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1. INTRODUCTION  

When underground excavations are made in rigid rock 
masses intercepted by several discontinuities, blocks 
may form at the free surface and present the risk of 
sliding or falling into the open space causing damage. 
Modeling such phenomena is an essential requirement in 
order to predict a degree of instability and evaluate the 
support needed.  

Adopting a continuum model without discontinuities is 
not appropriate in this case since the main deformation 
occurs due to the displacements about the joints rather 
than to the deformation of the rock matrix.  

Furthermore, applying a complete discontinuous 
method, including all joints, is computationally hard 
because of the complexity of the three dimensional 
geometry. Additionally, the uncertainties concerning the 
distribution of joint sets require performing multiple 
simulations in order to cover all the possibilities. 

From the necessity to overcome this complexity, came 
the idea of studying separately only the blocks formed at 
the surface of the tunnel. Supporting the unstable blocks 
is assumed to assure stability for all the rock mass. This 
approach is simple and can provide the engineer with an 
easy tool to evaluate the stability of the excavation or to 
choose its optimum direction. 

The main assumptions of isolated rock block methods 
are: 

• The rock mass is infinitely rigid and any 
displacement takes place only along the 
discontinuities, supposed to be perfectly planar. 

• While studying one rock block, the rest of the rock 
mass is considered to be rigid and continuous. 
Interaction between several blocks is not taken 
into account. 

The generation of blocks can be made by studying all the 
combinations of discontinuities that may form 
removable blocks at the surface of the tunnel. This 
approach does not require information of spacing 
between discontinuities or their exact location 
(ubiquitous approach). Another approach consists of 
generating all blocks by using distribution of joint sets or 
introducing joints one by one (specific approach). This 
article does not consider the problem of generation of the 
rock blocks in the rock mass. It focuses only on the 
stability analysis of a rock block once it is generated by 
whatever method. 

Isolated rock block methods have been widely used. But 
despite the enormous simplification of ignoring the 
interaction with other blocks, these methods still lack the 
ability to give a rigorous representation of the block 
behavior.   
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ABSTRACT: When an underground excavation is cut in a discontinuous rigid rock mass, instabilities may occur mainly due to 
block failure. Isolated rigid block methods were developed since the 80’s to locate critical blocks and evaluate their stability but 
have major drawbacks: ignoring in-situ stresses, mechanical behavior of joints and rotational movements. Other methods included 
those variables improperly and were limited to simple cases. This paper presents a critical review of previous approaches then a 
more complete model to study isolated rock blocks is proposed. It is based on the fact that stresses on the block faces are known 
before excavation and once a face is freed, the block moves as a rigid body in translation and rotation. Applying equilibrium and 
rock joint behavior equations, the stresses on the faces after excavation can be calculated and stability evaluated using a Mohr-
Coulomb criterion. Any block geometry can be studied by partitioning the block faces into simple elements. Numerical integration 
is done on elements using Gauss points. The method is applied on a case study and comparisons are made with other simplified 
methods. Finally, a parametrical analysis shows the important influence of in-situ stresses and joint stiffnesses on the block’s 
stability. 

 
 



The following paragraph gives a review of the principal 
defaults of the methods so far used. Then, a complete 
model considering the real behavior of a block as a rigid 
body translating and rotating is presented. In this model , 
the initial stresses on the joints are relaxed with the 
block’s displacement while respecting equilibrium 
equations. Despite its simplicity, such a model has never 
been addressed in literature.  

2. REVIEW OF ROCK BLOCK STABILITY 
METHODS 

2.1. Classical ‘Keyblock’ method (limit 
equilibrium method) 

The method was first developed by ‘Goodman and Shi’ 
and ‘Warburton’ and is a limit equilibrium method [1,2]. 

In addition to the general assumptions of isolated block 
theory, stresses acting on the block faces are supposed to 
be uniformly distributed and are replaced by one 
‘reaction’ force vector on each face. These are calculated 
ignoring in-situ stresses in the rock mass. The only 
known forces acting on the block are its weight and 
possibly another force resulting from water pressure and 
support. Once the reaction forces determined the block is 
declared to be unstable if these forces exceed the forces 
that will cause limit equilibrium. 

Indeterminate problem and assumptions: 
Equilibrium equations are not enough to determine the 
‘reaction’ forces. Even for the simplest three-
dimensional block, a tetrahedral block, the number of 
unknowns is 9 (three dimensional reaction force on each 
face), while the number of equilibrium equations for 
forces and moments is 6.  

To solve that indetermination, the ‘Keyblock’ approach 
postulates that reaction forces can only occur on two 
faces, one face or none, reducing the number of 
unknowns to a maximum of 6. It follows that in order to 
determine which faces are the ones ‘carrying’ the 
reactions, a pre-analysis should be made to find out how 
the block will move. If only one or two faces can ‘carry’ 
a force it is assumed that other faces with null forces 
should detach from the rock mass.  

Kinematical analysis: 
Consequently, the only possible movements of the block 
that can be considered to make the problem solvable are 
sliding on one face, two faces or falling. Although this 
assumption is understandable for a tetrahedral block, 
having three contact faces, it does not represent the real 
situation when a block is an arbitrary polyhedron. 

The mode of movement needs to be studied with 
predefined rules considering only the geometry of the 
block and the direction of the ‘active’ force (weight and 
possibly water forces or another exterior force). 

