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Abstract. Ultimate Opening (UO) is a powerful operator based on nu-
merical residues. In a multi-scale framework, it analyzes an image under a
series of increasing openings. Contrasted objects are detected when they
are filtered out by an opening, generating an important residue. Grad-
ual transitions make this operator underestimate the contrast of blurred
objects. In this paper we propose a solution to this problem, integrat-
ing series of non-null residues. The resulting operator handles correctly
blurred boundaries, without modifying the behavior on sharp transitions.
keywords Numerical residues, ultimate opening, attribute opening, im-
age segmentation, mathematical morphology.

1 Introduction

Given an image I, a residual operator (r(I)) in Mathematical Morphology is
defined as the difference between two operators (Ψ and ζ) applied to the given
image I: r(I) = Ψ(I) − ζ(I). Morphological gradient, defined as the residue of
dilation and erosion (δ(I) − ǫ(I)), or top-hats, defined as the residue of the
image and its opening (I − γ(I)) or its closing (φ(I) − I) are residual op-
erators extensively used. The extension of residues to a family of primitives
Ψi and ζi is defined as the union of residues computed at different sizes i:
r(I) = ∪i (Ψi(I)− ζi(I)). Ultimate erosion is an example of this type of op-
erators. It is defined as the union of residues of erosions (Ψi = ǫi) and openings
by reconstruction (ζi = γrec): UltimateErosion(I) = ∪i [ǫi(I)− γrec

i (I)]. Ulti-
mate erosion is used for segmenting binary connected objects. Another example
is the skeleton: the union of residues of erosions and the corresponding openings
Skeleton(I) = ∪i [ǫi(I)− γi(I)]. The application of ultimate erosion or skele-
ton to binary images produces only one non-null residue (of index i) for each
pixel. The union of these residues is then straightforward. This is not the case
for gray level images. Thus, the extension of residual operators with a family
of primitives to gray level images has to deal with the combination of several
residues at different sizes for the same pixel. Beucher in [1] proposes to keep for
each pixel the maximum residue and the index i corresponding to the size lead-
ing to it. Thus, he defines the quasi-distance function as the maximum residue
between consecutive erosions (QuasiDistance(I) = maxi (ǫi(I)− ǫi+1(I))) and



the ultimate opening (UO) as the maximum residue between consecutive open-
ings (UltimateOpening(I) = max (γi(I)− γi+1(I))). Retornaz and Marcotegui
in [2] introduce ultimate attribute openings, based on attribute operators [3],
and Fabrizio [4] proposes an efficient implementation based on a max-tree rep-
resentation. Leite and Guimaräes propose an image filtering framework based
on residues by attribute, but requires a set of parameters (size or complexity) in
order to select which regions will be preserved [5].

(UO) is a powerful residual operator, able to segment generic images without
a priori size information. It has been successfully used for several applications:
granulometry of rocks [6], automatic text localization [2] and façade segmenta-
tion [7]. In this paper we focus on the behavior of this operator on gradual tran-
sitions and propose a solution to avoid underestimating the contrast of blurred
objects. This paper is organized as follows: section 2 reminds the ultimate open-
ing principle, section 3 analyzes the problem of gradual transitions and proposes
a solution to deal with blurred objects, section A explains the implementation
of the new operator, section 4 illustrates the performance of the new operator
and finally, section 5 concludes the paper.

2 Ultimate Opening

2.1 Ultimate opening definition

Following a multi-scale approach, UO analyzes the image while performing a
series of openings of increasing sizes: γλ(I), with λ = {0, 1, ..., N − 1} and N the
maximum opening size considered. The series of differences between consecutive
openings, named residues (rλ(I) = γλ(I) − γλ+1(I)), is computed. Each pixel
keeps two significant pieces of information:

– the maximal residue, Rθ(I) = maxλ(rλ(I)). It is the strongest change gen-
erated by an opening. An important structure is supposed to be filtered out
by this opening and the corresponding residue estimates its contrast.

– the size of the opening leading to the maximal residue qθ(I). If several open-
ings lead to the same maximum rλ(I) = Rθ(I), the largest λ among them
is chosen (as proposed in the UO definition [1]). qθ(I) is set at 0 for pixels
where all residues are null. This happens for the minimum of the image or
for objects larger than N, the largest opening size considered.

