ω∗

{

Z̄ ′Ż ′ + z′ż′ +Gż
}

dω



 (9)

and so, taking into account (6) and (7), the fact that Ω(t) does not depend on ω, one gets

d

dt
L(t) = ℜ [Ω(t)H(t)] (10)

where

H(t) :=

ω∗
∫

ω∗

{

i





t
∫

0

ς





(

Z̄z′ − Z̄ ′z
)

−GZ̄
}

e−iω
∫ t
0
ςdω.

Hence one may take Ω(t) = −KpH̄(t), where Kp is a positive real number, obtaining

Ω(t) = Kp

ω∗
∫

ω∗

{

i





t
∫

0

ς





(

Zz′ − Z ′z
)

+GZ
}

eiω
∫ t
0
ςdω. (11)

It follows that
dL
dt

(t) = − 1

Kp
|Ω(t)|2.
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Consider the system (6) in closed loop with the control law (11), thereby called by closed
loop system. The state space of this system is H1((ω∗, ω

∗),R3), which is the set of functions
f ∈ L2(ω∗, ω

∗) such that the distributional derivative f ′ belongs to L2(ω∗, ω
∗). This space,

equipped with the norm

‖f‖H1 :=





ω∗
∫

ω∗

|f ′(ω)|2 + |f(ω)|2dω





1/2

is a Banach space. In other words, closed-loop system (6)-(11) may be considered to be a
differential equation of the form

{

Ṁ(t) = F (t,M(t))
M(0) = M0 ∈ H1((ω∗, ω

∗),S2)

where F (t,M) is a continuous map

F : R×H1((ω∗, ω
∗),R3) → H1((ω∗, ω

∗),R3).

Moreover, F is locally integrable (L1
loc) and periodic in t and locally Lipschitz in M . Using

the same ideas as in the proof of the Cauchy-Lipschitz (Picard-Lindelöf) theorem, we get local
(in time) solutions in C0([0, T ],H1). From the contruction of the feedback law, finite time
blow up in H1 is impossible, thus solutions are global in time. Precisely, we have the following
result, whose proof is detailed in Appendix A.

Proposition 1 For every initial condition M0 ∈ H1((ω∗, ω
∗),S2), the closed loop system (6),

(11) has a unique solution M ∈ C1
pw

(

[0,∞),H1
(

(ω∗, ω
∗),S2

))

such that M(0) = M0.

In this statement, the space C1
pw

(

[0,∞),H1
(

(ω∗, ω
∗),S2

))

is made of functions
M ∈ C0

(

[0,∞),H1
(

(ω∗, ω
∗),S2

))

such that M ∈ C1((kT, (k + 1)T ),H1
(

(ω∗, ω
∗),S2

)

), for
every k ∈ N; their derivative ∂M/∂t is possibly discontinuous at t = kT , but it has finite
limits in H1

(

(ω∗, ω
∗),S2

)

when t → (kT )+ and t → (kT )−.

2.3 Closed-loop simulations

We assume here ω∗ = 0, ω∗ = 1 and we solve numerically the T -periodic system (5) with the T -
periodic feedback law (11) where Z = x+ıy and Ω = v−ıu. The parameters are T = 2π/(ω∗−
ω∗), Kp = 1, G = T 2/20. The simulation is for t ∈ [0, Tf ], Tf = 20T . The ω-profile [ω∗, ω

∗] ∋
ω 7→ (x(t, ω), y(t, ω), z(t, ω)) is discretized {0, . . . , N} ∋ k 7→ (xk(t), yk(t), zk(t)) with a regular
mesh of step ǫN = ω∗−ω∗

N and N = 100: (xk(t), yk(t), zk(t)) is then an approximation of
(x(t, kǫN ), y(t, kǫN ), z(t, kǫN )). We have checked that the closed-loop simulations are almost
identical for N = 100 and N = 200. In the feedback law (11), the integral versus ω is computed
assuming that (x, y, z) and (x′, y′, z′) are constant over ](k − 1

2
)ǫN , (k + 1

2
)ǫN [, their values

being (xk, yk, zk) and
(

xk+1−xk−1

2ǫN
, yk+1−yk−1

2ǫN
, zk+1−zk−1

2ǫN

)

. The obtained differential system is of

dimension 3(N +1). It is integrated via an explicit Euler scheme with a step size h = T/800.
We have tested that h = T/1600 yields to almost the same numerical solution at t = Tf = 20T .
After each time-step the new values of (xk, yk, zk) are normalized to remain in S