If A
ur

 is the ‘active’ force acting on the block, in
r

 the 

interior normal to the block face ‘i’, is
r

the possible 

sliding direction on face ‘i’ and ijs
r

 the possible sliding 
direction on the intersection of faces ‘i’ and ‘j’, these 
rules are as follows :  

Falling:  

   ii A.n 0∀ >
ur r

                                                               (1) 

For sliding on one face i:  

  i i jA.n 0 and j i s .n 0≤ ∀ ≠ >
ur r r r

                                    (2) 

Sliding on two faces: 

     ij k i j j ik i et k j, s .n 0 s .n 0 s .n 0∀ ≠ ≠ > ≤ ≤
r r r r r r

        (3) 

The direction of movement is the same as the active 
force if the block is falling. It is the projection of the 
active force on the sliding face if sliding on one face and 
it is the same as the intersection of two faces if sliding 
on two faces. (See “Fig. 1.”) 
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Fig. 1. Modes of displacement in the ‘keyblock’ theory  

Mechanical behavior, a consequence of kinematical 
behavior: 

The determination of forces acting on the faces depends 
on the kinematical analysis. That separation renders the 
problem solvable but there is no rigorous justification for 
it.  Once the forces acting on the faces are determined, a 
factor of safety ‘SF’ is calculated: 

• Falling wedge: Forces are null and SF=0 
• Sliding on one or two faces: Forces are calculated 

using equilibrium equations and assuming that the 
shear forces have the same direction as sliding 
direction. If Fn and Ft are the norms of normal and 
shear forces respectively, c the cohesion, S the 
surfaces of sliding and φ  the friction angle, 

( )n tSF c S F tan( ) Fφ= +                             (4) 

 
Further remarks: 
Studied using that approach, the problem of the block at 
the surface of a tunnel is equivalent to the problem of 
someone putting a block at its place in a mold 
representing a tunnel and seeing how it will move with 
the additional simplification of ignoring rotation. It is an 
analysis only based on geometry and does not represent 
the real conditions underground. The successive 



simplifications adopted and the technique of dividing the 
problem to kinematical and mechanical analysis serve to 
make the problem solvable but do not contribute to 
model rigorously the behavior of the block. 

Some studies aimed to validate ‘Keyblock’ theory using 
field case history or physical models. In both cases the 
in-situ stresses were too low to validate the method for 
underground conditions [3,4]. Additionally, it was 
shown that ‘Keyblock’ theory gives wrong results when 
complex behaviors occur, such as rotation associated to 
translation [3].  

2.2. ‘Keyblock’ improvements 
Most of ‘Keyblock’ method improvements were 
concerned with geometrical aspects without 
reconsidering the mechanical stability evaluation of a 
single block. In fact, since the conception of ‘Keyblock’ 
theory, many softwares were developed on its basis. The 
only feature that distinguishes one from the other is the 
method used for generating the blocks [5-12]. 

Some approaches looked back at the stability evaluation 
considering probabilities. A method to identify the most 
critical block based on probabilities of joint intersection 
was developed [13]. Also, some studies tried to 
generalize the method to a group of blocks in 2D [14]. 

The only methods that tried to integrate in-situ stresses 
and rotation for a better modeling of the block stability 
are explained hereafter.  

Including in-situ stresses: 
‘Keyblock’ method, as explained above, is more adapted 
for problems where in-situ stresses are low. Aware of 
that limitation, ‘Unwedge’ software developers included 
in-situ stress analysis to the classical methodology 
[12,15]. Supposing the initial stresses to be known 
before excavation, a ‘boundary element model’ is used 
to calculate the redistribution of stresses after 
excavation. This model is continuous ignoring the 
discontinuities, i.e. the block faces are only surface 
geometries. The normal forces acting on the wedge faces 
are calculated from the integration of stresses obtained 
from the continuous model. These normal forces are 
added to the ‘active’ force then the usual kinematical 
analysis is performed. Unlike the classical kinematical 
analysis, the shear strength is calculated on all faces and 
not only on the sliding faces. The methodology can be 
criticized based on the following points:  

• Actual normal stresses acting on the wedge faces 
are different from the normal stresses calculated 
from a model where discontinuities are not 
included. 

• Only one part of the information from stress 
analysis is kept: shear stresses are not considered 
during the active force calculation. The only 
justification is that, if they were added, 

equilibrium necessarily implies that the active 
force would be null and any further analysis would 
be impossible using the ‘Keyblock’ methodology.  

• If the continuum model really gave accurate 
information of the stresses acting on the faces, it 
would be more logical to analyze the stability of 
the wedge by checking if the criterion (Mohr-
Coulomb for example) is respected on all faces. 

Consequently, this approach is a palliative to the 
insufficiencies of block theory but does not present a 
rigorous well justified scientific approach.  

Including rotation: 
Rotational movements can intervene to stabilize the 
block or on the contrary to constrain its movement. 
These are not included in the classical block theory 
analysis. Some authors have developed kinematical rules 
to determine the mode of possible rotation and to 
evaluate stability based on these phenomena [16-18]. 
However, among all the available softwares based on 
‘Keyblock’ theory, none has included rotational analysis. 
In fact, the complexity of this analysis renders it difficult 
to integrate in the ‘Keyblock’ algorithm. 

2.3. Relaxation models for falling blocks  
2D relaxation methods: 
Many authors adopted analytical solutions for the 
stability of blocks in the roof of underground 
excavations considering the effect of stresses and joint 
behavior [19-24]. However, the approaches are generally 
limited to simple 2D cases and present a lot of 
drawbacks. 

The general procedure was first developed by Hoek for a 
symmetric block on the roof of a horizontal excavation 
[19]. It consists of a two stages analysis, as illustrated in 
“Fig. 2”: 

(i) The joints are infinitely stiff while the surrounding 
rock mass is homogeneous, isotropic, linearly 
elastic transmitting a horizontal force H0 to each 
face. The block weight is not supposed to act at 
this phase. 

