N

N

Back and forth nudging for quantum state estimation by
continuous weak measurement
Zaki Leghtas, Mazyar Mirrahimi, Pierre Rouchon

» To cite this version:

Zaki Leghtas, Mazyar Mirrahimi, Pierre Rouchon. Back and forth nudging for quantum state esti-
mation by continuous weak measurement. ACC 2011- American Control Conference 2011, Jun 2011,
San Francisco, United States. pp.4334 - 4339. hal-00638468

HAL Id: hal-00638468
https://minesparis-psl.hal.science /hal-00638468

Submitted on 4 Nov 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://minesparis-psl.hal.science/hal-00638468
https://hal.archives-ouvertes.fr

arxiv:1007.3911v3 [quant-ph] 6 Jan 2011

Observer-based quantum state estimation by continuous wé&a
measurement

Zaki Leghta$, Mazyar Mirrahimt, and Pierre Rouchdn

1IINRIA Paris-Rocquencourt Domaine de Voluceau, BP105 7816&hesnay Cedex, France
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Abstract— We propose to apply the Back and Forth Nudging proof of the observer is given in secti@. Finally, in
(BFN) method used for geophysical data assimilations [1] to section]], we discuss the extension of this algorithm to the
estimate the initial state of a quantum system. We consider a multilevel case.
cloud of atoms interacting with a magnetic field while a singé
observable is being continuously measured over time using Il. THE PROBLEM SETTING

homodyne detection. The BFN method relies on designing an  \ye consider the experimental setting introduced in [4]. To
observer forward and backwards in time. The state of the BFN simplify the theoretical study, we suppose that the system
observer is continuously updated by the measured data. and is a spin 1 system (instead of a system of total angular
tends to converge to the systems state. The proposed estimat o enm equal t6 or 4 as considered in [4]). It interacts
seems to be globally asymptotically convergent when the dgsn ity 3 magnetic field in the x-y plane: the control, and a
is observable. A detailed convergence proof and simulatianare — 5pe Homodyne detection of the probe, as explained in [5]
given in the 2-level case. A discussion on the extension ofeth o pjes'a weak continuous measurement of the spin system.
algorithm to the multilevel case is also presented. We suppose that all the parameters involved in the dynamics
are known. The dynamics of the spin ensemble is described

|. INTRODUCTION by the master equation:

Estimating the state of a quantum system is a fundamental d
problem of great interest in quantum control. Amongst a 7P = —ilBz(t)ow + By(t)ay, p(t)]
variety of applications, it is essential to verify the efficty + TD(ozp(t)o. — p(t)) (1)
of a quantum state preparation protocol [2], [3]. For this y(t) = Tr(o.p(t))

reason, it is interesting to avoid the usual quantum starL({ap
er

e ; 2= ] is the Lie Bracket operator and T is the trace
tomography scheme which involves doing the experimeiperator. We takéi = 1. p(t) is the density matrix of the

many times and performing a strong projective measuremeaerage ensemble at timelt is a2 x 2 positive Hermitian
of a new observable at each preparation. Indeed, since mangtrix of trace 1y is the measurement,;, o, ando. are

realizations of the preparation protocol are necessary (€ Standard Pauli matriceB.> 0 gives the strength of the
btain one state estimation, the fidelity of the preparatioCOUpIIng between the probe and the system. The aim is, from
0 ' y 4 set of datgy(t)\t € [0, 7]}, to estimate the initial state of

protocol is averaged out over all these realizations. A neyje systemp(0) which can be any pure or mixed state.
approach overcoming this problem was proposed and verifida order to do so we use Luenberger observers based on the
experimentally in [4] where a controlled evolution is apgli back and forth nudging (BFN) method [1], [7]. The designed
to an ensemble average while an observable is continuouazServer was first introduced, without BFN and for a non