2.
Figures 1 and 2 summarize the main convergence issues when the initial ω-profiles of

(x, y, z) ∈ S
2 are z(0, ω) = 0, x(0, ω) = cos

(

π
2ω + π

4

)

and y(0, ω) = sin
(

π
2ω + π

4

)

. The
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convergence speed is rapid at the beginning and tends to decrease at the end. We start
with L(0) ≈ 3.24 and supω∈[ω∗,ω∗] ‖M(0, ω) + e3‖ ≈ 1.41. We get L(20T ) ≈ 0.38 and
supω∈[ω∗,ω∗] ‖M(20T, ω) + e3‖ ≈ 0.27. The control problem is quite hard due to the fact
that one has a continuous spectrum, that is, an infinite ensemble of systems with a com-
mon control input Ω(t). Hence, as time increases, the control must fight against the dis-
persion of the solutions M(t, ω) for different values of ω. Simulations (not presented here)
on much longer times until 1000T and with the same initial conditions and parameters al-
ways yield to smaller final value for the Lyapunov function: we get L(1000T ) ≈ 0.02 and
supω∈[ω∗,ω∗] ‖M(1000T, ω) + e3‖ ≈ 0.04. This is a strong indication of asymptotic converge
of the profile M(t, ω) toward −e3, even if the convergence speed seems to be very slow. This
numerically observed convergence is confirmed by Theorem 1 here below.
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Figure 1: Lyapunov function L(t) defined by (8) and the closed-loop control Ω(t) defined
by (11) .
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Figure 2: Initial (t = 0) and final (t = Tf ) ω-profiles for x, y and z solutions of the closed-loop
system (5) with the T -periodic feedback (11).

3 Main Result

3.1 Local stabilization

The main result of this paper shows that the control law (11) is a solution of the local stabi-
lization problem stated at the end of the introduction.

Theorem 1 Consider system (6) with the feedback law (11). There exists δ′ > 0 such that,
for every M0 ∈ H1((ω∗, ω

∗),S2) with ‖M0 + e3‖H1 ≤ δ′, M(t, ω) converges weakly in H1 to
−e3 when t → +∞. In particular, as the injection of H1 in C0 is compact, M(t, ω) converges
to −e3 when t → +∞ uniformly with respect to ω ∈ (ω∗, ω

∗) (convergence in the sup norm of
C0).

The proof of Theorem 1 relies on an adaptation of the LaSalle invariance principle to infinite
dimensional systems. This principle is a powerful tool to prove the asymptotic stability of
an equilibrium of a dynamical system in finite dimension: one just needs to check that the
invariant set coincides with the target [12]. For infinite dimensional systems, the use of the

8



LaSalle invariance principle is more delicate (because closed and bounded subsets are not
necessarily compact). Roughly speaking, there are 2 adaptation strategies:

• either one accepts a weaker result: approximate stabilization [4, 11] or weak stabilization
[1]; in this case, one may only need to ensure that the invariant set is reduced to the
target,

• or one wants strong stabilization; in this case, one needs an additional compactness
property for the trajectories of the closed loop system [6], or a strict Lyapunov function
[7].

This article concerns the first strategy: we prove weak stabilization.
The first step of our proof consists in checking that, locally, the invariant set is {−e3}.

Proposition 2 There exists δ > 0 such that, for every M0 ∈ H1((ω∗, ω
∗),S2) with ‖M0 +

e3‖H1 < δ, the map t 7→ L(t) is constant on [0,+∞) if and only if M0 = −e3.

Proof: Let us assume that L(t) is constant. Then, Ω(t) = 0, Z(t, ω) = Z0(ω) and z(t, ω) =
z0(ω). We deduce from (11) that

ω∗
∫

ω∗

{

it(Z ′
0z0 − Z0z

′
0)−GZ0

}

eiωtdω = 0,∀t ∈ [0, T ].

Considering the power series expansion versus t of the left hand side, we get

ω∗
∫

ω∗

[

P ′
(

Z ′
0z0 − Z0z

′
0

)

−GPZ0

]

dω = 0,∀P ∈ C[ω]. (12)

Polynomials are dense in H1(ω∗, ω
∗), thus, the previous inequality holds for every P ∈

H1(ω∗, ω
∗). In particular, with P (ω) = Z0(ω), we get

∫ ω∗

ω∗

[

Z ′
0

(

Z ′
0z0 − Z0z

′
0

)

−GZ0Z0

]

dω = 0.

Summing this equality with the following left hand side, we deduce that

∫ ω∗

ω∗

[

|Z ′
0|2 +G|Z0|2

]

dω

=
∫ ω∗

ω∗

[

(1 + z0)|Z ′
0|2 − Z ′

0Z0z
′
0

]

dω

6 ‖1 + z0‖L∞‖Z ′
0‖2L2 + ‖Z ′

0‖L2‖Z0‖L∞‖z′0‖L2 .

