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ABSTRACT: When an underground excavation is cut in a disoaotis rigid rock mass, instabilities may occur ryadue to
block failure. Isolated rigid block methods wereseleped since the 80’s to locate critical blocksl avaluate their stability but
have major drawbacks: ignoring in-situ stressegharical behavior of joints and rotational moversefiither methods included
those variables improperly and were limited to dengases. This paper presents a critical revieprefious approaches then a
more complete model to study isolated rock bloskproposed. It is based on the fact that stressékeoblock faces are known
before excavation and once a face is freed, thekbiwoves as a rigid body in translation and rotatispplying equilibrium and
rock joint behavior equations, the stresses orfdahes after excavation can be calculated and Byabitaluated using a Mohr-
Coulomb criterion. Any block geometry can be stdddg partitioning the block faces into simple elentse Numerical integration
is done on elements using Gauss points. The meshapplied on a case study and comparisons are migldether simplified
methods. Finally, a parametrical analysis showsitttgortant influence of in-situ stresses and jatitffnesses on the block’s
stability.
1. INTRODUCTION l:]ee- main assumptions of isolated rock block methods
When underground excavations are made in rigid rock
masses intercepted by several discontinuities, kbloc .
may form at the free surface and present the risk o d!splac_emg_nt takes place only along the
sliding or falling into the open space causing daena d|sgont|nU|t|§s, supposed to be perfectly planar.
Modeling such phenomena is an essential requirement *  While studying one rock block, the rest of the rock
order to predict a degree of instability and eviuhe mass is considered to be rigid and continuous.
support needed. !nteractlon between several blocks is not taken
into account.

The rock mass is infinitely rigid and any

Adopting a continuum model without discontinuities i .
not appropriate in this case since the main deftoma 1he generation of blocks can be made by studyine!

occurs due to the displacements about the joitera Ccombinations —of discontinuities that may form
than to the deformation of the rock matrix. removable blocks at the surface of the tunnel. This

_ _ _ approach does not require information of spacing
Furthermore, applying a complete discontinuouspetween discontinuities or their exact location
method, including all JOlr_lts, is computatlon_allyrd_a (ubiquitous approach). Another approach consists of
because of the complexity of the three dimensionalyenerating all blocks by using distribution of jogets or
geometry. Additionally, the uncertainties concegniihe introducing joints one by one (specific approadi)is
distribution of joint sets require performing mplé  garticle does not consider the problem of generatfdhe
simulations in order to cover all the possibilities rock blocks in the rock mass. It focuses only oa th
From the necessity to overcome this complexity, eéam Stability analysis of a rock block once it is geated by
the idea of studying separately only the blocksnfed at ~ Whatever method.
the surface of the tunnel. Supporting the unsthldeks  |spjated rock block methods have been widely uBed.
is assumed to assure stability for all the rocksnd$is  gespite the enormous simplification of ignoring the

approach is simple and can provide the enginedr avit  jnteraction with other blocks, these methods ktik the
easy tool to evaluate the stability of the excaratr to ability to give a rigorous representation of theds
choose its optimum direction. behavior.



The following paragraph gives a review of the pipat
defaults of the methods so far used. Then, a cdample . ] o )
model considering the real behavior of a block agid  nterior normal to the block face 'sithe possible
body translating and rotating is presented. Intiglel ,  sliding direction on face ‘i’ ands; the possible sliding
the initial stresses on the joints are relaxed viit  direction on the intersection of faces ‘i’ and ‘fhese
block's displacement while respecting equilibrium ryles are as follows :

equations. Despite its simplicity, such a model ager

If A is the ‘active’ force acting on the bIocIE]i the

been addressed in literature. Falling:
Oi An > 0 1)
2. REVIEW OF ROCK BLOCK STABILITY o _
METHODS For sliding on one face i:
2.1. Classical  ‘Keyblock’ method  (limit An<OanddjZ is n> ( (2)

equilibrium method) - .
The method was first developed by ‘Goodman and Shi’SIIdIng on two faces:

and ‘Warburton’ and is a limit equilibrium methat 2]. Ok#zietk#z j, s m>0sn< 0s i (3)

In addition to the general assumptions of isoldikadk
theory, stresses acting on the block faces areoseppto

be uniformly distributed and are replaced by one
‘reaction’ force vector on each face. These areutaied
ignoring in-situ stresses in the rock mass. They onl
known forces acting on the block are its weight and
possibly another force resulting from water pressamd
support. Once the reaction forces determined thekkib S0

declared to be unstable if these forces exceefbties F1
that will cause limit equilibrium. g

The direction of movement is the same as the active
force if the block is falling. It is the projectioof the
active force on the sliding face if sliding on daee and

it is the same as the intersection of two facesidfing

on two faces. (See “Fig. 1.")