AP Ssipative system, in [8].
measured. A Baysesian filter is then used to reconstruct the 5 ijea is to design an observer on systfjragd another

quantum state from the measurement record. In this papgh the same system but by changing: 7' — ¢. And doing
we consider a similar setting to the one in [4], [5], [6]. Wethis iterationn times. This is equivalent to supposing that

propose a new approach inspired of the BFN method usedtie system has a periodic dynamics of perid which is

geophysical data assimilation [1] to reconstruct the stédte ?ﬁ/ mg/esttg(r:‘nwci;[\r/]erre;pt?r?qtet?rie?vgbngyig“?t ‘_’I_Vre]i :‘rgeivrgga:]%rrigg
the system from the measured data. We design an Obser\fﬁ'ﬁe for the observer to convergé with a small gain and with

which is an estimation of the quantum systems state and fegfinimal amount of data. Systenfil)(is referred to as the

in the data continuously until the observer converges to thiéorward” system and the same system changirig T — ¢
systems state. A similar proposal was outlined in [7]. Howthe "backward” system. The indice k introduced below refers
ever, the method we propose has the advantage of extend}ﬁg}hekth back and forth iteration of the algorithm. The letter
naturally to a multidimensional case and makes more u ;tgggg gct))rsefr(\)/rev;/ard and “b" for "backward".j is the

of the specific dynamics which the system undergoes. &r the forward syétem consider:

guess this can strongly reduce the computation time of the d

estimation and increase it's robustness. aﬁi(t) = —i[Bu(t)ow + By(t)oy, pL(t)]

In section|ﬂ| we detail the problem settings and give the + T(o.pl(t)os — pL (1))

dynamics equations of the BFN observer. Simulation plots o ff .
are then presented in sectif to demonstrate the efficiency - (CH)o=(3:(0) —y(®) @
of the state reconstruction protocol. A detailed conveegen gl = Tr (Uzﬁi(t))
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For the backward system consider:

SR = ilBa(T — )+ By(T — )y, (1)
— (e (t)o. — A1)
+ (T =y)o(Gr(t) —y(T — 1) ®)
k) = Tr(epkn)

Noting that 5% (0) = 4/(T) and 5/(0) = p2_,(T) and
v > 0.
We initialize the observeﬁg(o) = p(0) to be Hermitian
and of trace 1. We typically takg(0) = %I where/ is the
identity matrix. This way we make no a priori assumption
on the initial state.
Remark 1: Notice that the observer introduced above iFig. 1.
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Notice that the upper envelope (g = Tr ((5(2kT))?)) goes

trace preserving and stays Hermitian for all time. Howevep zero whenk goes to infinity.

it does not preserve positivity.

We define for allt € R* (k is defined ask = E(35)

where I represents the integer part)

pt) = pL(t—2KT) — p(t — 2kT)
if t € [2kT, (2k + 1)T] ()
pr(t — (2k +1)T) — p(2(k + 1)T — t)
if ¢t €[(2k+ 1T, 2(k + 1)T]
B.(t) = Ba.(t—2kT)
if t € [2kT, (2k + 1)T]
Bo(2(k+1)T —t)
if ¢t €[(2k+ 1)T,2(k + 1T
B,(t) = B,(t—2kT)
if ¢ € [2kT, (2k + 1)T]
B, (2(k + 1)T — t) Fig. 2.
if t € [(2k 4+ 1)T,2(k + 1)T|
Z(t) = Tr(o=p(t)) ()
Let
V : A (hermitian) — Tr (A?)
V is definite positive. For alk € N we have:
Lvpw) = —arv(p) - 220
if t € [2kT, (2k + 1)T (6)
= ATV(B(t)) — 2¢(Z(1))*
if te[(2k+ T, 2(k+1)T] (7)

We note, for allk € N, Vj, = V(p(2kT)). We define the

function g such that for allt € R*

MUK i ¢ e [2KT, (2k 4+ 1)T|
e U2 i 4 e [(2k 4+ )T, 2(k + 1)T|

g(t)

(2k+1)T )
Vers — Ve = —2w</ o(t) 2% (t)dt
2

kT

2(k+1)T
/( o(t) 72 (t)dt)

2k+1)T
0

IN -+

(8)
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gaussian noise was added to the data. The estimated meastrrésn
obtained by simulatin@ with p(0) = p£(0) andk = 10.

