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Abstract— We propose to apply the Back and Forth Nudging
(BFN) method used for geophysical data assimilations [1] to
estimate the initial state of a quantum system. We consider a
cloud of atoms interacting with a magnetic field while a single
observable is being continuously measured over time using
homodyne detection. The BFN method relies on designing an
observer forward and backwards in time. The state of the BFN
observer is continuously updated by the measured data and
tends to converge to the systems state. The proposed estimator
seems to be globally asymptotically convergent when the system
is observable. A detailed convergence proof and simulations are
given in the 2-level case. A discussion on the extension of the
algorithm to the multilevel case is also presented.

I. I NTRODUCTION

Estimating the state of a quantum system is a fundamental
problem of great interest in quantum control. Amongst a
variety of applications, it is essential to verify the efficiency
of a quantum state preparation protocol [2], [3]. For this
reason, it is interesting to avoid the usual quantum state
tomography scheme which involves doing the experiment
many times and performing a strong projective measurement
of a new observable at each preparation. Indeed, since many
realizations of the preparation protocol are necessary to
obtain one state estimation, the fidelity of the preparation
protocol is averaged out over all these realizations. A new
approach overcoming this problem was proposed and verified
experimentally in [4] where a controlled evolution is applied
to an ensemble average while an observable is continuously
measured. A Baysesian filter is then used to reconstruct the
quantum state from the measurement record. In this paper,
we consider a similar setting to the one in [4], [5], [6]. We
propose a new approach inspired of the BFN method used in
geophysical data assimilation [1] to reconstruct the stateof
the system from the measured data. We design an observer,
which is an estimation of the quantum systems state and feed
in the data continuously until the observer converges to the
systems state. A similar proposal was outlined in [7]. How-
ever, the method we propose has the advantage of extending
naturally to a multidimensional case and makes more use
of the specific dynamics which the system undergoes. We
guess this can strongly reduce the computation time of the
estimation and increase it’s robustness.
In section II we detail the problem settings and give the
dynamics equations of the BFN observer. Simulation plots
are then presented in sectionIII to demonstrate the efficiency
of the state reconstruction protocol. A detailed convergence

proof of the observer is given in sectionIV. Finally, in
sectionV, we discuss the extension of this algorithm to the
multilevel case.

II. T HE PROBLEM SETTING

We consider the experimental setting introduced in [4]. To
simplify the theoretical study, we suppose that the system
is a spin 1

2 system (instead of a system of total angular
momentum equal to3 or 4 as considered in [4]). It interacts
with a magnetic field in the x-y plane: the control, and a
probe. Homodyne detection of the probe, as explained in [5]
enables a weak continuous measurement of the spin system.
We suppose that all the parameters involved in the dynamics
are known. The dynamics of the spin ensemble is described
by the master equation:

d

dt
ρ(t) = −i[Bx(t)σx +By(t)σy, ρ(t)]

+ Γ(σzρ(t)σz − ρ(t)) (1)

y(t) = Tr (σzρ(t))

[., .] is the Lie Bracket operator and Tr(.) is the trace
operator. We take~ = 1. ρ(t) is the density matrix of the
average ensemble at timet. It is a 2× 2 positive Hermitian
matrix of trace 1.y is the measurement.σx, σy andσz are
the standard Pauli matrices.Γ > 0 gives the strength of the
coupling between the probe and the system. The aim is, from
a set of data{y(t)\t ∈ [0, T ]}, to estimate the initial state of
the systemρ(0) which can be any pure or mixed state.
In order to do so we use Luenberger observers based on the
back and forth nudging (BFN) method [1], [7]. The designed
observer was first introduced, without BFN and for a non
dissipative system, in [8].
The idea is to design an observer on system (1) and another
on the same system but by changingt → T − t. And doing
this iterationn times. This is equivalent to supposing that
the system has a periodic dynamics of period2T which is
symmetric with respect tot = T and that we are measuring
the system over a time interval[0, 2nT ]. This gives more
time for the observer to converge with a small gain and with
minimal amount of data. System (1) is referred to as the
”forward” system and the same system changingt to T − t
the ”backward” system. The indice k introduced below refers
to thekth back and forth iteration of the algorithm. The letter
’f’ stands for ”forward” and ”b” for ”backward”.ρ̂ is the
designed observer.
For the forward system consider:

d

dt
ρ̂
f

k(t) = −i[Bx(t)σx +By(t)σy, ρ̂
f

k(t)]