The definition of the UO is then written as:

Definition 1 (Ultimate opening [1]). The ultimate opening operator, θ, of

an image I is given by:

θ (I) : I
θ

−→ (Rθ (I) , qθ (I)) (1)

where,

Rθ (I) = maxλ(rλ(I)) = maxλ (γλ(I)− γλ+1(I)) (2)



qθ(I) =

{

max {λ+ 1 | rλ(I) = Rθ(I)} Rθ(I) > 0
0 Rθ(I) = 0

(3)

where, (γλ)λ∈{0,1,...N} is an increasing family of openings.

Labeling qθ(I) we get a partial partition [8, 9]: pixels are grouped in non
intersecting segments that do not cover the whole domain (qθ(I) is set at 0 for
pixels where all residues are null).

Ultimate opening segments light objects in a dark background. In order to
deal with dark objects in a light background, an ultimate closing should be used.
The ultimate closing can also be applied to the gradient image, dealing with both
polarities at the same time. The use of a gradient image is not recommended for
images containing thin objects.

In this paper we focus on attribute openings. If not specified in the text,
height attribute (y-extent of connected components) will be used in the following.

2.2 Example of application

Fig. 1 shows the ultimate height closing of a real image 1(a). The letters of the
image are not homogeneous. They are filled with a texture from another image.
Fig. 1(b) shows qθ(I) and Fig. 1(c) Rθ(I). In spite of the fact that the letters
are textured, most of them are correctly segmented, because their texture is less
contrasted than the contrast between the characters and their background.

In order to understand this process, let us see the evolution with the series
of closings (characters are darker than their background) of two pixels inside
the same letter. Two pixels inside the first letter “N” of “GENERATION” are
randomly chosen. The series of values of these two pixels, after applying closings
of increasing sizes, are shown in blue dashed line in Fig. 2(a) and 2(b). The
corresponding residues (the derivative of the blue dashed curve) are illustrated
in green solid curves of Fig. 2(a) and Fig. 2(b). Residues for small closing sizes
correspond to the internal fluctuations of the letter. These residues are different
for different pixels of the same letter. However, both pixels have their highest
residue for a closing of size 83. This is because the letter is 82 pixels high, and
it is filtered out by a closing of size 83 (see Fig. 2(c) and Fig. 2(d)). The same
important residue is seen by all the pixels of the structure. Thus, ultimate closing
catches contrasted structures when they are filtered out, leading to interesting
segmentation results without a priori information.

3 Gradual transitions and ∆ ultimate opening

Ultimate opening produces interesting segmentation results in very diverse situa-
tions. Nevertheless, it underestimates the contrast of blurred objects. Indeed, the
boundary of a blurred object is a gradual transition. The contrast of the object
is then divided into several steps. The contrast associated by UO to the object
would be the largest of these steps, inevitably smaller than the real contrast of



(a) Original Image

(b) qθ(I) (size information) (c) Rθ(I) (contrast information)

Fig. 1: Ultimate Height Closing : (b) qθ(I), represented in false colors in order to see
the segmented regions and (c) Rθ(I).

the object. An example of this situation is shown in Fig. 3. Fig. 3(a) shows the
original image and Fig. 3(b) the profile of a horizontal line (superimposed in
white in Fig. 3(a)). The gray level value of the letters is about 160 while the
background value is about 10. The contrast of letters is then about 150. But the
contrast estimated by the UO is only about 20 (see Rθ in Fig. 3(d)). Fig. 3(c)
shows the pixel value evolution (in blue dashed line) of a pixel inside a letter,
with a series of increasing openings. The corresponding residues are shown in
green solid line. We can observe a series of non null residues for consecutive
opening sizes, corresponding to the gradual transitions of the blurred boundary.
In fact, transition regions are characterized by their small size. This is why small
residues appear for consecutive opening sizes. If we integrate the series of non
null residues, assuming that they correspond to transition zones, we get a much
better contrast estimation. Red dashdotted line in Fig. 3(c) shows the integrated
residues. Fig. 5 shows which pixels benefit from the integration. We can see that
they are located in the boundary of the blurred objects.

This idea has been generalized to introduce the ∆UO, that integrates the
series of residues until finding a series of ∆ null residues. For ∆ = 0 we get
the classic UO, ∆ = 1 integrates series of non-null residues, ∆ = 2 integrates
series of residues separated by at least 2 consecutive null residues, and so on.
The larger ∆ is, the larger transition zones can be.



(a) Pixel evolution (in blue dashed line)
and corresponding residues (in green
solid line) of a pixel inside “N”.

(b) Pixel evolution (in blue dashed line)
and corresponding residues (in green
solid line) of another pixel inside the
same “N”

(c) Closing of size 82 (d) Closing of size 83

Fig. 2: Intermediate images of Ultimate Height Closing

Fig. 4(a) and Fig. 4(b) show Rθ and qθ of 3(a) while Fig. 4(c) and Fig. 4(d)
show R∆

θ and q∆θ with height attribute openings, and ∆ = 1. We can appreciate
a much better contrast estimation of ∆UAO.