(Vk)r is a decreasing sequence which is studied in more
detail in Sectionm. Before looking into the convergence
proof, we present some simulations which show the robust-
ness of the convergence ﬁ,f(o) towardsp(0) whenk goes
to infinity.

[1l. SIMULATIONS
For the simulations of figure§, B, § andfj, we take:

I'=0.25kHz v=0.25kHz

Vit T=1ms

We takeB, (t) = By cos(6(t)) andB, = Bysin(é(t)). By =

10 kHz. For6(t), at 10 equally spaced times betwekand
T, we take a random value betwe@mand2z. Using a cubic
spline interpolation, we build(¢) over [0, T].

10 iterations are simulated: = 0,..,10. 10% gaussian
noise was added to the measuremét,and B,,.

We initialize the estimator in the completely mixed state
ph(0) = p(0) = LI. We randomly initializep on the
Bloch sphere by taking a random Hermitian positive matrix
satisfying: Tr(p(0)?) = Tr (p(0)) = 1.

B.(0)2 + By(1)2 = 10 kH =



Re(p(0)) Re(p]0(0))

(2N+2)T
Vw—-Vo = —27/ g(t)Z%(t)dt
0

vt € RT g(t) > 1, hencefO(QNH)T Z2(t)dt < Yo
Sincevt € RT Z2(t) > 0, [,° Z*(t)dt exists and is finite.

From @ and {) we havevu € [0,27] andVk € N:

V(p(2KT +u)) < V(3(2kT)) ©

hence, for allt € R we haveV (5(t)) < Vo. p is therefore
bounded and belongs to the ball centered arourahd of
radiusVj.
We are now going to prove thdf};), converges to zero
whenk goes to infinity, and fromﬂ) we will conclude that
V(p(t)) converges to zero whehgoes to infinity. In order
to prove the convergence @¢¥});, we are going to prove
that Z (2kT), & Z (2kT), j—;Z(%T*) all converge to zero
whenk goes to infinity.

We consider B,,B, C%*([0,7],R) functions.

Fig. 3.  The density matrix of the system and its estimatoinaé t = 0.

Z is C* over S = UpnkT.(E + DT
By, By, 4B,, 4B, £ B, £ B, and 5 are bounded

over S, therefore< s, 45, 45 are bounded over S and

therefore %Z,j—;z,%z are bounded over S. SincB
is continuous overR* and %Z is bounded overS, Z
is uniformly continuous overR*, so Z2 is uniformly
continuous oveR*. What's morefOOO Z*%(t)dt exists and is
Fig. 4. The magnetic field, (t) and By (t). finite. We can conclude by applying Barbalat’s lemma [9]

thatlim, ., Z%(t) = 0 and hence
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IV. CONVERGENCE PROOF tli}m Z(t)=0 (10)
Theorem 1: For any B,, B, € C?([0,T],R) such that _ _
B.(0)4B,(0) — B,(0)4B,(0) # 0 and ¥5(0) which is And in particular
Hermitian and of trace 1, we have

lim Z(2kT) =0 (11)
lim Tr (5°(1)) = 0 hreo
— 00 . . . .
Remark 2: The convergence outlined in theordis in Since the derivatives of are not continuous oveR*
two steps: but only overS,zwe cannot directly apply Barbalat's lemma
1) limy o0 Z(t) =0 to £7(t) and 4> Z(t).