, : F1 S1
Indeterminate problem and assumptions: A F2

Equilibrium equations are not enough to determhe t

‘reaction’ forces. Even for the simplest three- Fig. 1. Modes of displacement in the ‘keyblock’dhe
dimensional block, a tetrahedral block, the numbier

unknowns is 9 (three dimensional reaction forceeach =~ Mechanical behavior, a consequence of kinematical
face), while the number of equilibrium equations fo behavior:

forces and moments is 6. The determination of forces acting on the faceseddp
To solve that indetermination, the ‘Keyblock’ appch 0N the kinematical analysis. That separation renttes
postulates that reaction forces can only occurvem t Problem solvable but there is no rigorous justtfima for
faces, one face or none, reducing the number oft. Once the forces acting on the faces are déteana
unknowns to a maximum of 6. It follows that in orde  factor of safety ‘SF' is calculated:

determine which faces are the ones ‘carrying’ the
reactions, a pre-analysis should be made to finchow

the block will move. If only one or two faces caarry’

a force it is assumed that other faces with nuitds
should detach from the rock mass.

A TNS12

* Falling wedge: Forces are null and SF=0
Sliding on one or two faces: Forces are calculated
using equilibrium equations and assuming that the
shear forces have the same direction as sliding
direction. If F, and F are the norms of normal and

Kinematical analysis: _ shear forces respectively, ¢ the cohesion, S the
Consequently, the only possible movements of thekbl surfaces of sliding andg the friction angle,
that can be considered to make the problem sohaxiele _

sliding on one face, two faces or falling. Althoutjtis SF=(cS+ Etanp )/ F (4)

assumption is understandable for a tetrahedralkbloc
having three contact faces, it does not representdal  Further remarks:
situation when a block is an arbitrary polyhedron. Studied using that approach, the problem of thekobd

The mode of movement needs to be studied Withthe surface of a tunnel is equivalent to the probig

predefined rules considering only the geometry raf t Someone putting a block at its place in a mold

block and the direction of the ‘active’ force (weigand :ﬁpregg_r:_tmg Ia Funrl!?I zatnd sefglng h.OW It tWt'." It'np\rthw
possibly water forces or another exterior force). € additional sSimpiification ot ignoring rotatio.1s an
analysis only based on geometry and does not mmres

the real conditions underground. The successive



simplifications adopted and the technique of divigihe
problem to kinematical and mechanical analysiseséov
make the problem solvable but do not contribute to
model rigorously the behavior of the block. .

equilibrium necessarily implies that the active
force would be null and any further analysis would
be impossible using the ‘Keyblock’ methodology.

If the continuum model really gave accurate
information of the stresses acting on the faces, it
would be more logical to analyze the stability of
the wedge by checking if the criterion (Mohr-
Coulomb for example) is respected on all faces.
Consequently, this approach is a palliative to the
insufficiencies of block theory but does not présan
rigorous well justified scientific approach.

Some studies aimed to validate ‘Keyblock’ theorings
field case history or physical models. In both sade
in-situ stresses were too low to validate the metfoo
underground conditions [3,4]. Additionally, it was
shown that ‘Keyblock’ theory gives wrong resultsesh
complex behaviors occur, such as rotation assatiate
translation [3].

Including rotation:

Rotational movements can intervene to stabilize the
block or on the contrary to constrain its movement.
These are not included in the classical block theor

analysis. Some authors have developed kinematites r

to determine the mode of possible rotation and to
evaluate stability based on these phenomena [16-18]
However, among all the available softwares based on
‘Keyblock’ theory, none has included rotational lgses.

In fact, the complexity of this analysis renderdifficult

to integrate in the ‘Keyblock’ algorithm.

2.2. 'Keyblock’ improvements

Most of ‘Keyblock’ method improvements were
concerned with  geometrical aspects  without
reconsidering the mechanical stability evaluatidnao
single block. In fact, since the conception of ‘Kick’
theory, many softwares were developed on its bakis.
only feature that distinguishes one from the othahe
method used for generating the blocks [5-12].

Some approaches looked back at the stability etiatua
considering probabilities. A method to identify thest

critical block based on probabilities of joint irgection . .
was developed [13]. Also, some studies tried to2-3- Reélaxation models for falling blocks

generalize the method to a group of blocks in 24).[1 2D relaxation methods: _ _
Many authors adopted analytical solutions for the

stability of blocks in the roof of underground
excavations considering the effect of stressesjaind
behavior [19-24]. However, the approaches are gdlger
limited to simple 2D cases and present a lot of
drawbacks.

The only methods that tried to integrate in-sittesses
and rotation for a better modeling of the blockosity
are explained hereatfter.