+ Γ(σz ρ̂
f

k(t)σz − ρ̂
f

k(t))

− (Γ + γ)σz(ŷ
f

k (t)− y(t)) (2)

ŷ
f

k (t) = Tr
(

σz ρ̂
f

k(t)
)
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For the backward system consider:

d

dt
ρ̂
b
k(t) = i[Bx(T − t)σx +By(T − t)σy, ρ̂

b
k(t)]

− Γ(σz ρ̂
b
k(t)σz − ρ̂

b
k(t))

+ (Γ− γ)σz(ŷ
b
k(t)− y(T − t)) (3)

ŷ
b
k(t) = Tr

(

σzρ̂
b
k(t)

)

Noting that ρ̂bk(0) = ρ̂fk(T ) and ρ̂fk(0) = ρ̂bk−1(T ) and
γ > 0.

We initialize the observer̂ρf0 (0) = ρ̂(0) to be Hermitian
and of trace 1. We typically takêρ(0) = 1

2I whereI is the
identity matrix. This way we make no a priori assumption
on the initial state.

Remark 1: Notice that the observer introduced above is
trace preserving and stays Hermitian for all time. However
it does not preserve positivity.

We define for allt ∈ R
+ (k is defined as:k = E( t

2T )
whereE represents the integer part)

ρ̃(t) = ρ̂
f

k(t− 2kT )− ρ(t− 2kT )

if t ∈ [2kT, (2k + 1)T [ (4)

ρ̂
b
k(t− (2k + 1)T )− ρ(2(k + 1)T − t)

if t ∈ [(2k + 1)T, 2(k + 1)T [

B̃x(t) = Bx(t− 2kT )

if t ∈ [2kT, (2k + 1)T [

Bx(2(k + 1)T − t)

if t ∈ [(2k + 1)T, 2(k + 1)T [

B̃y(t) = By(t− 2kT )

if t ∈ [2kT, (2k + 1)T [

By(2(k + 1)T − t)

if t ∈ [(2k + 1)T, 2(k + 1)T [

Z(t) = Tr (σz ρ̃(t)) (5)

Let
V : A (hermitian) → Tr

(

A2
)

V is definite positive. For allk ∈ N we have:

d

dt
V (ρ̃(t)) = −4ΓV (ρ̃(t))− 2γ(Z(t))2

if t ∈ [2kT, (2k + 1)T [ (6)

= 4ΓV (ρ̃(t))− 2γ(Z(t))2

if t ∈ [(2k + 1)T, 2(k + 1)T [ (7)

We note, for allk ∈ N, Vk = V (ρ̃(2kT )). We define the
function g such that for allt ∈ R

+

g(t) = e
4Γ(t−2kT ) if t ∈ [2kT, (2k + 1)T [

e
−4Γ(t−2(k+1)T ) if t ∈ [(2k + 1)T, 2(k + 1)T [

Vk+1 − Vk = −2γ(

∫ (2k+1)T

2kT

g(t)Z2(t)dt

+

∫ 2(k+1)T

(2k+1)T

g(t)Z2(t)dt) (8)

≤ 0
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) goes
to zero whenk goes to infinity.

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(ms)

 

 
Measurement
Estimated measurement

Fig. 2. Measurement and estimated measurement versus time.10%
gaussian noise was added to the data. The estimated measurement is
obtained by simulating (1) with ρ(0) = ρ

f
k
(0) andk = 10.

(Vk)k is a decreasing sequence which is studied in more
detail in SectionIV. Before looking into the convergence
proof, we present some simulations which show the robust-
ness of the convergence ofρ̂fk(0) towardsρ(0) whenk goes
to infinity.

III. S IMULATIONS

For the simulations of figures1, 2, 3 and4, we take:

Γ = 0.25 kHz γ = 0.25 kHz

∀t
√

Bx(t)2 +By(t)2 = 10 kHz T = 1 ms

We takeBx(t) = B0 cos(θ(t)) andBy = B0 sin(θ(t)). B0 =
10 kHz. For θ(t), at 10 equally spaced times between0 and
T , we take a random value between0 and2π. Using a cubic
spline interpolation, we buildθ(t) over [0, T ].

10 iterations are simulated:k = 0, .., 10. 10% gaussian
noise was added to the measurement,Bx andBy.

