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Abstract

This paper presents a fast, streaming algorithm for 1-D morphological opening on 2-D
support. The algorithm is further extended to compute the complete size distribution
during a single image run. The Structuring Element (SE) can be oriented under ar-
bitrary angle that allows us to perform different orientation-involved image analysis,
such as local angle extraction, directional granulometries, etc.

The algorithm processes an image in constant time irrespective of the SE orien-
tation and size, with a minimal latency and very low memory requirements. Regard-
less the SE orientation, it reads and writes data strictly sequentially in the horizontal
scan order. Aforementioned properties allow an efficient implementation in embedded
hardware platforms that opens a new opportunity of a parallel computation, and conse-
quently, a significant speed-up.
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1 Introduction

During several last decades, the problems of object recognition, texture analysis, ori-
entation, and size distribution have become very importantin image analysis and com-
puter vision field. Tthe Mathematical Morphology (MM) has proved to be a very
powerful tool in solving such problems [1] [2]. On the other hand, the computation
complexity of profound analysis over many shapes and rotations is overwhelming as
MM often resides on iterative use of two basic operations dilation and erosion.

The paper is organized as follows: Section 2 recalls the basic notion of morpholog-
ical operators. Section 3 outlines the main principle of theproposed algorithm. Sec-
tion 4 presents performance results of computer benchmarksand a comparison with
other algorithms. Finally, Section 5 displays a few examples of opening and size spec-
trum applications.

1.1 State of the Art

One of the early algorithms of morphological erosion that complete inO(1) per pixel
is van Herk [3]. Although it runs in constant time using only 3comparisons per pixel,
it requires two passes: direct and reverse, which degrades its real-time features espe-
cially if extended to 2-D. Later, Gil and Kimmel [4] improvedvan Herk algorithm and
reduced the number of comparison to only 1.5 per pixel. Soille et al. [5] first pub-
lished the principle of arbitrary oriented SE. The SE rotation is handled by Bresenham
algorithm, the computation is carried out by the van Herk algorithm.

Van Droogenbroeck and Buckley [6] proposed a different approach based on notion
of anchors, the points that are not affected by a transformation. This algorithm uses a
histogram for calculation making any implementation dependent on the number of gray
levels.

Urbach and Wilkinson [7] proposed an algorithm for arbitrary shaped 2-D flat SE
based on the computation of multiple horizontal line SEs forevery pixel and storing
them in a lookup table. The result is then computed by taking the maximum from the
lookup table corresponding to the shape of the SE.

The issue of granulometry has been already targeted by Vincent [8] and Menotti-
Gomeset al. [9]. Both computed the size distribution and opening trees in linear time
with respect to the size of the image.

1.2 Novelty

We propose a new algorithm that computes both the opening andsize spectrum at the
same time with the following properties. The algorithm supports line SE oriented in
arbitrary angle. It processes an image in constant time withrespect to length of SE or its
orientation. It accesses to the input and output data strictly sequentially in a horizontal
scan order inferring a small computation latency. This derandomization of memory
bandwidth along with very low memory requirements, which are much lower than the
mere size of the image to process, make the algorithm especially interesting for real-
time hardware systems. The single-thread C implementationof this algorithm brings
a very low execution time and outperforms a few other existing efficient algorithms in
the case of opening. In the case of size spectrum, the speed-up against the conventional
approach, which requires many openings to be computed and then subtracted (4), is in
orders of magnitude.
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2 Basic Notions

Let δB , εB : Z2 → R be a dilation and an erosion on gray-scale images, parameterized
by a SEB assumed flat (i.e.,B ⊂ Z

2) and translation-invariant, defined as

δB(f) =
∨

b∈B

fb ; εB(f) =
∧

b∈B̂

fb . (1)

The hat̂ denotes the transposition of the structuring element, equal to the set reflection
B̂ = {x | −x ∈ B}, andfb denotes the translation of the functionf by some scalarb.
The SEB is equipped with an originx ∈ B.

Let ϕB , γB : Z2 → R be a closing and an opening on gray-scale images, parame-
terized by the aforementioned SEB, defined as

ϕB(f) = εB [δB(f)] ; γB(f) = δB [εB(f)] . (2)

Let SλB : R2 → R be a size spectrum, parametrized by a SEB ⊂ R
2 and its size

λ, defined as (originally proposed by Maragos [2])

SλB(f) = −
d

dλ
‖γλBf‖; f : R2 → R (3)

Since we are interested in images with a discrete and boundedsupportD ⊂ Z
2, D =

[1..M ]× [1..N ], the discrete size spectrumSλB is transformed to as follows

SλB(f) =
∑

D

(
γ(λ−1)Bf − γλBf

)
; f : D → R, (4)

considering the size spectrum stepdλ = 1.
Hereafter, we focus our description on the opening by a line SE Bα

λ . This SE has
shape of a discrete line of lengthλ rotated by angleα from positive x-axis counter-
clockwise. The closing can be obtained in accordance to the duality property.