Thanks to the continuity of the embedding H1(ω∗, ω
∗) ⊂ L∞(ω∗, ω

∗), there exists a constant
C > 0 (independent of M) such that

‖Z0‖L∞ 6 C
(

∫ ω∗

ω∗

(|Z ′
0|2 +G|Z0|2)dω

)1/2

.

9



Therefore, we get

∫ ω∗

ω∗

[

|Z ′
0|2 +G|Z0|2

]

dω

6

(

‖1 + z0‖L∞ + C‖z′0‖L2

)

∫ ω∗

ω∗

[

|Z ′
0|2 +G|Z0|2

]

dω.

There exists δ > 0 such that, for every M0 ∈ H1((ω∗, ω
∗),S2) with ‖M0 + e3‖H1 < δ, we have

‖1 + z0‖L∞ + C‖z′0‖L2 < 1.

If L is constant along the trajectory associated to such an initial condition M0, then, the
previous argument shows that Z0 = 0, thus M0 = −e3. �

For the proof of Theorem 1, we need the continuity with respect to initial conditions, of
the solutions of the closed loop system (6), (11), for the H

1

2 (ω∗, ω
∗)-topology. This space is

defined by interpolation between L2(ω∗, ω
∗) and H1(ω∗, ω

∗) and we have a compact injection

H1(ω∗, ω
∗) → H

1

2 (ω∗, ω
∗). We also use the space H− 1

2 (ω∗, ω
∗), which is the dual space of

H
1

2 (ω∗, ω
∗) for the L2-scalar product. First, let us recall the following Lemma.

Lemma 1 There exists c1 > 0 such that, for every ϕ ∈ H
1

2 (ω∗, ω
∗) and for every α ∈ [0, T ],

the map ω 7→ ϕ(ω)eiαω belongs to H
1

2 (ω∗, ω
∗) and satisfies

‖ϕ(ω)eiαω‖
H

1

2

≤ c1‖ϕ‖
H

1

2

.

Proof: We have
‖ϕ(ω)eiαω‖L2 = ‖ϕ‖L2 ,∀ϕ ∈ L2(ω∗, ω

∗),

and, for every ϕ ∈ H1(ω∗, ω
∗),

‖ϕ(ω)eiαω‖2H1 =
ω∗
∫

ω∗

|ϕ′(ω) + iαϕ(ω)|2 + |ϕ(ω)|2dω

6
ω∗
∫

ω∗

2|ϕ′(ω)|2 + (2α2 + 1)|ϕ(ω)|2dω

thus we get the conclusion with, for example, c1 := (2T 2 + 2)1/4 by interpolation. �

Proposition 3 There exists δ′ > 0 such that, for every (M0
n)n∈N ∈ H1((ω∗, ω

∗),S2)N, M0
∞ ∈

H1((ω∗, ω
∗),S2) satisfying

• ‖M0
n + e3‖H1 < δ′,∀n ∈ N,

• M0
n ⇀ M0

∞ weakly in H1 when n → +∞,

• M0
n → M0

∞ strongly in H
1

2 when n → +∞,

the solutions Mn(t, ω), M∞(t, ω) of the closed loop system associated to these initial conditions
satisfy the following convergences, when n → +∞, for every t ∈ [0,+∞),

Mn(t) → M∞(t) strongly in H
1

2 and Ωn(t) → Ω∞(t).

10



Proof: First, let us emphasize that
√

L(M) and ‖M +e3‖H1 are equivalent norms on a small
enough H1((ω∗, ω

∗),S2)-neighborhood of −e3: there exists η, c∗, c
∗ > 0 such that, for every

M ∈ H1((ω∗, ω
∗),S2) with ‖M + e3‖H1 < η, we have

c∗
√

L(M) ≤ ‖M + e3‖H1 ≤ c∗
√

L(M). (13)

Now, let δ′ := min{δc∗/c∗, η}, where δ is as in Proposition 2. Thanks to the monotonicity of
L, we have, for every t ∈ [0,+∞),

‖Mn(t) + e3‖H1 ≤ c∗
√

L(Mn(t))

≤ c∗
√

L(M0
n)

≤ c∗

c∗
‖M0

n + e3‖H1 < c∗δ′

c∗
≤ δ.

We have
‖Mn(t)−M∞(t)‖

H
1

2

≤ ‖M0
n −M0

∞‖
H

1

2

+
∫ t
0 ‖F (s,Mn(s))− F (s,M∞(s))‖

H
1

2

ds.