(ii) The rock mass is infinitely rigid whereas the joints 
are deformable. The block’s weight is supposed to 
act as well as any additional force R. The 
displacement of the block is calculated by relaxing 
the joint forces so as to restore the equilibrium. 
The normal force N on a joint vary linearly with 
the normal displacement Un according to N=N0-
KnUn. The shear force also vary linearly with shear 
displacement Ut and can be calculated by T=T0-
K tUt. A pull out force Pl that causes limit 
equilibrium on the faces serves to evaluate the 
stability of the block. The coefficient (R+Pl)/W is 
used as the factor of safety 
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Fig. 2. Two-stage relaxation method for a 2D block  

During calculation, the stresses are supposed to be 
uniform on the faces of the block. Hence, yield occurs 
uniformly on all the point of both faces (or one face if 
the block is not symmetric). The displacement of the 
block takes place vertically downward in the second 
stage.  

The improvements and general limitations are explained 
hereafter:  

Crawford and Bray (1983) showed by numerical 
modeling that the presence of a vertical stress has a 
destabilizing effect on the wedge [20]. However, in the 
analytical procedure adopted, this vertical component 
acting on the face has to be null at the first stage. That is 
due to the necessity of verifying equilibrium equations 
while considering one force per face.  

Some authors calculated the initial forces acting on the 
wedge (N0 and T0) integrating stresses from an elastic 
continuous model :  Elseworth (1986) considered an 
initial hydrostatic stress field around a circular opening, 
[21]; Sofianos et al. (1999) complicated the case by 
assuming non hydrostatic stress field [22]; Nomikos et 
al. (2002, 2006) considered an inclined stress field [23, 
24]. In all cases, one force per face is considered (as if 
considering uniform distribution of stresses on each 
face). Comparison made by the authors with a ‘Udec’ 
model showed a similitude of the pull out resistance for 
the cases of a horizontal excavation roof. However, for 
the cases of circular excavation, the analytical model 
overestimates the stability. This is due to partial yield of 
the joint face that cannot be taken into account when 
considering one force per face.  

On the other hand, integrating the initial stresses from a 
continuous model is not well justified [21, 24]. (See 
‘section 3.5’ for comparison of stresses on the block 
between continuous and discontinuous models). 
Furthermore, the weight is not considered to have any 
influence on the distribution of stresses at the first stage. 
It is only by adding an additional force to cause yield 
that joints are solicited in this method.   

Concerning kinematics, rigid body displacement is 
modeled without taking into account the rotation 
component, not even for the inclined stress field or for 
the non symmetric wedges. Let’s note that this omission 
is directly linked to the simplification of one force per 

face. In this case, all points belonging to one face should 
have the same displacement vector. 

Finally, all the methods described above are in 2D and 
limited to simple triangular roof blocks. Furthermore, 
the principle of dividing the analysis in two steps, where 
the weight does not affect the initial stresses, is not 
representative of the real block’s behavior during 
excavation.  

3D relaxation method:  
This method is an extension of previous 2D relaxation 
methods. It uses the same two steps analysis but, unlike 
previous methods, the block’s faces are meshed [25]. 
Stresses at the first stage are integrated from a 
continuous model and shear stresses are modified when 
the Mohr-Coulomb criterion is not respected. By doing 
so, the equilibrium of the block is violated at the first 
stage and all the rest of the analysis becomes inaccurate. 
At the second stage, a vertical downward displacement 
of the block is assumed and a corresponding pull out 
force calculated. This pull out force is not representative 
of the block state of stability since one part of it 
contributes to restore the equilibrium that was initially 
violated.  

2.4. Brady and Brown limit equilibrium method 
This method studies a tetrahedral block whose summit is 
vertically projected on its base [19]. The block’s 
displacement is assumed to be vertically down and joint 
behavior is ignored. The indetermination of forces on the 
faces is resolved by the following procedure: 

Normal forces on the joints are integrated from a 
previous elastic analysis considering a deformable rock 
with no discontinuities. By assuming that all faces yield 
at the same time a pull out force is calculated. At each 
face, shear forces causing yield are supposed to have the 
same direction as the bisecting line of the face. This 
assumption is not justified. 

Although this method takes account of in-situ stresses, it 
is limited to simple block cases, calculates stresses using 
a continuous model, and does not consider the effect of 
joint behavior.  

2.5. Conclusion 
Despite the enormous simplification of studying one 
block at a time, considering all the rest of the rock mass 
to be rigid and continuous, none of the previous methods 
is a complete mechanical analysis. All are based on 
successive assumptions to be able to solve the 
indetermination of forces on the block faces: the 
‘Keyblock’ method divides the analysis into kinematical 
and mechanical analysis considering only simplified 
displacements and ignoring in-situ stresses; ‘relaxation 
methods’ include the rock joint behavior but study only 
the simple cases of roof block displacing vertically 
downward; all approaches including stresses calculate 



them using a continuous model where the presence of 
joints is ignored. From those limitations comes the 
necessity to develop a more complete method that takes 
into account the effect of in-situ stresses and models 
accurately the block’s translational and rotational 
movement.    

3. NEW DEVELOPED METHOD (ISOBLOC) 

The new method studies the block behavior during the 
process of excavation.  Before excavation, stresses in the 
rock mass and on the block faces are supposed to be 
known. After excavation, the free faces are distressed 
causing the block to move. At the contact faces, stresses 
change according to joint’s behavior laws. 