The oriented 1-D opening can also be used for detection of local orientation (ori-
entation field)ζλ(f), see (5), image restoration, or oriented spectrum (6). The oriented
size spectrumOS(α, λ) of an anisotropic texture is the size distribution expectancy
of a 1-D signal obtained by intersection with a randomly drawn straight line. The
expectancy is approximated by the frequency count in (4).

ζλ(f) = arg max
α∈(0,180)

γα
λ (f) (5)

[OS(α, λ)] (f) =
∑

D

(
γBα

λ−1
f − γBα

λ
f
)

f : D → R, (6)

3 Principle of the 1-D Opening Algorithm

We describe the main principles of our algorithm in this section. We begin with the
description of the opening, the main principle of peak elimination, and its pseudocode.
Later, we enrich this algorithm by feature of computing the size spectrum in a single
image scan. We also present the arbitrary angle orientationon 2-D image support.

The proposed algorithm is based on usage of a queue, which is aFIFO (First In,
First out) memory structure. In addition to the basic FIFO featurespush(), pop(), queue

2



providesfront() andback()operations to access the oldest and most recent values, re-
spectively. Each element stored in the queue is composed of two attributes{F, rp}: the
pixel graytone valueF = f(rp) and its reading positionrp in input data stream. Both
attributes can be accessed separately, i.e.,Fx = Q.back()[1] andrpx = Q.back()[2].

t

f(t)

x+1xx�1t

f(t)

x+1xx�1

(a) (b)

t

f(t)

x+1xx�1 t

f(t)

x+1xx�1

(c) (d)

Figure 1: Four different pixel configuration for peak identification. Configuration (a)
and (b) characterize a peak, whereas configuration (c) and (d) do not.

The behavior of this algorithm stems from the principle of a peak elimination. A
point of an input signalf(x) is a peak if both its very precedentf(x−1) and subsequent
f(x+ 1) points are smaller (7). Our algorithm recognizes 4 possibleconfigurations of
these three points ((a) and (b) are peaks, (c) and (d) are not), see Fig. 1, each of which
is treated in a different manner.

f(x) > f(x− 1) andf(x) > f(x+ 1) (7)

The proposed algorithm, see Alg. 1 for the pseudocode listing, computes the open-
ing y = γBf , y, f ⊂ Z

2 → R, B ⊂ Z is a line segment of lengthL. It reads input
pixel F = f(rp) and outputs pixelY = y(rp − L) of the opened image at the time.
The pointsf(x − 1), f(x), andf(x + 1), which are needed for the peak elimination,
are reachable in the queue as follows:

• f(x− 1)→ Q.back(2)[1] (second to the most recent)

• f(x)→ Q.back(1)[1] (most recent)

• f(x+ 1)→ F = f(rp) (current)

The peak elimination step proceeds in one main while loop (code line 1) that en-
sures the conditionf(x + 1) < f(x) of (7). If two consecutive pixels are equal
f(x + 1) = f(x), the first one is erased from the queue (line 2-4), and replaced by
the second later (on line 12). As a consequence, a flat plateau(zone of constant value)
is represented in the queue by the last pixel and its position.

Then the second conditionf(x − 1) > f(x) of (7) is tested (Q.back(2)[1]<
Q.back(1)[1] on line 6). If the result is false, thef(x) is not a peak and the elimi-
nation loop is quit (configuration (d), line 14). Otherwise,thef(x) is a peak and will
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Algorithm 1: Y ← 1D OPEN(F , rp, L, Q)

Input: F - input samplef(rp); rp - current reading position;L - SE size; Q -
Queue

Result: Y - sample ofy(rp− L); S[] - Size spectrum
Data: Q - a Double-End Queue

Q.back(1)[] - accesses the last enqueued pair{F , rp}
Q.back(2)[] - accesses the second to the last enqueued pair{F , rp}

1 while F ≤ Q.back(1)[1]do
2 if F = Q.back(1)[1]then
3 Q.dequeue() ; // Remove equal values
4 break ;
5 else
6 if Q.back(2)[1]<Q.back(1)[1]then
7 if F < Q.back(2)[1]then
8 S[Q.back(1)[2] - Q.back(2)[2]] += Q.back(1)[1] - Q.back(2)[1] ;