Let us prove the existence of C > 0 such that, for every M,M̃ ∈ H1(ω∗, ω
∗) satisfying

‖M + e3‖H1 < δ, we have

‖F (s,M)− F (s, M̃ )‖
H

1
2

≤ C‖M − M̃‖
H

1
2

,∀s ∈ R.

Then, we will conclude the proof thanks to the Gronwall Lemma. Let us work, for example,
on the third component of F :

F3(t,M) = −Re
[

Ω(t)Ze−iω
∫ t
0
ζ
]

,

where Ω is defined by (11). We have

‖F3(t,M) − F3(t, M̃)‖
H

1

2

≤ |Ω(t)− Ω̃(t)|‖Ze−iω
∫ t
0
ζ‖

H
1

2

+|Ω̃(t)|‖(Z − Z̃)e−iω
∫ t
0
ζ‖

H
1

2

≤ |Ω(t)− Ω̃(t)|c1‖Z‖
H

1

2

+Kc1‖Z − Z̃‖
H

1

2

where c1 is as in the previous Lemma and K = K(δ). It is sufficient to prove the existence of
a constant C > 0 such that, for every M,M̃ ∈ H1((ω∗, ω

∗),S2) satisfying ‖M + e3‖H1 , ‖M̃ +
e3‖H1 < δ, we have

|Ω(t)− Ω̃(t)| ≤ C‖M − M̃‖
H

1

2

,∀t ∈ [0,+∞).

Let us prove it only on one of the terms that compose Ω (the other terms may be treated as
well):

∣

∣

∣

∫ ω∗

ω∗

(

Z ′z − Z̃ ′z̃
)

eiω
∫ t
0
ζdω

∣

∣

∣

≤
∣

∣

∣

∫ ω∗

ω∗

(

Z ′ − Z̃ ′
)

zeiω
∫ t
0
ζdω

∣

∣

∣

+
∣

∣

∣

∫ ω∗

ω∗
Z̃ ′
(

z − z̃
)

eiω
∫ t
0
ζdω

∣

∣

∣

≤ ‖Z ′ − Z̃ ′‖
H− 1

2

‖zeiω
∫ t
0
ζ‖

H
1

2

+‖Z̃ ′‖
H− 1

2

‖(z − z̃)eiω
∫ t
0
ζ‖

H
1
2

≤ c1K‖M − M̃‖
H

1

2

. �
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Proof of Theorem 1: Let δ′ be as in the previous proof. Let M0 ∈ H1((ω∗, ω
∗),S2) be such

that ‖M0 + e3‖H1 < δ′ and M ∈ C1([0,+∞),H1((ω∗, ω
∗),S2)) be the solution of the closed

loop system such that M(0) = M0.

First step: Let us prove that Ω(t) → 0 when t → +∞. Thanks to the choice of the feedback
law, M(t) is bounded in H1, uniformly with respect to t ∈ [0,+∞). Computing explicitly
dΩ
dt (t), we see that dΩ

dt (t) is bounded in C uniformly with respect to t ∈ [0,+∞) − NT . Thus,
Ω is uniformly continuous on [0,+∞). Since Ω ∈ L2(0,+∞), it has to satisfy Ω(t) → 0 when
t → +∞ (Barbalat’s lemma).

Second step: Let us prove that −e3 is the only possible weak H1 limit. Let M0
∞ be a weak

H1 limit of the trajectory starting from M0. There exists a sequence (tn)n∈N of [0,+∞) such
that tn → +∞,

M(tn) ⇀ M0
∞ weakly in H1 when n → +∞,

M(tn) → M0
∞ strongly in H1/2 when n → +∞.

Working as in the previous proof, one may prove that

‖M(tn) + e3‖H1 < δ,∀n ∈ N. (14)

There exists t∞ ∈ [0, T ) such that tn mod T → t∞. Let M∞(t, ω) be the solution of the
closed loop system associated to the initial condition M∞(t∞) = M0

∞. Let us prove that L is
constant along this trajectory, by proving that the associated control Ω∞ vanishes. In order
to simplify, we assume that t∞ = 0 (otherwise, consider an additional shift). For every t > 0,
M(tn + t) → M∞(t) strongly in H1/2 when n → +∞, thanks to the previous proposition.
This allows to pass to the limit in the feedback law: Ω(tn + t) → Ω∞(t) when n → +∞, for
every t > 0. Thanks to the first step, we get Ω∞ = 0.

In order to apply Proposition 2, we only need to check that ‖M0
∞ + e3‖H1 < δ, which is a

consequence of (14). �

3.2 Obstructions to global stabilization

Now, let us explain why these feedback laws may not provide global stabilization in H1((ω∗, ω
∗),S2).