Including in-situ stresses:
‘Keyblock’ method, as explained above, is more &elhp

for problems where in-situ stresses are low. Awefre The general procedure was first developed by Hoek
that limitation, ‘Unwedge’ software developers imbéd  symmetric block on the roof of a horizontal excawat

in-situ stress analysis to the classical methodolog [19]. It consists of a two stages analysis, asithted in
[12,15]. Supposing the initial stresses to be known-fig. 27

before excavation, a ‘boundary element model’ isdus

to calculate the redistribution of stresses after ()
excavation. This model is continuous ignoring the
discontinuities, i.e. the block faces are only ace&f
geometries. The normal forces acting on the wedgesf

are calculated from the integration of stresseginbtl

from the continuous model. These normal forces are ()
added to the ‘active’ force then the usual kineoadti
analysis is performed. Unlike the classical kineoaét
analysis, the shear strength is calculated oraae#ts and

not only on the sliding faces. The methodology ban
criticized based on the following points:

The joints are infinitely stiff while the surroumdgj
rock mass is homogeneous, isotropic, linearly
elastic transmitting a horizontal force kb each
face. The block weight is not supposed to act at
this phase.

The rock mass is infinitely rigid whereas the jeint
are deformable. The block’s weight is supposed to
act as well as any additional force R. The
displacement of the block is calculated by relaxing
the joint forces so as to restore the equilibrium.
The normal force N on a joint vary linearly with
the normal displacement,laccording to N=
K,Un. The shear force also vary linearly with shear
displacement Uand can be calculated by T#T
KiU. A pull out force P that causes limit

* Actual normal stresses acting on the wedge faces
are different from the normal stresses calculated
from a model where discontinuities are not

included.

Only one part of the information from stress
analysis is kept: shear stresses are not considered
during the active force calculation. The only
justification is that, if they were added,

equilibrium on the faces serves to evaluate the
stability of the block. The coefficient (R+PI)/W is
used as the factor of safety



face. In this case, all points belonging to one fsicould
have the same displacement vector.
HONO N N’ NOHO U T Finally, all the methods described above are ina2id
- D limited to simple triangular roof blocks. Furthenmap
the principle of dividing the analysis in two stepéere
PI

the weight does not affect the initial stressesnas

representative of the real block's behavior during
Fig. 2. Two-stage relaxation method for a 2D block excavation.

During calculation, the stresses are supposed to baD relaxation method: _ _
uniform on the faces of the block. Hence, yieldusc ~ ThiS method is an extension of previous 2D relarati
uniformly on all the point of both faces (or onedaif ~ Methods. It uses the same two steps analysis bikeu
the block is not symmetric). The displacement af th Prévious methods, the block’'s faces are meshed [25]

block takes place vertically downward in the secondStresses at the first stage are integrated from a
stage. continuous model and shear stresses are modifiesh wh

. o ~ the Mohr-Coulomb criterion is not respected. Byndpi
The improvements and general limitations are erplhi 5o, the equilibrium of the block is violated at tfiiest
hereafter: stage and all the rest of the analysis becomesiinaie.

Crawford and Bray (1983) showed by numerical At the second stage, a vertical downward displacéme
modeling that the presence of a vertical stress éhas Of the block is assumed and a corresponding pull ou
destabilizing effect on the wedge [20]. Howevertfie force calculated. This pull out force is not regrastive
analytical procedure adopted, this vertical compone ©Of the block state of stability since one part of i
acting on the face has to be null at the firstestadnat is ~ contributes to restore the equilibrium that wadiafiy
due to the necessity of verifying equilibrium edoas  Violated.

while considering one force per face. 2.4. Brady and Brown limit equilibrium method
Some authors calculated the initial forces actingte  This method studies a tetrahedral block whose stimi
wedge (N and To) integrating stresses from an elastic vertically projected on its base [19]. The block’s
continuous model : Elseworth (1986) considered ardisplacement is assumed to be vertically down aimd j
initial hydrostatic stress field around a circutgrening, behavior is ignored. The indetermination of foroashe
[21]; Sofianos et al. (1999) complicated the cage b faces is resolved by the following procedure:

assuming non hydrostatic stress field [22]; Nomikds  nNormal forces on the joints are integrated from a
al. (2002, 2006) considered an inclined stressl fi8, 1, e\ious elastic analysis considering a deformabii

24]. In all cases, one force per face is considéasdf i no discontinuities. By assuming that all fagésid
considering uniform distribution of stresses onheac 4t the same time a pull out force is calculatedeath

face). Comparison made by the authors with a ‘UdecCt,ce shear forces causing yield are supposedvie the
model showed a S|'m|I|tude of the _puII out resistafar same direction as the bisecting line of the fadais T
the cases of a horizontal excavation roof. Howefar, assumption is not justified.