// Accumulate discarded peak in size spectrum arrayS

9 Q.back(2)[2] = Q.back(1)[2] ; // Config. (a)
10 else
11 S[Q.back(1)[2] - Q.back(2)[2]] += Q.back(1)[1] -F ; // Accumulate peak

in S

12 Q.dequeue() ; // Discard peak, conf. (b), (a)
13 else
14 break ; // Configuration (d)

15 Q.push({F , rp}) ; // Enqueue current sample
16 if rp = Q.front()[2] + L then
17 Q.pop() ; // Delete outdated value

18 if rp ≥ L then
19 return (Q.front()[1] ) ; // Return opening sample

be erased from the queue (line 12) and replaced by eitherf(x− 1) in configuration (a)
(Q.back(2)[2] = Q.back()[2] on line 9), or byf(x+1) in configuration (b) (needs only
line 12). This is decided upon conditionf(x + 1) < f(x − 1) (F < Q.back(2)[1] on
line 3). Obviously, the while loop iterates until a non-peakconfiguration ((c) or (d)) is
encountered.

When all peaks are erased, the current pixel value is unconditionally pushed into
the queue along with current reading position (line 15). Theoldest stored pixel is
checked whether it has been stored in the queue for too long. This check is carried
out by comparing the stored reading position plus SE size with currentrp (line 16).
Outdated values are immediately deleted. The oldest storedvalue Q.front(1)[1] is the
result of Alg. 1 as soon asrp exceeds the SE size (line 18).

The algorithm presented so far computes the opening transformation using the prin-
ciple of the peak elimination that discards the peak values.When we extend the algo-
rithm by a feature for storing the eliminated peaks, we obtain the size spectrumS
with a minimal additional effort. As the algorithm eliminates a peak recursively, it
literally slices the peak by each gray level of a peak. The slices of the same size are
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Figure 2: Size spectrum increment for (a) configuration a, and (b) configuration b. (c)
The peak is sliced by each gray level it contains.

then accumulated in a single variable. Then the size spectrum S is an array, such as
S[1..L− 1]→ R

+ The size is determined by the distance betweenf(x) andf(x− 1)
that need not necessarily be 1 but varies from 1 to L-1 (f(x ± 1) designates prece-
dent/subsequent value off(x)). The height of a peak obviously depends on the mutual
position off(x+1) andf(x−1) according to conf. (a), (b), see Fig. 2. The increment
of an appropriate size in the size spectrum is carried out on lines 8 and 11.

3.1 Arbitrary SE Orientation

The described algorithm can be used for a 2-D input image support as well. It only
needs an image to be ”mapped” into independent, 1 pixel thin discrete lines (called
corridors) oriented in the same angle as the SE. See Fig. 3 forexamples of such map-
ping. Each corridor is then computed according to 1DOPENin its own queue memory.
The major advantage of mapping an image into corridors is that every pixel of input
image is read just once, and the result pixel is written within a fixed delay. Further-
more, the input and output data are ordered in the horizontalscan pattern. It allows a
stream, in-place, and, using a dedicated hardware, even parallel processing.

1
1

M

N 1
1

M

N 1
1

M

N 1
1

M

N

(a) (b) (c) (d)

Figure 3: Image corridors (discrete lines) mapping for different SE orientations (a) a
horizontal SE, (b) a vertical SE, and (c) and (d) inclined SEs.

The corridors are mapped on image by either of two cases in dependence onα. For
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α ≥ 45◦ andα ≤ 135◦, pixel [j,i] (i.e., at linej, columni) belongs to corridor Qij =
(i− j sinα)modulo(N + L sinα), whereM + L sinα defines the number of queues.
The current reading positionrp within a corridor is equal to the line indexj. On the
other hand, forα < 45◦ andα > 135◦, pixel [j,i] (i.e., at linej, columni) belongs
to corridor Qij = (j − i sinα)modulo(N tanα+ L cosα), where(N + L) tanα+ 1
defines the number of queues, and the column indexi denotes the reading positionrp.

Since each corridor has an independent queue, the image can be read in horizontal
scan order regardless its orientation. The image is processed in an ordinary horizontal
double-loop, such asfor j in 1 to M + L sinα iteratefor i in 1 to N + L cosα that
callsy(rp− L)← 1D OPEN(f(rp), rp, L, Qij) of Alg. 1.

Let us observe different image configurations with respect to the SE orientation in
Fig. 4. In the horizontal case, the scan order and the SE are parallel so the input is
fetched in the right order as the algorithm needs. Therefore, a single queue is used. It
reads a value at [k,j] and outputs in the same line at [k,i].