The first obstuction is a topological one: the space H1((ω∗, ω
∗),S2) cannot be continuously

deformed to one point (because S
2 is not), thus global stabilization in this space is impossible.

Actually, for our explicit feedback laws, it is easy to see that M0 ≡ +e3 is an invariant
solution. It is interesting to know whether it is the only one (i.e. if one may expect the
stabilization of any initial condition M0 6= e3). The answer is no, as emphasized in the
following proposition.

Proposition 4 For every ω∗, ω
∗ ∈ R such that ω∗ < ω∗, there exists an infinite number of

non trivial functions in the LaSalle invariant set.

The proof is detailed in Appendix B. Actually, all the invariant solutions may be computed
explicitly.

12



4 Conclusion

We have investigated here the stabilization of an infinite dimensional system admitting a
continuous spectrum. We have designed a Lyapunov based feedback. Closed-loop simulations
illustrate the asymptotic convergence towards the goal steady-state. We have provided a local
and weak convergence result for the H1 topology. Simulations indicate that the domain of
attraction is far from being local and thus we can expect a large attraction domain for this
feedback law. However, the stabilization is not global because there exists non trivial invariant
solutions.

Few problems are still open concerning this problem. Are the invariant solutions unstable?
Does the local stabilization hold for the strong H1-topology (not only the weak one)? Is it
possible to get semi-global stabilization? What is the value of convergence rates? Is it possible
to produce arbitrarily fast stabilization?

More generally, this feedback and convergence analysis opens the way to asymptotic stabi-
lization of neutrally stable systems of infinite dimension with continuous spectra. For example,
it will be interesting to see if the following system (1D Maxwell-Lorentz model for the prop-
agation of an electro-magnetic wave in a non-homogeneous dispersive material) can also be
stabilized to zero:

∂2E
∂t2 + ∂2P

∂t2 = ∂2E
∂x2 , x ∈ (0, 1)

∂2P
∂t2

= p2(x)(E − P ), x ∈ (0, 1)
E(0, t) = u(t), E(1, t) = v(t)

with two controls u and v. When p(x) is a smooth strictly increasing positive function, the
above system admits as continuous spectrum ±ı]p(0), p(1)[.
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A Proof of Proposition 1

Let M0 ∈ H1((ω∗, ω
∗),S2) and R > 0 be such that

R > max
{

‖M0‖H1 ,
√

2L(0) + ω∗ − ω∗

}

(15)

Let C1, C2 > 0 be such that

‖fe−iωt‖H1 ≤ C1‖f‖H1 ,
∀f ∈ H1(ω∗, ω

∗),∀t ∈ [0, T ],
(16)

‖F (t,M1)− F (t,M2)‖H1 ≤ C2‖M1 −M2‖H1 ,
∀M1,M2 ∈ BR[H

1((ω∗, ω
∗),R3)],∀t ∈ [0, T ],

(17)

where BR[X] denote the closed ball centered at 0 with radius R, of the space X. Let T ∗ =
T ∗(R) > 0 be small enough so that

‖M0‖H1 + T ∗C1Kp(G+ 2T )R3 < R and T ∗C2 < 1. (18)

Let us consider the map Θ, defined on the space

E := BR[C
0([0, T ∗],H1((ω∗, ω

∗),R3))]

by

Θ(M)(t, ω) := M0(ω) +

∫ t

0
F (s,M(s, ω))ds

for every (t, ω) ∈ [0, T ∗]× (ω∗, ω
∗).

First step: Let us prove that Θ takes values in E. Let M ∈ E. It is clear that Θ(M) is
continuous in time with values in H1((ω∗, ω

∗),R3). For t ∈ [0, T ∗], we have

‖Θ(M)(t)‖H1 ≤ ‖M0‖H1 +

∫ t

0
‖F (s,M(s))‖H1ds.

14



By definition, we have

‖F (s,M(s))‖2H1

= ‖Ω(s)z(s)e−ıω
∫ s
0
ς‖2H1 + ‖ℜ[Ω(s)Z(s)e−ıω

∫ s
0
ς ]‖2H1

≤ |Ω(s)|2C2
1 (‖z(s)‖2H1 + ‖Z(s)‖2H1)

= C2
1 |Ω(s)|2‖M(s)‖2H1 .

Moreover, the Cauchy-Schwarz inequality gives

|Ω(s)| ≤ Kp(G+ 2)‖M(s)‖2H1 ,

thus, thanks to (18), we have

‖Θ(M)‖L∞((0,T ∗),H1)

≤ ‖M0‖H1 + T ∗C1Kp(G+ 2)R3 ≤ R.