4 Results

In this section we report several results, illustrating the performance of ∆UAO

with ∆ = 1 in several complex images from the public ICDAR 2003 image
database [10]. In order to deal with both polarities ∆UAO is applied to image
I and to its inverse Ic. For each pixel, the polarity leading to a bigger residue is
kept (see Eq.4).

Rθ (I, I
c) = max (Rθ (I) , Rθ (I

c))

qθ (I, I
c) =

{

qθ (I) Rθ (I) > Rθ (I
c)

qθ (I
c) otherwise

(4)

The gradient is not used in order to be able to detect thin objects.



(a) Original image

(b) Original pixel values of white line in
(a)

(c) Pixel value, residues and integrated
residues of a pixel inside letter “e”.

(d) Rθ (I) (e) R∆

θ
(I)

Fig. 3: Residues of a gradual transition (blurred objects).

Fig. 6 compares classical UAO with ∆UAO. For each image, the first row
shows the original image (on the left) and the classical UAO residue, according
to equation 4. The contrast of the selected structures is clearly underestimated.
In the second row, q∆θ (I, Ic) (on the left), represented in false colors in order to
see the segmented regions and its corresponding residual information R∆

θ (I, Ic)
(on the right). Satisfactory results have been obtained in difficult situations:
complex background or illumination problems. Most letters have been correctly
segmented in q∆θ and their associated contrast in R∆

θ corresponds to their real
contrast.



(a) Rθ (I) (b) qθ (I)

(c) R∆

θ
(I) (d) q∆

θ
(I)

Fig. 4: UAO and ∆UAO comparison.

Fig. 5: Transition zones, detected as those that benefit from the residues integration.

5 Conclusions

In this paper we analyze the behavior of ultimate opening on blurred objects and
see that it underestimates their contrast. We propose a solution, the ∆ ultimate
opening, that integrates series of residues, getting a much better contrast esti-
mation. Moreover, ∆UO can be used as a detector of blurred contours, without
any additional parameter. They are defined as the set of pixels that benefit from
the integration.

We propose an efficient implementation of ∆UAO, as a simple modification
from the max-tree based UAO implementation.

Interesting segmentation results for text segmentation in generic images are
reported.

In the future, other criteria to combine residues can be studied. For exam-
ple, the region stability, stablishing some links with Maximal Stable Extremal
Regions [11]. We also intend to analyze the influence of the chosen attribute on
UAO result.
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Fig. 6: ∆UAO Results of ∆ ultimate height opening. For each image, first row: original
image and Rθ; second row: q∆θ (I, Ic) and R∆

θ (I, Ic).
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A ∆UAO implementation on Max-tree

∆UAO can be implemented easily and efficiently on a max-tree representation.
As explained in [4], UAO can be computed in a single tree traversal, from the
root to the leaves, with the following formula:

rλ (node) =

{

t(node)− t(parent) + rλ (parent) κ(parent) == κ(node)
t(node)− t(parent) otherwise

(5)
where node and parent are two linked nodes of the max-tree, t(node) the

gray level associated to node and κ(node) its corresponding attribute.
In order to implement ∆UAO, the condition (κ(parent) == κ(node)) is

replaced by (κ(parent) − κ(node)) ≤ ∆ in the previous equation. The reason



for that is the following: an opening of size κ(node)+1 will filter out the region
corresponding to the node, assigning to it the value of its parent. Thus, the
following opening producing a residue in this region would be the opening of
size κ(parent) + 1, that removes the parent node. Therefore, openings from size
κ(node)+2 to size κ(parent) (both included) will not modify the region, leading
to a series of κ(parent) − κ(node) − 1 null-residues. Given that, according to
∆UAO definition, residues should be integrated until finding a series of ∆ null
residues, the condition to this integration is set at (κ(parent) − κ(node) ≤ ∆).
The formula for r∆λ computation becomes:

r∆λ (node) =

{

t(node)− t(parent) + r∆λ (parent) κ(parent)− κ(node) ≤ ∆

t(node)− t(parent) otherwise
(6)

The pseudo-code for ∆UAO is shown in algorithm 1. R∆
θ is computed from

r∆λ as explained in [4, 12]. The process starts at the root node: R∆
θ (root) and

q∆θ (root) are initialized to zero. Then, function ComputeNode is called for each
root child. ComputeNode function (see algorithm 2) computes r∆λ (node) and
compares it with R∆