the cases of circular excavation, the analyticadeho . o .
overestimates the stability. This is due to pastield of ~ Although this method takes account of in-situ stess it

the joint face that cannot be taken into accounerwh is limited to simple block cases, calculates sgessing
considering one force per face. a continuous model, and does not consider thetaffec

. . L joint behavior.
On the other hand, integrating the initial strefsem a

continuous model is not well justified [21, 24].e¢s 2.5. Conclusion

‘section 3.5’ for comparison of stresses on theclolo Despite the enormous simplification of studying one
between continuous and discontinuous models)block at a time, considering all the rest of thekrmass
Furthermore, the weight is not considered to hawe a to be rigid and continuous, none of the previouthos
influence on the distribution of stresses at thet itage. IS @ complete mechanical analysis. All are based on
It is only by adding an additional force to causeld/  Successive assumptions to be able to solve the
that joints are solicited in this method. indetermination of forces on the block faces: the
‘Keyblock’ method divides the analysis into kinemat

and mechanical analysis considering only simplified
displacements and ignoring in-situ stresses; ‘eglar
methods’ include the rock joint behavior but stumhy

the simple cases of roof block displacing verticall
downward; all approaches including stresses cdkula

Concerning kinematics, rigid body displacement is
modeled without taking into account the rotation
component, not even for the inclined stress figldoo
the non symmetric wedgelset's note that this omission
is directly linked to the simplification of one f per



them using a continuous model where the presence of; any point;( of the block’s boundary
joints is ignored. From those limitations comes the ’
necessity to develop a more complete method thatta

the final stress
state, after excavation, is as follows:

into account the effect of in-situ stresses and efeod —-ps N if xOX L
accurately the block’'s translational and rotational o(X)= o, i+40-pn if XOF J %)
movement. il

3. NEW DEVELOPED METHOD (ISOBLOC) Subtracting the equilibrium equations of forces and
' moments, between the stages after and before

The new method studies the block behavior durirg th excavation, leads to the following equations:
process of excavation. Before excavation, strassthe
rock mass and on the block faces are supposed to b
known. After excavation, the free faces are dis&ds
causing the block to move. At the contact facessses
change according to joint's behavior laws.

ej (Aﬁ—cgﬁ— pﬁ) ds= " (6)

02

The new method adopts the same general assumpsons .[ X D(AJ_ Cﬁ n-= pn) ds= | ™
classical isolated rock block methods: considerang

rigid rock and studying one block at a time. Howeve where c(x)= 1 and pspif xO3L

unlike ‘Keyblock’ methods, displacement is not )

predetermined by a kinematic analysis. The ¢(x)= 0 and pspif x13J

indetermination that comes from using only equiilibr
equations is solved by considering the joint bebravi
Compared to relaxation methods, it is more geremdl At any point X of the block joint faces, normal and
accurate. The analysis leads to solving a lineategy  shear stresses vary linearly respectively to itsnaband
whose only unknowns are the displacement vecta of shear displacements. The joint behavior is expesse

Joints behavior : expression &g :

reference point and the rotation vector of the kloc “Eq.(8)" and “Eq.(9)".

3.1. Theoretical study Ao, =-K, U, 8) (
Equilibrium between initial and final stages: B

Considering a block) located at the surface of a future A7 =-K,U, 9)

excavation, it is limited by a boundad2=3J+5L where _ _
5J designates the joint boundaries ahdthe boundary ~Where at the poink considered:

to be excavated. e K, and K are normal and shear stiffness

At the initial stage, before excavation, the stressor respectively.

g, is known at every point of the rock mass. The kloc - = (7 2\

2 yPp e U,=UnfandVU, =U —(U .n) . are the normal
's at equilibrium under volume forcesDa=0 (he. its and shear relative displacements &hdhe vector
weight if stresses vary linearly with depth) andface of relative displacement

forces —g, i (integration of stresses on the block faces). ¢ Ao,=A4d.n and AT =Ad-A4oc,i are the

normal and shear stress variations.
The process of excavation is modeled by diministireg
initial surface forces acting on the ‘future’ fré@ces. By combining these equations, the variation ofsstes

During excavation the block is maintained at at one point of a joint can be expressed by “E(10
equilibrium. Volume forces remain the same andemaf

forces vary linearly with the displacement. At thed of A0 = —ﬂU with H =K | +(K,-K,)iOn (20)
excavation, the stresses are nulhay point of the free o o -
faces or equal to«{pg.n) if a reinforcement @ is

applied.