Second step: Let is prove that Θ is a contraction. For M1,M2 ∈ E and t ∈ [0, T ∗], using
(17), we get

‖Θ(M1)(t)−Θ(M2)(t)‖H1

≤
∫ t
0 ‖F (s,M1(s))− F (s,M2(s))‖H1

≤ tC2‖M1 −M2‖L∞((0,T ∗),H1),

thus Θ is a contraction, thanks to (18).
Third step: Let us prove the existence and uniqueness of strong solutions, defined on

[0,+∞). Thanks to the Banach fixed point theorem, the map Θ has a unique fixed point.
We have proved that, for every R > 0, there exists T ∗ = T ∗(R) > 0 such that, for every

M0 ∈ BR[H
1((ω∗, ω

∗),S2)], there exists a unique weak solution

M ∈ C0([0, T ∗],H1((ω∗, ω
∗),R3))

in the sense
M(t, ω) = M0(ω) +

∫ t
0 F (s,M(s, ω))ds,

in H1(ω∗, ω
∗),∀t ∈ [0, T ∗].

From this equality, we deduce that

M ∈ C1
pw([0, T

∗],H1((ω∗, ω
∗),R3))

and
dM
dt (t, ω) = F (t,M(t, ω))
in H1((ω∗, ω

∗),R3),∀t ∈ [0, T ∗]− NT.

Since H1 ⊂ C0, we also have

dM
dt (t, ω) = F (t,M(t, ω))
∀t ∈ [0, T ∗]− NT,∀ω ∈ (ω∗, ω

∗).

This has 2 consequences:

• M(t, .) takes values in S
2 for every t ∈ [0, T ∗], indeed, M0 does and the following

computation is licit for every t ∈ [0, T ∗]− NT ,

d

dt
‖M(t, ω)‖2 = 2〈M(t, ω), F (t,M(t, ω))〉 = 0,

15



• the computations (9), (10) are licit, thus L(t) is not increasing.

Therefore, we have

‖M(T ∗)‖2H1

=
ω∗
∫

ω∗

|Z ′(T )|2 + z′(T )2 + |Z(T )|2 + z(T )2dω

≤ 2L(T ) + ω∗ − ω∗

≤ 2L(0) + ω∗ − ω∗ ≤ R2

thanks to (15). Thus, we can apply the previous result with M0 replaced by M(T ∗): it provides
a solution on [0, 2T ∗]. Iterating this again, we get a solution defined for every t ∈ [0,+∞). �

B Proof of Proposition 4

B.0.1 Heuristic

In this section, we perform an heuristic to prove that the LaSalle invariant set contains non
trivial solutions. In order to simplify the notations, we take G = 1.

Let M = (x, y, z) be in the LaSalle invariant set. In view of (12) and after integrating by
parts, we have















xz′′ − zx′′ = x on (ω∗, ω
∗),

yz′′ − zy′′ = y on (ω∗, ω
∗),

x2 + y2 + z2 = 1 on (ω∗, ω
∗),

xz′ = x′z and yz′ = y′z at ω∗, ω
∗.

(19)

First step: We proceed to eliminations in order to get an ordinary differential equation
involving only z. Differentiating the third equality of (19), we get

xx′ + yy′ + zz′ = 0 on (ω∗, ω
∗), (20)

xx′′ + (x′)2 + yy′′ + (y′)2 + zz′′ + (z′)2 = 0 on (ω∗, ω
∗). (21)

Multiplying this equality by z and using the 3 first equalities of (19), we get

z′′ + z2 − 1 + z[(x′)2 + (y′)2 + (z′)2] = 0 on (ω∗, ω
∗). (22)

Derivating this equality, using again the 2 first equalities of (19) together with (22) and (20)
we get

zz′′′ + 3z2z′ + z′(1− z′′) = 0 on (ω∗, ω
∗).

At the points ω∗ and ω∗, thanks to (20) and the 4th equality of (19), we have

0 = z(xx′ + yy′ + zz′) = z′(x2 + y2 + z2),

thus
z′ = 0 at ω∗ and ω∗.

We deduce from the 4th equality of (19) that

zx′ = zy′ = 0 at ω∗ and ω∗.
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Thus, the relation (22) provides

z′′ + z2 − 1 = 0 at ω∗ and ω∗.

Therefore, if M = (x, y, z) is in the invariant set, then z solves the following boundary value
problem

{

zz′′′ + 3z2z′ + z′(1− z′′) = 0 on (ω∗, ω
∗),

z′ = z′′ + z2 − 1 = 0 at ω∗ and ω∗,
(23)

and (x, y) are solutions of the first order system







xx′ + yy′ = −zz′ on (ω∗, ω
∗),

(x′)2 + (y′)2 = 1−z2−z′′

z − (z′)2 on (ω∗, ω
∗),

zx′ = zy′ = 0 at ω∗, ω
∗.