θ (parent). R∆
θ (node) keeps the maximum value between

them: R∆
θ (node) = max(r∆λ (node), R∆

θ (parent)). q∆θ computation requires a par-
ticular attention. By definition it should be set at the size of the opening pro-
ducing the highest residue. But several openings contribute to R∆

θ . Which size
should be chosen for q∆θ ? If R∆

θ (parent) is higher than r∆λ (node), R∆
θ (parent)

and q∆θ (parent) are propagated to the node (lines 14 and 15 in algorithm 2).
Otherwise, if r∆λ (node) becomes R∆

θ (node), q∆θ (node) is set at:

– κ(node)+1, if the node does not belong to an integration series (is∆ is false)
or if node is the first node of the integration series when a maximal residue
is produced (is∆ is true but q propagation is false; lines 20 and 21).

– q∆θ (parent), until the end of the integration process (is∆ and q propagation

are both true; lines 18 and 19).

Thus, q∆θ is set at the largest opening size involved in the integration process,
when a maximum residue is produced. This size corresponds to the actual size
of the detected region.

An example of r∆λ computation, with ∆ = 1, for a synthetic profile of Fig. 7a
is illustrated in Fig. 8. For the sake of simplicity, tree nodes are labelled with their
gray level value (which is obviously not the case in the software implementation).

– The residue of the root node (0) is initialized to zero: r∆λ (0) = 0. R∆
θ (0) and

q∆θ (0) are also initialized to 0.
– Then, node 3 is processed: r∆λ (3) = rλ(3) = 3. No integration is performed,

since κ(3) − κ(0) = 10 − 8 = 2 > ∆. r∆λ (3) > R∆
θ (0), then R∆

θ (3) = r∆λ (3)
and q∆θ (3) = κ(3) + 1 = 9.

– After that, node 5 is processed: r∆λ (5) = rλ(5) = 2. No integration is per-
formed, because κ(5) − κ(3) = 8 − 6 = 2 > ∆. Since r∆λ (5) < R∆

θ (3), R∆
θ

and q∆θ are propagated from the parent (node 3) to the child (node 5):
R∆

θ (5) = R∆
θ (3) = 3 and q∆θ (5) = q∆θ (3) = 9.



Algorithm 1: Compute Delta Ultimate Attribute Opening

1 Compute∆UAO()

// Initialization

2 R∆

θ (root) = 0

3 q∆θ (root) = 0
4 q propagation = 0

// Compute children

5 foreach child in Children(root) do
6 ComputeNode(child,root,q propagation)

Algorithm 2: Compute Node

7 ComputeNode(node,parent,q_propagation)

// Verify ∆ attribute

8 is∆ = (κ(parent)− κ(node)) ≤ ∆

// Compute residue r∆λ (node)
9 if (is∆) then

10 r∆λ (node) = t(node)− t(parent) + r∆λ (parent)
11 else
12 rλ(node)

∆ = t(node)− t(parent)

// Compute R∆

θ (node) and q∆θ (node)

13 if (R∆

θ (parent) > r∆λ (node)) then
14 R∆

θ (node) = R∆

θ (parent)

15 q∆θ (node) = q∆θ (parent)

16 else
17 R∆

θ (node) = r∆λ (node)
18 if (is∆∧ q propagation) then
19 q∆θ (node) = q∆θ (parent)
20 else
21 q∆θ (node) = κ(node) + 1

// Compute children

22 foreach child in Children(node) do
23 ComputeNode(child,node,is∆)

– When computing r∆λ (7), rλ(7) should be added to r∆λ (5): r∆λ (7) = rλ(7) +
r∆λ (5) = 2 + 2, because κ(7) − κ(5) = 6 − 5 = 1 ≤ ∆. This residue is larger
than R∆

θ (parent), then R∆
θ (7) = r∆λ (7) and q∆θ (7) = κ(7) + 1 = 6. The

variable q propagation is activated for the rest of the integration series.
– This integration continues till node 9 (attributes have consecutive values:

from 6 to 3), leading to r∆λ (9) = 2+ 2+ 1+ 1 = 6. Thus R∆
θ (8) = r∆λ (8) = 5

and R∆
θ (9) = r∆λ (9) = 6.



(a) Profile (b) Profile + Max-

Tree

(c) R∆

θ
(d) q∆

θ

Fig. 7: (a) Profile with graylevels (t) and attribute (κ), (b) Max-Tree. (c)-(d) ∆UAO

outputs

Fig. 8: ∆UAO on Max-tree.