The elastic behavior of the joint is adopted toualty
permit the determination of stresses assuming fiiek b
to be stable at the final stage. Neverthelessssagewill
We designate hfig the variation of the stress vector be checked for compatibility with joint strengthdatie
related to the local displacement of the point mered  Stability of the block will be judged based on rgaht’s

and by p, a possible additional water pressure due to gontact laws (see “section 3.2).

fluid contained in the joint. Rigid body movement: ,
The block moves as a rigid body, thus the displargm

of any point of the block can be expressed as etifum



of two vectors. IfU, is the displacement vector of a
reference point belonging to the block (here theereof
mass is adopted) arfvzf/0 the vector of rotation of the

block, U(X) at any pointX of the block is expressed
by “Eq.(11)".
U(x)=U, +W, 0% (11)
To simplify numerical calculation, the cross produc
(VY/0 D?() is replaced byLVV =W, Ox wherer is the
rotational tensor oK

r=rot(X)

Solving the system:

Combining “Eq.(2)” and “Eq.(3)" (equations of
equilibrium), “Eqg.(4)” and “Eq.(5)” (equations obint
behavior) and “Eq.(11)" ( rigid body displacement
equation), we get the following system:

§00+EN:I(— aian— |5|? ds

(12)
B'U,+CW, = I ”xD(— T, n 57\ de

T o 00 =

where

A= [HdS;B=[Hrds;C=[r"Hrds

o 6Q_ o 0()__ B 0!2_ T

Let's note that, in the absence of pressure foofahie
to water or reinforcement, the second terms of.(E2)”
are equal to the initial forces and moment actingtee
free face before excavation.

The only unknowns of this linear system are the six

components of displacement and
reference poin(ljO VY/O)

3.2. Assessing stability

rotation of the

If “Eq.(13)” is verified at all points of the blogkhis
means that the stresses stay in an elastic stdtehan
block is judged to be stable. If yield occurs ahsgoint
of the block, the block is considered unstable and
support pressure is calculated so as to stabhieertost
critical point.

Various stability factors can be evaluated:

* Required friction angle
This angle is evaluated only on points where
compression occurs. It represents the frictionengl
required to have stability without cohesion or pmurt
pressure. The value retained is the maximum vdlue o
“EQ.(14)” calculated on all points :

g,
Aequired = atanu with g, < 0 (14)
_a’n
A safety factor can also be calculated
-0 tan(g)+
gp= 9 tan(g)+c s

ol

*  Minimum support pressure

The idea is to determine the necessary minimumatipp
pressure to apply uniformly, normally to the free
boundary of the block, so as to respect the Mohr-
Coulomb criterion on all points. This notion is raor
significant from an engineering point of view than
safety factor calculation. Practically, the stressxtor

acaused by the only application of a unity pressure,
uniformly distributed at the free boundary, is cédted

at every point of the block. Thus, because of liftga
the application of a pressures‘pesults in a state of
stress

0,=0+p,a (16)
where g is the stress vector without support at a given
point.

Then “Eq.(13)" is applied and the minimum required
pressure to have stability can be deduced. Theewaflu
ps adopted is the maximum of values obtained to
stabilize all points.

Once the linear system “Egs.(12)” is solved and3 3, Effect of initial stresses and stiffnesses

(Uo W)

determined the displacement at any point of The variation of initial stresses has a linearaffen the

resultant stresses on the block faces. The effetheo

the block can be calculated using “Eq.(11)” and thejitia| stress ratio Kis analyzed in “section 4.

stress vector deduced.

The Mohr-Coulomb criterion is adopted for stability
evaluation, “Eq.(13)"

|g.| < —o,tan(@)+ ¢ witha, <0 (13)

orand o, are respectively the shear stress vector and

compressive normal stress on a considered pgi;
the friction angle and c the cohesion.

Concerning joint stiffnesses, it can be demondglrate
mathematically that it is only the factoy/K; that affects
the results of final stresses and not the valué§, afr K;
taken separately. The augmentation of that facasr dn
destabilizing effect on the block as will be shown
section 4",

Ranges of stiffnesses to adopt:
Many authors performed laboratory and field tegis o
rock blocks to evaluate the joints stiffnesseswés



shown that these values vary a lot with different(§,n;) andw; are the reduced coordinates and weights of
parameters: the nature of the joints (filled orilied), the Gauss points of one element.

the nature and thickness of the filling, the dinemsof - ~

the surface of contact and the normal stresseseapph a=0,x00,X and J the Jacobeah:Ha”

the joints.

Concerning shear stiffness, a multitude of testsThe partiioning is_done for the only purpose of

e ermitting the integration over complicated surface
perfofmed in literature and exposed by Barton an(ﬁeometries. It does not affect the accuracieestlts,
Bandis [26] show that, for a range of normal s&ess the calculation being linear

between 1 and 10 MPa and block length betweenlD to '

m, the shear stiffness vary between about 10 MRain  Furthermore, the surface meshing is not constratoed
1000 MPa/m. These values are in accordance wigetho respect the rules of coherence of a classical efinit
found by Rechitskii [27]. element meshing.