(24)

Second step: Let us solve the equation (23). We introduce the function F := z′′ +3z2. The
first equality of (23) allows to prove that

zF ′ = (F − 1)z on (ω∗, ω
∗).

Thus, there exists C ∈ R such that (F − 1) = Cz, i.e.

z′′ = −3z2 + Cz + 1 on (ω∗, ω
∗). (25)

Thanks to this equation, we deduce from the second equality of (23) that

z(C − 2z) at ω∗ and ω∗. (26)

Multiplying (25) by z′ and integrating over (ω∗, ω), we get

1

2
(z′)2 = −z3 +

C

2
z2 + z + cst.

The left hand side vanishes at the boundary, and the right hand side is equal to z at the
boundary thanks to (26), thus

z(ω∗) = z(ω∗).

The conclusion of this second step is the existence of a constant C ∈ R such that z solves one
of the following systems

(Σ1)

{

z′′ = −3z2 + Cz + 1 on (ω∗, ω
∗),

z = z′ = 0 at ω∗, ω
∗,

{

z′′ = −3z2 + Cz + 1 on (ω∗, ω
∗),

z − C/2 = z′ = 0 at ω∗, ω
∗.

Third step: We prove that (Σ1) has admissible solutions for arbitrarily small intervals
(ω∗, ω

∗). Multiplying the first equality of (Σ1) by z′ and integrating over (ω∗, ω), we get

(z′)2 = −2z3 + Cz2 + 2z on (ω∗, ω
∗). (27)
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The function t 7→ −2t3 + Ct2 + 2t vanishes at t = 0, t = βC := (C +
√
C2 + 16)/4 (simple

roots) and is positive on (0, βC ) thus one may define

G(x) :=

x
∫

0

dt√
−2t3 + Ct2 + 2t

,∀x ∈ [0, βC ],

αC := G

(

C +
√
C2 + 16

4

)

.

Then G ∈ C∞(0, βC ), G is increasing from 0 to αC and it has an infinite derivative at x = 0
and x = βC . Thus, G−1 : [0, αC ] → [0, βC ] belongs to C2(0, αC), it is increasing from 0 to βC
and its derivative vanishes at 0 and αC . Then the function z : (0, 2αC) → R, symmetric with
respect to αC and such that

z(ω) := G−1(ω),∀ω ∈ [0, αC ] (28)

is a solution of (Σ1) with ω∗ = 0 and ω∗ = 2αC . Let us emphasize that this solution is
admissible, when C < 0 because it takes values in [0, βC ] which in included in [0, 1). Notice
that

αC −−−−−→
C→−∞

0,

thus, we have built admissible solutions of (Σ1) for arbitrarily small intervals (ω∗, ω
∗) =

(0, 2αC ).

Fourth step: We prove that, for any solution of (Σ1) with C < 0, the system (24) has
solutions. First, notice that, thanks to (Σ1) and (27), we have

1− z2 − z′′

z
− (z′)2 = 2z3 − Cz2 − C.

Eliminating x′ in the two first equalities of (24), we get

a(y′)2 + by′ + c = 0

where
a := x2 + y2 = 1− z2,
b := 2zz′y,
c := (zz′)2 − x2(2z3 − Cz2 − C).

Thanks to (27) one may prove that the discriminant is

∆ := b2 − 4ac = −4Cx2.

Therefore,

y′ = − zz′

1− z2
y ±

√

|C|x
1− z2

.

By symmetry, we also have

x′ = − zz′

1− z2
x±

√

|C|y
1− z2

.

18



In order to ensure xx′ + yy′ + zz′ = 0, the signs ± need to be opposite. Therefore (x, y) are
solutions, for instance, of the following linear system























x′ = − zz′

1−z2
x+

√
|C|

1−z2
y,

y′ = − zz′

1−z2
y −

√
|C|

1−z2
x,

x(0) = x0,
y(0) = y0,

(29)

where x0 and y0 are real numbers such that x20 + y20 = 1.

Conclusion: For every C < 0, we have built candidates of invariant solutions of the closed
loop system associated to the interval (ω∗, ω

∗) = (0, 2αC ), which is arbitrarily small when
C → −∞. In order to conclude, one just needs to check that this candidate indeed solves
(19), which will be done rigourously in the next subsection.