We initialize the estimator in the completely mixed state
ρ̂f0 (0) = ρ̂(0) = 1

2I. We randomly initializeρ on the
Bloch sphere by taking a random Hermitian positive matrix
satisfying: Tr

(

ρ(0)2
)

= Tr (ρ(0)) = 1.
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Fig. 3. The density matrix of the system and its estimator at time t = 0.
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Fig. 4. The magnetic fieldsBx(t) andBy(t).

IV. CONVERGENCE PROOF

Theorem 1: For any Bx, By ∈ C2([0, T ],R) such that
Bx(0)

d
dt
By(0) − By(0)

d
dt
Bx(0) 6= 0 and ∀ρ̂(0) which is

Hermitian and of trace 1, we have

lim
t→∞

Tr
(

ρ̃2(t)
)

= 0

Remark 2: The convergence outlined in theorem1 is in
two steps:

1) limt→∞ Z(t) = 0
2) limt→∞ Tr

(

ρ̃2(t)
)

= 0

The observer (2)(3) is designed such that we always have
convergence of the estimated measurement to the measure-
ment: limt→∞ Z(t) = 0. Since the system is observable:
(σz , σx, σy) and its commutators span the space of all trace-
less2 × 2 Hermitian matrices, we can find fields(Bx, By)
such thatlimt→∞ Z(t) = 0 implies limt→∞ Tr

(

ρ̃2(t)
)

= 0.
Proof:

For any piecewise continuous functionf we define:
f(2kT+) = limt→2kT,t>2kT f(t).

From (8), we know that(Vk)k is a decreasing sequence.
Besides, for allk ∈ N, Vk ≥ 0, hence(Vk)k converges to
a limit that we note byV∞. Summing (8) between0 and
N ∈ N

∗:

VN − V0 = −2γ

∫ (2N+2)T

0

g(t)Z2(t)dt

∀t ∈ R
+ g(t) ≥ 1, hence

∫ (2N+2)T

0 Z2(t)dt ≤ V0−VN

2γ .
Since∀t ∈ R

+ Z2(t) ≥ 0,
∫∞

0 Z2(t)dt exists and is finite.

From (6) and (7) we have∀u ∈ [0, 2T ] and∀k ∈ N:

V (ρ̃(2kT + u)) ≤ V (ρ̃(2kT )) (9)

hence, for allt ∈ R
+ we haveV (ρ̃(t)) ≤ V0. ρ̃ is therefore

bounded and belongs to the ball centered around0 and of
radiusV0.
We are now going to prove that(Vk)k converges to zero
whenk goes to infinity, and from (9) we will conclude that
V (ρ̃(t)) converges to zero whent goes to infinity. In order
to prove the convergence of(Vk)k, we are going to prove
thatZ(2kT ), d

dt
Z(2kT+), d2

dt2
Z(2kT+) all converge to zero

whenk goes to infinity.
We consider Bx, By C2([0, T ],R) functions.

Z is C3 over S =
⋃

k∈N
]kT, (k + 1)T [.

B̃x, B̃y,
d
dt
B̃x,

d
dt
B̃y,

d2

dt2
B̃x,

d2

dt2
B̃y and ρ̃ are bounded

over S, therefore d
dt
ρ̃, d2

dt2
ρ̃, d3

dt3
ρ̃ are bounded over S and

therefore d
dt
Z, d2

dt2
Z, d3

dt3
Z are bounded over S. SinceZ

is continuous overR+ and d
dt
Z is bounded overS, Z

is uniformly continuous overR+, so Z2 is uniformly
continuous overR+. What’s more

∫∞

0 Z2(t)dt exists and is
finite. We can conclude by applying Barbalat’s lemma [9]
that limt→∞ Z2(t) = 0 and hence

lim
t→∞

Z(t) = 0 (10)

And in particular

lim
k→∞

Z(2kT ) = 0 (11)

Since the derivatives ofZ are not continuous overR+

but only overS, we cannot directly apply Barbalat’s lemma
to d

dt
Z(t) and d2

dt2
Z(t).