The new method adopts the same general assumptions as 
classical isolated rock block methods: considering a 
rigid rock and studying one block at a time. However, 
unlike ‘Keyblock’ methods, displacement is not 
predetermined by a kinematic analysis. The 
indetermination that comes from using only equilibrium 
equations is solved by considering the joint behavior. 
Compared to relaxation methods, it is more general and 
accurate. The analysis leads to solving a linear system 
whose only unknowns are the displacement vector of a 
reference point and the rotation vector of the block. 

3.1. Theoretical study 
Equilibrium between initial and final stages: 
Considering a block (Ω) located at the surface of a future 
excavation, it is limited by a boundary ∂Ω=∑J+∑L where 
∑J designates the joint boundaries and ∑L the boundary 
to be excavated.  

At the initial stage, before excavation, the stress tensor 

0σ is known at every point of the rock mass.  The block 

is at equilibrium under volume forces 0σ−∇
r

(i.e. its 

weight if stresses vary linearly with depth) and surface 
forces 0 nσ− r

(integration of stresses on the block faces). 

The process of excavation is modeled by diminishing the 
initial surface forces acting on the ‘future’ free faces. 
During excavation the block is maintained at 
equilibrium. Volume forces remain the same and surface 
forces vary linearly with the displacement. At the end of 
excavation, the stresses are null at any point of the free 
faces or equal to ( Sp .n− r

) if a reinforcement (ps) is 

applied.  

 We designate by∆σr  the variation of the stress vector 
related to the local displacement of the point considered 
and by fp  a possible additional water pressure due to a 

fluid contained in the joint.  

At any point x
r

 of the block’s boundary, the final stress 
state, after excavation, is as follows: 

S

0 f

p n if x L
( x )

n p n if x J
σ σ ∆σ

− ∈∑=  + − ∈∑

r r
ur

r r r r                  (5) 

Subtracting the equilibrium equations of forces and 
moments, between the stages after and before 
excavation, leads to the following equations: 

 ( )0c n pn dS 0
Ω

∆σ σ
∂

− − =∫
r r rr

                                 (6) 

 ( )0x c n pn dS 0
Ω

∆σ σ
∂

∧ − − =∫
r r r rr

                           (7) 

where c(x)= 1 and p=ps  if x∈∑L 

            c(x)= 0 and p=pf  if x∈∑J 

 Joints behavior : expression of ∆σr : 

At any point x
r

 of the block joint faces, normal and 
shear stresses vary linearly respectively to its normal and 
shear displacements. The joint behavior is expressed in 
“Eq.(8)” and “Eq.(9)”.  

nnn UK−=∆σ                                                   (8) 

t tK U∆τ = −
rr

                                                           (9) 

Where at the point x
r

 considered:  

• Kn and Kt are normal and shear stiffness 
respectively. 

• nU U.n=
r r

 and ( )tU U U .n .n= −
r r r r

 are the normal 

and shear relative displacements and U
r

 the vector 
of relative displacement  

• n .n∆σ ∆σ= r r
 and n n∆τ σ ∆σ= ∆ −r r r

 are the 

normal and shear stress variations. 
 

By combining these equations, the variation of stresses 
at one point of a joint can be expressed by “Eq.(10)”. 

HU∆σ = −
rr

 with  t n tH K I ( K K )n n= + − ⊗r r
      (10) 

The elastic behavior of the joint is adopted to actually 
permit the determination of stresses assuming the block 
to be stable at the final stage. Nevertheless, stresses will 
be checked for compatibility with joint strength and the 
stability of the block will be judged based on real joint’s 
contact laws (see “section 3.2”). 

Rigid body movement: 
The block moves as a rigid body, thus the displacement 
of any point of the block can be expressed as a function 



of two vectors. If 0U
r

 is the displacement vector of a 

reference point belonging to the block (here the center of 

mass is adopted) and 0W
r

 the vector of rotation of the 

block, U( x )
ur

 at any point x
r

 of the block is expressed 
by “Eq.(11)”. 

0 0U( x ) U W x= + ∧
ur r r r

                                               (11) 

To simplify numerical calculation, the cross product 

( )0W x∧
r r

 is replaced by 0rW W x= ∧
r r r

 where r  is the 

rotational tensor of x
r

 

r rot( x )= r
 

Solving the system: 
Combining “Eq.(2)”  and “Eq.(3)” (equations of 
equilibrium), “Eq.(4)” and “Eq.(5)” (equations of joint 
behavior) and  “Eq.(11)” ( rigid body displacement 
equation), we get the following system:  

( )
( )

0 0 0

T
0 0 0

AU BW c n pn dS

B U CW x c n pn dS

Ω

Ω

σ

σ

∂

∂


+ = − −



 + = ∧ − −


∫

∫

r rr r

r rr r r

              (12) 

where  

 A H dS
Ω∂

= ∫ ; B H r dS
Ω∂

= ∫ ; 
TC r H r dS

Ω∂

= ∫     

Let’s note that, in the absence of pressure forces of due 
to water or reinforcement, the second terms of  “Eq.(12)”  
are equal to the initial forces and moment acting on the 
free face before excavation.  

The only unknowns of this linear system are the six 
components of displacement and rotation of the 

reference point ( )0 0U ,W
r r

 

3.2. Assessing stability 
Once the linear system “Eqs.(12)” is solved and 

( )0 0U ,W
r r

determined the displacement at any point of 

the block can be calculated using “Eq.(11)” and the 
stress vector deduced. 

The Mohr-Coulomb criterion is adopted for stability 
evaluation, “Eq.(13)” 

t n tan( ) cσ σ φ≤ − +r
  with n 0σ ≤                       (13) 

tσ
ur

and nσ are respectively the shear stress vector and 

compressive normal stress on a considered point; φ is 
the friction angle and c the cohesion.  