On the other hand in [27], normal stiffness WasPracticaIIy_, the general integ_ral of a function 0w
evaluated as the ratio of the maximum normal stress elements is done by summation over all Gauss points
the integral closure of the joints when they arethe elements.

compressed from a null normal stress to a maximumy e : : :
. g quently, by using this technique any block
normal stress. It was shown that it varies betwadsout geometry, with any number of faces, can be studiés.

30 and 10000 MPa/m. only necessary to partition the polygonal faceshef
Concerning stiffnesses ratio, for similar testsamthe  block into triangular or rectangular elements aod t
same normal stresses/K; varied from 2 to 123. The define the different data information on the nodes.
highest ratios were obtained for the unfilled jeif27].
Thus in this article, the following numerical agliions
adopt ratios of KK; between 1 to 100.

This new approach exposed above will be given the
name ISOBLOC in the following sections.

3.5. Validation of stress distribution (2D)

The algorithm of ISOBLOC was also developed in 8D t
allow easy comparison with finite element model
considering a deformable rock mass. To do so an
example of a block at the surface of an underground
opening is treated using the following methods:

3.4. Numerical integration

Solving the system of “Eq.(12)" requires the cadtian
of surface integrals. Analytical integration is adhtask
especially when the geometry is complicated. Tloeecf
numerical integration is adopted by partitioninge th
surfaces into elements of simple geometries andgusi

Gauss points. The global integral of a functionroze () Finite element model with deformable rock and
surface is replaced by the sum of integrals over th the presence of joints, (VIPLEF finite element
elements. code is used, [28]).

@iy 1SOBLOC model with rigid rock mass and joints.

_ Y =~ @iy Finite element model with deformable rock but

I= j¢( X)= ;;[ #(X) (17) without joints, (continuous model).
- [
Elements that can be used in the partitioning The rock mass modulus used in deformable models is
] ] E=100000 MPa. The vertical stresses are isotropit a

*  Triangular elements with 3 or 6 nodes vary linearly with depth due to gravity with a roolass

* Rectangular elements with 4, 6, 8 or 9 nodes densityp=2000 Kg/ri. The excavation is at a depth of

i 500 m. The joints are linearly elastic with she#freess

All data of the problem (initial stresses, stiffees, K;=1000 MPa/m and normal stiffnesgK.000MPa/m or
friction angle etc.) are defined on the elementdescand  K,=10000MPa/m.
interpolated to Gauss points of each element usin

known interpolation functions Ni %irst, a comparison of principal stress distributiis

made between model) @nd modeli(). ‘Fig. 3' shows

@( X, ):Z Ni(&7)o(% ) (18) the rotation of principal stresses close to the
discontinuities. It appears clearly that, adoptiag

. , . . continuous model for the calculation of stressis, in

Then, for each elemenlLi the integration of function  ¢jassical methods, is inaccurate. Furthermore, vihen

¢ is done using its Gauss points as follows: elastic modulus of the rock mass increases (thk i©c
more rigid), it is the presence of discontinuitiget

J‘¢( X)= Z ij¢(3% ) (19) imposes the stress distribution more than the fofrthe

S

et excavation.



ISOBLOC K/K=1 Deformable rock KK=1

Contraintes . 60 \\
N\
Longueur ——— 8.8

Fig. 3.Stress distribution for a continuous modight) and a \ N
discontinuous model (left). ' \ —

On the other hand, normal and shear stresses fdbe

of the block are compared between the three models ‘

The results of ISOBLOGi) are the closest to the exact |soBLoc k/K=10  Deformable rock KK=10
method {). To make the results comparable with the

‘Keyblock’ method the parameter of minimum friction

angle required for stability is represented in ‘Fj.

Cohesion of joints is considered null.

Finally, “Fig. 5” shows the movement of the bloal f
the case of KK=1 and K/K=10 respectively using the
exact method and the ISOBLOC method. Results of
ISOBLOC and the exact method are quite similar.
ISOBLOC simulates well the movement of the block
even when rotation occurs. The rotation of the lblisc
more apparent for small values of/K; (in this example 4. APPLICATION AND PARAMETRICAL
for K/K=1). However, using the ‘Keyblock’ method, STUDY
the rotation is ignored. According to the kinemaltic
analysis, the block slides on the critical jointsaewn in A 3D bloc formed by the intersection of 3 discontties
“Fig. 5”. Thus the ‘Keyblock’ method does not regeat  at the roof of a cylindrical excavation is analyagidh
well the movement of the block when rotation occursISOBLOC. Then the block is rotated to be able talgt
(here for the case #K=1) different configurations of the orientation of jsnand
direction of the principal stresses. Comparisorsnaade

Bloc 2D, E=100000 Mpa, Kn=10000 Mpa/m, Kt=1000 Mpa/m, K0=1, H=500 m with classical ‘Keyblock’ method.
80 .