Suppose thatd
dt
Z(t) does not converge to zero whent

goes to infinity.
There existsǫ > 0 and a sequence(tn)n such that
limn→∞ tn = ∞ and d

dt
Z(tn) > ǫ (or d

dt
Z(tn) < −ǫ which

can be treated in exactly the same way).
Since d2

dt2
Z(t) is bounded overS we have:∃η ∈]0, T/2[

such that for alln ∈ N and t ∈ [−tmin
n , tmax

n ] | d
dt
Z(tn +

t) − d
dt
Z(tn)| < ǫ

2 . Wheretmin
n = min(tn − E(tn/T )T, η)

andtmax
n = min((E(tn/T )+ 1)T − tn, η). E represents the

integer part.
Hence, for allt ∈ [−tmin

n , tmax
n ] we have: d

dt
Z(tn + t) =

d
dt
Z(tn)− ( d

dt
Z(tn)− d

dt
Z(tn+ t)) ≥ d

dt
Z(tn)−| d

dt
Z(tn+

t) − d
dt
Z(tn)| ≥ ǫ − ǫ

2 = ǫ
2 . Also, notice thatT ≥



tmin
n + tmax

n ≥ η.

|Z(tn + tmax
n )− Z(tn − tmin

n )| =

|
∫ tn+tmax

n

tn−tmin
n

d

dt
Z(t)dt|

≥ ηǫ

2
> 0

This is in contradiction with (10), we therefore conclude
that

lim
t→∞

d

dt
Z(t) = 0 (12)

and in particular:

lim
k→∞

d

dt
Z(2kT+) = 0 (13)

Suppose thatd
2

dt2
Z(2kT+) does not converge to zero when

k goes to infinity, there existsǫ > 0 and a sequence(kn)n
such thatlimn→∞ kn = ∞ and d2

dt2
Z(2knT

+) > ǫ, since
d3

dt3
Z is bounded overS, there exists0 < η < T such that for

all n ∈ N and0 < t < η | d2

dt2
Z(2knT+t)− d2

dt2
Z(2knT

+)| <
ǫ
2 . Hence:

| d
dt
Z(2knT + η)− d

dt
Z(2knT

+)| =

|
∫ 2knT+η

2knT

d2

dt2
Z(t)dt|

≥ ηǫ

2
> 0

Which contradicts (12). Hence:

lim
k→∞

d2

dt2
Z(2kT+) = 0 (14)

We note

X(t) = Tr (σxρ̃(t))

Y (t) = Tr (σyρ̃(t))

We recall that from (11)(13)(14):






















lim
k→∞

Z(2kT ) = 0

lim
k→∞

d

dt
Z(2kT+) = 0

lim
k→∞

d2

dt2
Z(2kT+) = 0

(15)

Using (1), we find that (15) implies:


















lim
k→∞

Z(2kT ) = 0

lim
k→∞

B̃x(2kT )Y (2kT ) − B̃y(2kT )X(2kT ) = 0

lim
k→∞

d

dt
B̃x(2kT )Y (2kT )−

d

dt
B̃y(2kT )X(2kT ) = 0

(16)

Notice thatB̃x(2kT ) = Bx(0) and B̃y(2kT ) = By(0), the
same holds for their derivatives. We takeBx, By such that
Bx(0)

d
dt
By(0)−By(0)

d
dt
Bx(0) 6= 0. (16) implies:















lim
k→∞

Z(2kT ) = 0

lim
k→∞

X(2kT ) = 0

lim
k→∞

Y (2kT ) = 0

This is equivalent tolimk→∞ V (ρ̃(2kT )) = 0. (9) enables
us to conclude that:

lim
t→∞

Tr
(

ρ̃2(t)
)

= 0

V. EXTENSION TO THE MULTILEVEL CASE

We now consider a system of total angular momentumF .
The dimension of the system isd = 2F +1, and the density
matrix ρ(0) belongs to the set of positived × d Hermitian
matrices of trace1. There are therefored2− 1 parameters to
identify. In order to extend the proof of the two level case
(d = 2) to the multilevel case, we would need to prove that