In the vertical or inclined case, the unlike scan and SE orientations require multiple
queues. For instance, the inclined orientation in Fig. 4 reads a value at position [l,j]
and returns a result at [k,i]. All pixels between these two points are stored in the queues
implying the computation latency. Nevertheless, it is the minimal achievable latency
considering unlike orientations of the SE and the scan order.

1 i
1

j

M

N

k

1 i
1
j

M

N

k

1 i
1

j

M

N

k

l

Pixels stored in queue

Processed To read
. . .

. . .

. . .

. . .

. . .

. . .

(a) (b) (c)

Figure 4: Image configuration for different SE orientations(a) a horizontal SE, (b) a
vertical SE, and (c) an inclined SE.× denotes the pixels to be read in next iterations,◦
denotes the previous output pixels.

The proposed algorithm has very limited memory consumption. The only memory
elements are queues whose depth and count are inferred by theSE orientation and
image widthN . For example, let us consider an opening of 8-bit SVGA image,i.e.,
800×600 px by a SE of 41 px. The queues occupy only 656 bits for horizontal, and
525 kbits for vertical SE, respectively, compared to the mere size of the image 3.66
Mbits which is never stored.

4 Experimental Results

We present the execution time measures to illustrate the computational complexity in
this section. We compare the proposed algorithm with a few other efficient algorithms,
namely Soilleet al. [5], Van Droogenbroeck [6], and Urbach and Wilkinson [7]. The
benchmarks were performed on Intel Xeon E5620 @2.4GHz CPU, running Linux. The
time reported in tables below refers to the user CPU time consumed by the respective
algorithms. We use the mountain natural photo as a testing image, originally introduced
at [6].
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Figure 5: Execution time of opening/spectrum versus the image size. Structuring ele-
ment is vertical 101 px.

At first, we evaluated the execution time benchmark with respect to the increasing
image size, see Fig. 5. The results illustrates that the complexity of our algorithm is
linear with the image size.

The second benchmark in Fig. 6 retains the same image size andchanges the length
of the horizontal SE to show that the execution time is independent of SE size (however
the value of execution time is dependent on the image content). Compared with other
algorithms, only Van Droogenbroeck’s opening algorithm outperforms our solution.
On the other hand, our algorithm computes the size spectrum in addition to the opening
and is independent of the number of gray levels. For example,let us consider the size
spectrum up toλMAX = 100. Even if we omit the arithmetic operations of (4), the pure
time for computationλMAX γλ will take 100×2.7 ms = 270 ms using the fastest Van
Droogenbroeck’s algorithm. Our algorithm computes the size spectrum in a single run,
i.e., in 9.9 ms.
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Figure 6: Execution time of opening versus the size of the horizontal structuring ele-
ment. Natural photo 800× 600 px is used.

The experiment in Fig. 7 reveals an influence of the SE rotation angle to the exe-
cution time. The proposed algorithm exhibits a small variation of execution time for
the different octants. It is caused by the different spatialrelation between corridors and
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horizontal scan. The Urbach and Wilkinson algorithm results in much larger variation
as its decomposition of the SE into line chords is not suitable for rotating line SEs.
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Figure 7: Execution time of opening versus the rotation angleα. Natural photo 800×
600 px is used.

5 Applications

This section deals with examples of suitable applications of arbitrary oriented opening
and size spectrum. The first one is the local orientation information (orientation field)
ζ35 of a fingerprint image in Fig. 8. The same operator can be applied to detect angle
of the road lines in Fig. 8, too. Later, Fig. 9 displays the oriented size spectraOS(α, λ)
for two different materials.

6 Conclusions

This paper presents a new algorithm for 1-D morphological opening and size spectrum
extraction with large scale of suitable applications, suchas anisotropic texture analy-
sis, size distribution, local orientation, image restoration, etc.. The algorithm processes
an image in a constant time regardless the SE size and almost regardless its rotation.
The operator always uses strictly sequential access to datain horizontal scan pattern.
Furthermore, it infers the minimal latency and very low memory requirements. The
proposed algorithm achieves a high performance in the sequential C implementation
and outperforms other arbitrary oriented line opening algorithms. Moreover, it com-
putes the size spectrum in a single image scan introducing a speed-up in orders of
magnitude compared to residue approach demanding multipleopening runs. The fu-
ture extension of this work is to implement the proposed algorithm in the FPGA circuit
taking an advantage of both spatial and temporal parallelism.
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Figure 8: Extraction of local orientation on (a) a fingerprint and (b) a road image.
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Figure 9: Oriented size spectrumOS(α, λ). △ α = 1◦, λMAX = {50, 100}.
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