If “Eq.(13)” is verified at all points of the block, this 
means that the stresses stay in an elastic state and the 
block is judged to be stable. If yield occurs at some point 
of the block, the block is considered unstable and a 
support pressure is calculated so as to stabilize the most 
critical point.  

Various stability factors can be evaluated:  

• Required friction angle  
This angle is evaluated only on points where 
compression occurs. It represents the friction angle 
required to have stability without cohesion or a support 
pressure. The value retained is the maximum value of 
“Eq.(14)” calculated on all points :  

t
required

n

a tan
σ

φ
σ

=
−

r

 with n 0σ ≤                        (14) 

A safety factor can also be calculated 

n

t

tan( ) c
SF

σ φ
σ

− += r                                             (15)                    

 
• Minimum support pressure  

The idea is to determine the necessary minimum support 
pressure to apply uniformly, normally to the free 
boundary of the block, so as to respect the Mohr-
Coulomb criterion on all points. This notion is more 
significant from an engineering point of view than a 
safety factor calculation. Practically, the stress vector 

a
r

caused by the only application of a unity pressure, 
uniformly distributed at the free boundary, is calculated 
at every point of the block. Thus, because of linearity, 
the application of a pressure ‘ps’ results in a state of 
stress  

p sp aσ σ= +r r r
                                                    (16) 

where σr is the stress vector without support at a given 
point. 
Then “Eq.(13)” is applied and the minimum required 
pressure to have stability can be deduced. The value of 
ps adopted is the maximum of values obtained to 
stabilize all points. 
 
3.3. Effect of initial stresses and stiffnesses 
The variation of initial stresses has a linear effect on the 
resultant stresses on the block faces. The effect of the 
initial stress ratio K0 is analyzed in “section 4”. 

Concerning joint stiffnesses, it can be demonstrated 
mathematically that it is only the factor Kn/K t that affects 
the results of final stresses and not the values of Kn or Kt 
taken separately. The augmentation of that factor has a 
destabilizing effect on the block as will be shown in 
“section 4”. 

Ranges of stiffnesses to adopt:  
Many authors performed laboratory and field tests on 
rock blocks to evaluate the joints stiffnesses. It was 



shown that these values vary a lot with different 
parameters: the nature of the joints (filled or unfilled), 
the nature and thickness of the filling, the dimension of 
the surface of contact and the normal stresses applied on 
the joints.  

Concerning shear stiffness, a multitude of tests 
performed in literature and exposed by Barton and 
Bandis [26] show that, for a range of normal stresses 
between 1 and 10 MPa and block length between 1 to 10 
m, the shear stiffness vary between about 10 MPa/m and 
1000 MPa/m. These values are in accordance with those 
found by Rechitskii [27]. 

On the other hand in [27], normal stiffness was 
evaluated as the ratio of the maximum normal stress to 
the integral closure of the joints when they are 
compressed from a null normal stress to a maximum 
normal stress. It was shown that it varies between about 
30 and 10000 MPa/m.  

Concerning stiffnesses ratio, for similar tests under the 
same normal stresses Kn/K t varied from 2 to 123. The 
highest ratios were obtained for the unfilled joints [27].  
Thus in this article, the following numerical applications 
adopt ratios of Kn/K t between 1 to 100. 

3.4. Numerical integration  
Solving the system of “Eq.(12)” requires the calculation 
of surface integrals. Analytical integration is a hard task 
especially when the geometry is complicated. Therefore 
numerical integration is adopted by partitioning the 
surfaces into elements of simple geometries and using 
Gauss points. The global integral of a function over a 
surface is replaced by the sum of integrals over the 
elements. 

n

i 1 i

I ( x ) ( x )
Σ

ϕ ϕ
=

= =∑∫ ∫
r r

                                (17) 

Elements that can be used in the partitioning  

• Triangular elements with 3 or 6 nodes 
• Rectangular elements with 4, 6, 8 or 9 nodes 
•  

All data of the problem (initial stresses, stiffnesses, 
friction angle etc.) are defined on the elements nodes and 
interpolated to Gauss points of each element using 
known interpolation functions Ni. 

j i( x ) Ni( , ) ( x )ϕ ξ η ϕ=∑
r r

                            (18) 

Then, for each element i∑  the integration of function 
ϕ  is done using its Gauss points as follows:  

j j
j 1 nji

( x ) J ( x )ϕ ω ϕ
= →∑

= ∑∫
r r

                            (19) 

(ξj,ηj) and ωj are the reduced coordinates and weights of 
the Gauss points of one element. 

 a x xξ η=∂ ∧ ∂
r r r

 and J the Jacobean J a=
r

 

The partitioning is done for the only purpose of 
permitting the integration over complicated surface 
geometries.  It does not affect the accuracies of results, 
the calculation being linear. 

Furthermore, the surface meshing is not constrained to 
respect the rules of coherence of a classical finite 
element meshing. 

Practically, the general integral of a function over all 
elements is done by summation over all Gauss points of 
the elements.  

Consequently, by using this technique any block 
geometry, with any number of faces, can be studied. It is 
only necessary to partition the polygonal faces of the 
block into triangular or rectangular elements and to 
define the different data information on the nodes.  

This new approach exposed above will be given the 
name ISOBLOC in the following sections. 