Keyblock method
Fig. 5. Displacement of the block according to 1SO,
FEM deformable model and Keyblock method.

The initial configuration of joints is shown in ‘Bke. 1’
70
o Table 1. Structural properties
RN ol - Dip () Dip direction f)
2 40 KEYBLOCK METHOD —— ] Ji 60 0
= EXACT METHOD —— J2 60 120
é 30 \\ CONTINUOUS MODEL | I3 60 240
E 20 —
10 The joints are studied for variable stiffness mtio
o , , ; Kw/K=1, 10, 100. The tunnel has a circular area of 10 m
0 05 1 15 2 25 3 35 diameter, a plunge of 0° and a trend of 0 °. (X)YsZa
Absciss along the sliding face (m) direct reference axis where Y is the vertical adiee
Fig. 4. Comparison of minimum required friction &nglong origin is set on the tunnel axis. Principal stresaee
a block’s face using different approaches. oriented according to the reference system. Rocksma

densityp=2500 Kg/mi. H,=200 m is the depth of the
tunnel axis measured from the surface. Initial ssies
acting before excavations are as follows:

JOyy :,Og(Y_ HO )’ JOxx = KOIJW; JOZZ = KOZJy)



The geometries of the blocks studied (same blotted
at 0°, 45° and 90° around the tunnel axis Z ) hmsin
“Fig. 6”.

Block 1:

Comparison of the required friction angle for dlighi
for different values of KK, with respect to the initial
stress ratio k=Ky1=Kqz is shown in the “Fig. 7”. Let's
note that the limit values of Kwere chosen so that
initial stresses are compatible with the Mohr-Caonibo
criterion.

Fig. 6. Geometrical representation of the blockslisd

Block 1
90

Kn/Kt=1 ——
Kn/Kt=10
Kn/Kt=100 —— |

80r KEYBLOCK ———

70

60

50

Required friction angle (°)

40 |

30

0.5 0.7 0.9 1.1 1.3

KO

1.5 1.7 1.9

Fig. 7 Minimum friction angle required for stabyita=0°.

According to the ‘Keyblock’ method, the mode of
displacement of this block is ‘free falling ’, thitshas a
null safety factor, independently of the valuesjant
stiffnesses and initial in-situ stresses.

The analysis with ISOBLOC, shows that the block can
be stable without support if the friction anglehigh
enough, (Fig. 7). For KK=1, the increase of g¢has no
great effect on block’s stability. For example, far
friction angle of 32, it is stable for all the values oK

On the other hand, the increase of/KK has a
destabilizing effect. However, for values of Kreater
than 1.2 this effect is damped.

In this case, symmetry imposes the direction of
movement to be vertical like in the ‘Keyblock’ meth

Block 2:
Rotating the block of 45around the Z-axis will permit
to study a flatter joint configuration.

Block 2

Kn/Kt=1 ——
Kn/Kt=10 1

Kn/Kt=100 ——

KEYBLOCK ——

90

)

80

70

60

50

Required friction angle

AN

0.5

\\ _—

0.9

40

30 ) 1
0.7 1.1 1.3 1.7

KO

1.5 1.9

Fig. 8. Minimum friction angle required for stabjli a=45°

It is shown in “Fig. 8” that elevated horizontatestses

do not necessarily contribute to the stabilityhs block.

The change of curvature is due to the change in the
direction of tangential stresses on the criticahfso The
case k=1 corresponds to the case of a hydrostatic stress
field. Initial shear stresses are null on the bledkces.

It is the most stable state.

Like for the previous block, a low value of . /K;
contributes to the stability of block. “Fig. 9” shs, for a
particular case of 0.5, the distribution of final normal
stress on the block’s faces for two values glKK The
case of K/K=10 shows lower compression stresses as

well as the apparition of tension. A high valuekofK;

has an effect of loosening of the block.

/

On (MPa)

Y

e

Fig. 9. Normal stresses for,K=1 (left) and k/K=10
(right). Casen=45° and K=0.5.