Z(t), d
dt
Z(t), .., dd

2
−2

dtd
2
−2

Z(t) all converge to zero whent goes
to infinity. If the system is observable, we would be able to
conclude that we can find a control such thatρ̃(t) converges
to zero. Two complications arise from considering a system
of higher dimension:
First, the need to extract information from further derivatives
of the measurement record systematically reduces the robust-
ness of the state estimation. One direction of improvement
would be to design a nonlinear observer which preserves
positivity. Such an observer is given in [10] for a non
dissipative system (Γ = 0). The difficulty is to build an ob-
server which stays positive even in the backwards dynamics
which is instable due to the dissipation term inΓ. Such an
observer would reduce the size of the admissibleρ(0)s given
a noisy measurement record, the robustness will therefore
be increased. However, no dramatic improvement should be
expected since the information on some matrix elements
of ρ(0) are hidden in high derivatives of the measurement
record.
Second, although the observability criteria insures the ex-
istence of a control such thatlimt→∞ Z(t) = 0 implies
limt→∞ ρ̃(t) = 0, we don’t have any well known method to
find such a control. The higher the dimension, the harder it is
to find a control which makes the datay(t) informationally
complete about the initial stateρ(0).
We now give some simulations which show that our BFN
protocol still works well for a system of total angular
momentumF = 1 (d = 3). Consider the system:

d

dt
ρ(t) = −i[H(t), ρ(t)] + ΓD[O]ρ(t) (17)

y(t) = Tr (Oρ(t))

WhereH is the systems Hamiltonian andD[O] the Lind-
blad superoperator. We have:H(t) = gFµB(Bx(t)Fx +
By(t)Fy) + βΓFx

2. gF , µB,Γ andβ are positive constants,
Bx, By are the controls andFx, Fy, Fz are the angular
momentum operators.O is the observable, and we take
O =

√
ΓFz . D[O]ρ(t) = Oρ(t)O†− 1

2 (OO†ρ(t)+ρ(t)O†O).
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The superscript† stands for conjugate transpose. The term
βΓFx

2 is necessary to insure the observability of the system
[11]. We now consider the following observers:

d

dt
ρ̂fk(t) = −i[H(t), ρ̂fk(t)] + ΓD[O]ρ̂fk(t)

− γO(ŷfk (t)− y(t)) (18)

ŷfk (t) = Tr
(

Oρ̂fk(t)
)

d

dt
ρ̂bk(t) = i[H(T − t), ρ̂bk(t)]− ΓD[O]ρ̂bk(t)

− γO(ŷbk(t)− y(T − t)) (19)

ŷbk(t) = Tr
(

Oρ̂bk(t)
)

with the conditions: ρ̂bk(0) = ρ̂fk(T ) and ρ̂fk(0) =

ρ̂bk−1(T ). We initialize the observer at̂ρf0 (0) =
1
3Id where

Id is the3× 3 identity matrix.
For the numerical simulations in figures5, 6 and 7 we

take:
gF = 1 µBB0 = 30 Γ = 1

γ = 1 β = 10 T = 1

We takeBx(t) = B0 cos(θ(t)) and By(t) = B0 sin(θ(t)).
θ(t) is found using a numerical search routine aiming to max-
imize a certain criteria (entropy), as explained in [12].10%
noise is added to the controlsBx, By and10% noise is added

to the measurementy(t). We takeρ(0) = 1
2





1 0 1
0 0 0
1 0 1





Notice that the estimated measurement is almost identical
to the measurementy(t) (figure 6). Also, the sequence
(Vk)k decreases and seems to converge to zero (figure
5). This enables us to reconstruct the initial state with a
96% fidelity where the fidelityF is computed as follows

F = Tr

(
√

√

ρ̂f50(0)ρ(0)

√

ρ̂f50(0)

)

[13]. More iterations

are needed than in the2 level case (50 as opposed to10) to
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Fig. 6. Measurement and estimated measurement versus time.10%
gaussian noise was added to the data. The estimated measurement is
obtained by simulating (17) with ρ(0) = ρ

f

k
(0) andk = 50.
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We plot the modulus of each matrix element.

achieve a similar fidelity. Each back and forth iteration takes
about0.1 seconds so the presented simulation takes about
5 seconds to run. As mentioned above, the fidelity of the
reconstruction can be increased if abetter control is found.

VI. CONCLUSION

In this paper we propose a BFN scheme to estimate the
initial state of a quantum system when a continuous mea-
surement of a single observable is given over a time interval
[0, T ]. A convergence proof and simulations are given for
the two level case, and the considered experimental settings
were similar to those in [5]. We discuss the extension of
this algorithm to the multilevel case outlining the limitations
and possible improvements of this protocol, and we present
simulations in the case of a spin1 system. A quantitative
comparison of this method to the ones considered in [4]
and [6] in terms of estimation time and robustness will
be necessary to put forward the advantages of this state
reconstruction protocol.
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