3.5. Validation of stress distribution (2D) 
The algorithm of ISOBLOC was also developed in 2D to 
allow easy comparison with finite element model 
considering a deformable rock mass. To do so an 
example of a block at the surface of an underground 
opening is treated using the following methods: 

(i) Finite element model with deformable rock and 
the presence of  joints, (VIPLEF finite element 
code is used, [28]). 

(ii) ISOBLOC model with rigid rock mass and joints. 
(iii) Finite element model with deformable rock but 

without joints, (continuous model). 
 

The rock mass modulus used in deformable models is 
E=100000 MPa. The vertical stresses are isotropic and 
vary linearly with depth due to gravity with a rock mass 
density ρ=2000 Kg/m3. The excavation is at a depth of 
500 m. The joints are linearly elastic with shear stiffness 
K t=1000 MPa/m and normal stiffness Kn=1000MPa/m or 
Kn=10000MPa/m. 

First, a comparison of principal stress distribution is 
made between model (i) and model (ii). ‘Fig. 3’ shows 
the rotation of principal stresses close to the 
discontinuities. It appears clearly that, adopting a 
continuous model for the calculation of stresses, like in 
classical methods, is inaccurate. Furthermore, when the 
elastic modulus of the rock mass increases (the rock is 
more rigid), it is the presence of discontinuities that 
imposes the stress distribution more than the form of the 
excavation.  



 

Fig. 3.Stress distribution for a continuous model (right) and a 
discontinuous model (left). 

On the other hand, normal and shear stresses at the faces 
of the block are compared between the three models. 
The results of ISOBLOC (ii)  are the closest to the exact 
method (i). To make the results comparable with the 
‘Keyblock’ method the parameter of minimum friction 
angle required for stability is represented in “Fig. 4”. 
Cohesion of joints is considered null. 

Finally, “Fig. 5” shows the movement of the block for 
the case of Kn/K t=1 and Kn/K t=10 respectively using the 
exact method and the ISOBLOC method. Results of 
ISOBLOC and the exact method are quite similar. 
ISOBLOC simulates well the movement of the block 
even when rotation occurs. The rotation of the block is 
more apparent for small values of Kn/K t (in this example 
for Kn/K t=1).  However, using the ‘Keyblock’ method, 
the rotation is ignored. According to the kinematical 
analysis, the block slides on the critical joint as shown in 
“Fig. 5”. Thus the ‘Keyblock’ method does not represent 
well the movement of the block when rotation occurs 
(here for the case Kn/K t=1) 

Fig. 4. Comparison of minimum required friction angle along 
a block’s face using different approaches. 

  
ISOBLOC Kn/K t=1 Deformable rock Kn/K t=1 

  
ISOBLOC Kn/K t=10 Deformable rock Kn/K t=10 

 
Keyblock method 

Fig. 5. Displacement of the block according to ISOBLOC, 
FEM deformable model and Keyblock method.  

4. APPLICATION AND PARAMETRICAL 
STUDY 

A 3D bloc formed by the intersection of 3 discontinuities 
at the roof of a cylindrical excavation is analyzed with 
ISOBLOC. Then the block is rotated to be able to study 
different configurations of the orientation of joints and 
direction of the principal stresses. Comparisons are made 
with classical ‘Keyblock’ method. 

The initial configuration of joints is shown in ‘Table. 1’ 

Table 1. Structural properties 

 Dip  (⁰) Dip direction (⁰) 
J1 60 0 
J2 60 120 
J3 60 240 

 

The joints are studied for variable stiffness ratios 
Kn/K t=1, 10, 100. The tunnel has a circular area of 10 m 
diameter, a plunge of 0º and a trend of 0 º. (X,Y,Z) is a 
direct reference axis where Y is the vertical axis. The 
origin is set on the tunnel axis. Principal stresses are 
oriented according to the reference system. Rock mass 
density ρ=2500 Kg/m3.  H0=200 m is the depth of the 
tunnel axis measured from the surface. Initial stresses 
acting before excavations are as follows: 

0 yy 0g(Y H )σ ρ= − ; yyxx K σσ 010 = ; 0 zz 02 yyKσ σ=  



The geometries of the blocks studied (same block rotated 
at 0°, 45° and 90° around the tunnel axis Z ) are show in 
“Fig. 6”. 

Block 1: 
Comparison of the required friction angle for stability, 
for different values of Kn/K t, with respect to the initial 
stress ratio K0=K01=K02 is shown in the “Fig. 7”. Let’s 
note that the limit values of K0 were chosen so that 
initial stresses are compatible with the Mohr-Coulomb 
criterion.  

 
Fig. 6. Geometrical representation of the blocks studied 

 
Fig. 7 Minimum friction angle required for stability, α=0º. 

According to the ‘Keyblock’ method, the mode of 
displacement of this block is ‘free falling ’, thus it has a 
null safety factor, independently of the values of joint 
stiffnesses and initial in-situ stresses. 

The analysis with ISOBLOC, shows that the block can 
be stable without support if the friction angle is high 
enough, (Fig. 7). For Kn/K t=1, the increase of K0 has no 
great effect on block’s stability. For example, for a 
friction angle of 32⁰, it is stable for all the values of K0.  

On the other hand, the increase of Kn/K t has a 
destabilizing effect. However, for values of K0 greater 
than 1.2 this effect is damped. 

In this case, symmetry imposes the direction of 
movement to be vertical like in the ‘Keyblock’ method. 

Block 2: 
Rotating the block of 45⁰ around the Z-axis will permit 
to study a flatter joint configuration.  

 
Fig. 8. Minimum friction angle required for stability, α=45º 

It is shown in “Fig. 8” that elevated horizontal stresses 
do not necessarily contribute to the stability of the block. 
The change of curvature is due to the change in the 
direction of tangential stresses on the critical points. The 
case K0=1 corresponds to the case of a hydrostatic stress 
field. Initial shear stresses are null on the block’s faces. 
It is the most stable state.  