Let's note that the parameter ‘required frictionglah
cannot be calculated when tension occurs. Thisreccu
for the case KK=10 and more significantly for the case
K/K=100 (Fig. 8). If a combination of }; and kg
results in tension on a point or area of the blatks
supposed to be unstable without support, whatever



friction angle it has. ISOBLOC permits to calculabe

minimum support needed to have stability. For examp o Block 3
for the case of a friction angle of 2%he required
support pressure is plotted in “Fig. 10". o b
, Block 2, Joint : @ = 25° % 70
Kn/Kt=1 —— c Kn/Kt=1 ——
. Kn/Kt=10 2 60 Kn/Kt=10 ]
c 6 Kn/Kt=100 —/ e Kn/Kt=100 ——
g < KEYBLOCK ——
5 / ; g 50
2 74 g
3 4
g = 40 F *—‘.\/ B ——
g ‘ -
g 30 = ' - .
g 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
2 Ko
g
2 Fig. 12. Minimum friction angle required for statyi] a=90°

In this case, the estimation of stability accordittg
‘Keyblock’ method is not conservative for all the
Fig. 10. Required support pressure needed forlisyabi=45° combinations of Kand K/K.. In fact, according to this
theory, it is the direction of the active force (g in
this case), as compared to other discontinuities, its
determinant for the stability analysis. Thus, foe tase

of sliding on one joint, the more the joint is fthe more
the block is stable. That explains why according to
‘Keyblock’, the block 3 is the most stable one

In reality, when a wedge is located undergroune, th
effect of weight is negligible as compared to tffeat of
in-situ stresses. It is the intensities and dioecf in-
situ stresses as regards to the direction of jdhds are
the most determinant factors. According to ISOBLOC,

Fig. 11. Comparison of the normalized displacenvertor of results of blocks 1 and 3 are somehow equivalehigla

block 2 with the ‘Keyblock’ method and ISOBLOC {#0.5 horizontal initial Str.ess on .bI.O.Ck 3 gives quitaisglent
and K=K,). results to a low horizontal initial stress on theck 1.

M nitial state
Il ISOBLO displacement
IKEYBLOCK displacement

‘ , ) ] Rotation of principal stresses.
The ‘Keyblock’ analysis for that block results im®de  The plock 2 studied is now rotated about the Y-atis

of displ_acement of sliding_ on one face (J2). Thedeof  intervals of 10, changing consequently the dip atioa
safety is over conservative as compared to ISOBLOG the joints considered. Rotating the block irstway is
method when only compression occurs. also equivalent to considering different directionfs
“Fig. 11" shows the normalized displacement veabr ~Principal stresses on one fixed block.

block 2 obtained with ISOBLOC for K0=0.5 and \nen K=K, the projection of the stress tensor on the
K/K=1 as well as a comparison with the displacementy|ock faces is the same. Thus, the following sirtioia

obtained using ‘Keyblock’ method. treats the case of k0.5 and K,=1.

A rotation of the block is observed to the intewdthe This kind of study can serve to determine the most
open space. Such a movement cannot be modelled withcyitical direction of the principal stresses to irselesign

the ‘Keyblock’ method. when information about these is not sufficient. €Se
Block 3: “Fig.13")

For high values of initial horizontal stresses, fitietion
angle required for stability is increased and t@msi
occurs for the case of K=100 (See “Fig.12").



Block 2, KOx=0.5, KOz=1, Joint : @=25°
55

Kn/Kts1 —— 1
5 . Kn/Kt=10 .
— 45 ‘
©
S
> 2.
2 35
8 —
& 3F 4
= ’\ ’—\_,N/
2 25 <
5 \ /
a5 3.
15 F \\/
’ . . .
0 20 40 60 8 100 120 140 160 18
Rotation around Y (°)
Fig. 13. Example of support pressure needed faowar 4.

rotations of a block around Y-axis.

5. CONCLUSION AND PERSPECTIVES

A new numerical model to study isolated 3D rockchko
formed at the surface of underground excavation is 5-
presented. Comparing it to other isolated rock lloc
methods, it is more complete and represents more
rigorously the behavior of the underground blodks.

this model, in-situ stresses are included consideri 6.
simultaneously rigid body movement in translatiod a
rotation, rock joint behavior and equilibrium ofrées

and moments. The results obtained are the sanfeaas i
3D finite elements model was applied to study thekr 7.
mass cut by an excavation with the presence ofiglesi
block on its surface, considering an infinite rigid
Despite its accuracy and simplicity, this method ha
never been used in the domain of block mechanics. 8.

The advantage of the algorithm developed is thgt an
block geometry can be studied. The user just has to
partition the complex faces into simple triangutar
rectangular elements. Curved faces can be intraboge 9
accurate meshing as well as blocks with concawesfac

Improving this newly developed approach would csinsi
of including non linear rock joint mechanical betway

considering hyperbolic normal behavior and elasto- ;4

plastic shear behavior.

This paper hasn’t addressed the problem of vatidadf
the concept of isolating the rock block and stugdyin

separately. It has only focused on the developmofah 11.

accurate model based on this concept. An integestin
study would consist of performing a comparisonha t
ISOBLOC model with a full model that simultaneously

considers the presence of all rock blocks. 12.
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