Remark 1 Let us emphasize that the same phenomena happens if we put different gains in
the Lyapunov functions: for every G1, G2 > 0, the feedback laws associated to the control
Lyapunov function

L(t) :=
∫ ω∗

ω∗

[

|Z ′|2 + (z′)2 +G1z +G2|Z|2
]

dω

generate a non trivial LaSalle invariant set.

B.0.2 Rigorous proof

Lemma 2 There exists a continuous function

(−∞, 0) → (0,+∞)
C 7→ LC

such that,

• for every C ∈ (−∞, 0), there exists a function z ∈ C3([0, LC ], [0, 1)) such that z > 0 on
(0, LC) and

{

z′′ = −3z2 +Cz + 1 on (0, LC),
z = z′ = 0 at 0 and LC ,

• LC → 0 when C → −∞.

Proof: Consider LC := 2αC and z : [0, LC ] → R, symetric with respect to αC and defined by
(28). �

Proof of Proposition 4: Let −∞ < ω∗ < ω∗ < +∞. Let (N,C) ∈ N
∗ × R

∗
+ be such that

ω∗ −ω∗ = NLC (the existence is ensured by the intermediate values theorem and there exists
an infinite number of such couples). Let z : [0, LC ] → [0, 1) be as in the previous Lemma.
Let x0, y0 ∈ R be such that x20 + y20 = 1, and (x, y) be the solution of (29): this solution is
well defined on the whole interval [0, LC ] because the system is linear and its coefficients are
continuous. Now, let us check that (19) holds with (ω∗, ω

∗) replaced by (0, LC).
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First step: We check that the 3rd equality of (19) holds. Thanks to (29), the quantity
N := x2 + y2 + z2 solves

d

dt
(1−N) =

zz′

1− z2
(1−N) on (0, LC)

and (1−N)(0) = 0, thus N ≡ 1 on (0, LC ).

Second step: We check that the fourth equality of (19) holds. Since z = z′ = 0 at 0 and LC ,
we also have xz′ = x′z and yz′ = y′z at 0 and LC .

Third step: We check that the 2 first equations of (19) hold. The computations are similar
to the ones of the Heuristic but now, we know that the functions considered are smooth (they
are explicit), so these computations are licit. Starting from (29), using the result of the first
step, the equality (27), and the 2nd order equation solved by z, we get

(x′)2 + (y′)2 + (z′)2 = 2z − C =
1− z2 − z′′

z
. (30)

Thus, we have
z′′ + z2 − 1 + z[(x′)2 + (y′)2 + (z′)2] = 0. (31)

The result of the first step justifies

(x2 + y2 + z2)z′′ + [(x′)2 + (y′)2 + (z′)2]z − (x2 + y2) = 0,

that may be written

x(xz′′ − x) + y(yz′′ − y) + z2z′′ + [(x′)2 + (y′)2 + (z′)2]z = 0. (32)

Now, differentiating 2 times the identity x2+y2+z2 = 1 and multiplying the resulting equality
by z, we get

xx′′z + yy′′z + z2z′′ + [(x′)2 + (y′)2 + (z′)2]z = 0 (33)

Thus, (32)-(33) gives
x(xz′′ − x− x′′z) + y(yz′′ − y − y′′z) = 0. (34)

Derivating (31) and multiplying the resulting equality by z, we get

zz′′′ + 2z2z′ + z′(1− z2 − z′′) + 2z2(x′x′′ + y′y′′ + z′z′′) = 0. (35)

We deduce from the second order equation solved by z that

zz′′′ + 3z2z′ + z′(1− z′′) = 0. (36)

Indeed, we have
zz′′′ = z(−6zz′ + Cz′),

3z2z′ + z′(1− z′′) = z′[3z2 + 1 + 3z2 − Cz − 1] = zz′(6z − C).

Thanks to the identity xx′ + yy′ + zz′ = 0, the equation (36) may be written

zz′′′ + 2z2z′ + z′(1− z2 − z′′) + 2z[z′′(xx′ + yy′ + zz′) + zz′] = 0
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or
zz′′′ + 2z2z′ + z′(1− z2 − z′′)
+2z[x′(z′′x− x) + y′(z′′y − y) + z′′z′z] = 0

(37)

Finally, (37)-(35) gives

x′(xz′′ − x− x′′z) + y′(yz′′ − y − y′′z) = 0. (38)

Now, (34) and (38) give the conclusion, because

det

(

x y
x′ y′

)

=

√

|C|
1− z2

(x2 + y2) =
√

|C| 6= 0.

Conclusion: We build an invariant solution M̃ on (ω∗, ω
∗). This solution is LC-periodic and

satisfies M̃(ω) := (x, y, z)(ω − ω∗), ∀ω ∈ [ω∗, ω∗ + LC ]. �
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