Like for the previous block, a low value of Kn/K t 

contributes to the stability of block. “Fig. 9” shows, for a 
particular case of K0=0.5, the distribution of final normal 
stress on the block’s faces for two values of Kn/K t. The 
case of Kn/K t=10 shows lower compression stresses as 
well as the apparition of tension. A high value of Kn/K t 
has an effect of loosening of the block. 

          σn (MPa)  

 
Fig. 9. Normal stresses for  Kn/K t=1 (left) and Kn/K t=10 
(right). Case α=45º and K0=0.5. 

Let’s note that the parameter ‘required friction angle’ 
cannot be calculated when tension occurs. This occurs 
for the case Kn/K t=10 and more significantly for the case 
Kn/K t=100 (Fig. 8). If a combination of Kn/K t and K0 
results in tension on a point or area of the block, it is 
supposed to be unstable without support, whatever 



friction angle it has. ISOBLOC permits to calculate the 
minimum support needed to have stability. For example, 
for the case of a friction angle of 25⁰ the required 
support pressure is plotted in “Fig. 10”. 

 
Fig. 10. Required support pressure needed for stability, α=45º 

 
Fig. 11. Comparison of the normalized displacement vector of 
block 2 with the ‘Keyblock’ method and ISOBLOC (K0=0.5 
and Kn=Kt).   

The ‘Keyblock’ analysis for that block results in a mode 
of displacement of sliding on one face (J2). The factor of 
safety is over conservative as compared to ISOBLOC 
method when only compression occurs.  

“Fig. 11” shows the normalized displacement vector of 
block 2 obtained with ISOBLOC for K0=0.5 and 
Kn/K t=1 as well as a comparison with the displacement 
obtained using ‘Keyblock’ method. 

A rotation of the block is observed to the interior of the 
open space. Such a movement cannot be modelled with 
the ‘Keyblock’ method.  

Block 3: 
For high values of initial horizontal stresses, the friction 
angle required for stability is increased and tension 
occurs for the case of Kn/K t=100 (See “Fig.12”).    

  

 
Fig. 12. Minimum friction angle required for stability, α=90º 

In this case, the estimation of stability according to 
‘Keyblock’ method is not conservative for all the 
combinations of K0 and Kn/K t. In fact, according to this 
theory, it is the direction of the active force (weight in 
this case), as compared to other discontinuities, that is 
determinant for the stability analysis. Thus, for the case 
of sliding on one joint, the more the joint is flat the more 
the block is stable. That explains why according to 
‘Keyblock’, the block 3 is the most stable one  

In reality, when a wedge is located underground, the 
effect of weight is negligible as compared to the effect of 
in-situ stresses. It is the intensities and direction of in-
situ stresses as regards to the direction of joints that are 
the most determinant factors. According to ISOBLOC, 
results of blocks 1 and 3 are somehow equivalent: a high 
horizontal initial stress on block 3 gives quite equivalent 
results to a low horizontal initial stress on the block 1.   

Rotation of principal stresses.  
The block 2 studied is now rotated about the Y-axis at 
intervals of 1º, changing consequently the dip direction 
of the joints considered. Rotating the block in this way is 
also equivalent to considering different directions of 
principal stresses on one fixed block.  

When K01=K02, the projection of the stress tensor on the 
block faces is the same. Thus, the following simulation 
treats the case of K01=0.5 and K02=1.  

This kind of study can serve to determine the most 
critical direction of the principal stresses to use in design 
when information about these is not sufficient. (See 
“Fig.13”) 



 
Fig. 13. Example of support pressure needed for various 
rotations of a block around Y-axis. 

5. CONCLUSION AND PERSPECTIVES 

A new numerical model to study isolated 3D rock blocks 
formed at the surface of underground excavation is 
presented. Comparing it to other isolated rock block 
methods, it is more complete and represents more 
rigorously the behavior of the underground blocks. In 
this model, in-situ stresses are included considering 
simultaneously rigid body movement in translation and 
rotation, rock joint behavior and equilibrium of forces 
and moments. The results obtained are the same as if a 
3D finite elements model was applied to study the rock 
mass cut by an excavation with the presence of a single 
block on its surface, considering an infinite rigidity. 
Despite its accuracy and simplicity, this method has 
never been used in the domain of block mechanics.  

The advantage of the algorithm developed is that any 
block geometry can be studied. The user just has to 
partition the complex faces into simple triangular or 
rectangular elements. Curved faces can be introduced by 
accurate meshing as well as blocks with concave faces. 

Improving this newly developed approach would consist 
of including non linear rock joint mechanical behavior, 
considering hyperbolic normal behavior and elasto-
plastic shear behavior.   

This paper hasn’t addressed the problem of validation of 
the concept of isolating the rock block and studying it 
separately. It has only focused on the development of an 
accurate model based on this concept. An interesting 
study would consist of performing a comparison of the 
ISOBLOC model with a full model that simultaneously 
considers the presence of all rock blocks.   

6. AKNOWLEDGEMENTS 

The authors would like to thank Rockscience for 
providing a free version of ‘Unwedge’ software. 

REFERENCES 

1. Goodman, R.E., and G.H. Shi. 1985. Block theory and 
its application to rock engineering. Englewood Cliffs, 
NJ: Prentice-Hall. 

2. Warburton, P.M. 1981. Vector stability analysis of an 
arbitrary polyhedral rock block with any number of free 
faces. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 
18:415–427. 

3. Yeung, M. R., Q.H. Jiang, and N. Sun. 2003. 
Validation of block theory and three-dimensional 
discontinuous deformation analysis as wedge stability 
analysis methods. Int. J. Rock. Mech. Min. Sci. 40 : 
265-275 

4. Hatzor, Y., and R.E. Goodman. 1992. Application of 
block theory and the critical key block concept to 
tunnelling: two case histories. In: Myer LR, Cook 
NGW, Goodman RE, Tsang C (ed). Proceedings of 
ISRM conference on fractured and jointed rock masses. 
663–70. Rotterdam: Balkema. 

5. Warburton, P.M. 1983. A computer program for 
reconstructing blocky rock geometry and analyzing 
single block stability. Computers and Geosciences. 
11(6):707-12 

6. Windsor, C.R., and A.G. Thompson. 1992. SAFEX-A 
design and analysis package for rock reinforcement. 
International Symposium on Rock Support. Sudbury, 
Ontario.17-23 

7. Starzec, P., and J. Andersson. 2002. Application of 
two-level factorial design to sensitivity analysis of 
keyblock statistics from fracture geometry. Int. J. Rock. 
Mech. Min. Sci. 39 (2): 243-255. 

8. Liu, L., L. Zhongkui, and Z.  Zhuoyuan. 2004. Stability 
analysis of block in the surrounding rock mass of a 
large underground excavation. Tunn. Und. Space Tech. 
19(1): 35-44. 

9. González-Palacio, C., A. Menéndez-Díaz, A.E. 
Álvarez-Vigil,  and C. González-Nicieza. 2005. 
Identification of non-pyramidal key blocks in jointed 
rock masses for tunnel excavation. Comp. Geotech.. 
32(3):179-200. 

10. Yu, Q., Y. Ohnishi, G. Xue, and D. Chen. 2009. A 
generalized procedure to identify three-dimensional 
rock blocks around complex excavations. Int. J. Num. 
Anal. Met. in Geomech. 33(3):355-75. 

11. Zhang, Y. M. Xiao, and J. Chen. 2010. A new 
methodology for block identification and its application 
in a large scale underground cavern complex. Tunn. 
Und. Space Tech. 25(2):168-80. 

12. Theory manual for underground wedge stability 
analysis, Unwedge v3.0, Rocscience Inc., 2003 

13. Hatzor, Y. , and A. Feintuch . 2005. The joint 
intersection probability. 2005. Int. J. Rock. Mech. Min. 
Sci. 42 (4):531-541. 



14. Yarahmadi Bafghi, A.R. and T. Verdel . 2003. The key-
group method. Int. J. Num.  Anal. Met. in Geomech.  
27(6): 495–511. 

15. Curran, J.H., B. Corkum, and R.E. Hammah. Three 
dimensional analysis of underground wedges under the 
influence of stresses.  

16. Lin, D. ,and C. Fairhurst. 1988. Static analysis of the 
stability of three-dimensional blocky systems around 
excavations in rock.  Int. J. Rock Mech. Min. Sci. 
Geomech. Abstr. 25(3):139-147. 

17. Mauldon M., and R.E. Goodman. 1996. Vector analysis 
of key block rotations. J. Geotech Eng ASCE. 
122(12):976–987. 

18. Fulvio Tonon, P.E. 1998. Generalization of Mauldon’s 
and Goodman vector analysis of keyblock rotations. J. 
Geo. Geoenv. Eng. 913:922 

19. Brady, B.H.G., and E.T. Brown. 1980. Excavation 
design in jointed rock. In Rock Mechanics for 
Underground Mining. 2nd ed. Chapman & Hall, 238-
247  

20. Crawford, A.M., and J.W. Bray. 1983. Influence of the 
in-situ stress field and joint stiffness on rock wedge 
stability in underground openings. Can. Geotech. J. 
Toronto. 20: 276-287. 

21. Elsworth, D. 1986. Wedge stability in the roof of a 
circular tunnel: plane strain condition.  Int. J. Rock 
Mech. Min. Sci. Geomech. Abstr. 23: 177-181. 

22. Sofianos, A.I., P.P. Nomikos, and C.E. Tsoutrelis. 
1999. Stability of symmetric wedge formed in the roof 
of a circular tunnel: non-hydrostatic natural stress field. 
Int. J. Rock. Mech. Min. Sci. 36: 687-691. 

23. Nomikos, P.P., A.I. Sofianos, and C.E. Tsoutrelis. 
2002. Symmetric wedge in the roof of a tunnel 
excavated in an inclined stress field. Int. J. Rock Mech. 
Min. Sci. 39: 59-67 

24. Nomikos, P.P., P.V. Yiouta-Mitra, and A.I. Sofianos. 
2006. Stability of asymmetric roof wedge under non-
symmetric loading. Rock Mech. Rock. Eng. 39 (2):121-
129. 

25. Yow, J.L., and R.E. Goodman. 1987. A ground reaction 
curve based upon block theory. Rock Mech Rock Eng. 
20:167-190. 

26. Barton N., and S.C. Bandis. 1982.  Effects of block size 
on the shear behaviour of jointed rocks. 23rd US 
Symposium on Rock Mechanic.10  739–760. 
Rotterdam: Balkema. 

27. Rechitskii V.I. 1998. Evaluation of the stiffness 
characteristics of rock joints from data of field 
observations at water-development projects. 
Hydrotechnical construction.  32 ( 8). 

28. Tijani, M. VIPLEF. 2007. Notice d’utilisation. Centre 
de Géosciences, Mines Paris-Tech, Fontainebleau.    

 