2) limy—,oo Tr (%(t)) =0
The observer@@) is designed such that we always have Suppose thatd Z(t) does not converge to zero when
convergence of the estimated measurement to the measugees to infinity.
ment: lim;_,, Z(t) = 0. Since the system is observable:There existse > 0 and a sequenceét,), such that
(02,04,0,) and its commutators span the space of all tracéim,, . t, = oo and %Z(tn) > ¢ (or %Z(tn) < —e which
less2 x 2 Hermitian matrices, we can find field$3,, B,) can be treated in exactly the same way).
such thatlim; . Z(t) = 0 implieslim;_,, Tr (5*(t)) = 0.  Since 4> 7(t) is bounded overS we have:3n €]0,7/2]

Proof: such that for alln € N andt € [—¢mn ¢mas] |4 74, 4
For any piecewise continuous functiof we define: t) — £Z(t,)| < 5. Wheret?" = min(t, — E(t,/T)T,n)
F2KTT) = limy_ok7 =287 f(1)- andt?** = min((E(t,/T)+1)T —t,,n). E represents the

From @), we know that(V}) is a decreasing sequence.integer part.
Besides, for allk € N, V}, > 0, hence(V}) converges to Hence, for allt € [—t7", tm92] we have: L Z(t, + 1) =
a limit that we note byV,.. Summing ) between0 and £ Z(t,) — (L Z(tn) — L Z(t, +1)) > L Z(tn) — | L Z(tn +
N € N*: t)— LZ(t,) > e— 5 = 5. Also, notice that >



t:lnzn 4 tnmam 2 7.

|Z(tn + 177) = Z(tn — 1;7"™)] =

tn"‘t::]'az d

| —Z(t)di]
tn_tmin dt

> e

-2

>0

This is in contradiction with[{{), we therefore conclude
that

tligloﬁz(t) = 0 (12)
and in particular:
li dZ(2k:T+) =0 (13)
el dt

Suppose tha%iZ(%T*) does not converge to zero when
k goes to infinity, there exists > 0 and a sequencé:, ),
such thatlim,,_, k, = oo and ddezZ(%nT*) > ¢, since
j—;Z is bounded oves, there exist® < n < T such that for
aln e Nando <t <n |%Z(2knT+t)—jTiZ(2knT+)| <
5. Hence:

d d
|EZ(2knT +1n) — Ez(zknTJr” =

2k, T+n
~/2knT
€
> Ne
2
>0

Which contradicts[(d). Hence:

2

2

dt? )t

. d?
am e

(2KT™) 0 (14)

We note
X(t) Tr(o2p(t))
Y (t) Tr(oyp(t))
We recall that from [[1){L3)([L4):

lim Z(2kT) =0
k—o00

d
. v + _
W g PR =0

d
. v + _
P g PR =0

Using (I), we find that [(9) implies:
lim_ Z(2kT) = 0
Jim B (2kT)Y (2kT) — By (2kT)X (2kT) = 0

(15)

(16)

d ~
lim — B, (2kT)Y (2kT
W, gy De GRT)Y GRT)

Notice thatB, (2kT) = B,(0) and B, (2kT) = B, (0), the
same holds for their derivatives. We taky,, B, such that
B, (0)L B, (0) — B,(0)Z B,(0) # 0. (L implies:

d -
— = By(2kT)X(2KT) = 0

lim Z(2kT) = 0
k—o0
lim X (2kT) = 0
k—o00
lim Y (2kT) = 0
k— o0

This is equivalent tdimy, . V (5(2kT)) = 0. () enables
us to conclude that:

Jim Tr (p%(#)) = 0

V. EXTENSION TO THE MULTILEVEL CASE

We now consider a system of total angular momenfim
The dimension of the system és= 2F' + 1, and the density
matrix p(0) belongs to the set of positivé x d Hermitian
matrices of tracd. There are thereforé®> — 1 parameters to
identify. In order to extend the proof of the two level case
(d = 2) to the mulztilevel case, we would need to prove that

Z@), L2, .., %Z(t) all converge to zero whehgoes

to infinity. If the system is observable, we would be able to
conclude that we can find a control such thét) converges

to zero. Two complications arise from considering a system
of higher dimension:

First, the need to extract information from further derives

of the measurement record systematically reduces thetrobus
ness of the state estimation. One direction of improvement
would be to design a nonlinear observer which preserves
positivity. Such an observer is given in [10] for a non
dissipative systeml{= 0). The difficulty is to build an ob-
server which stays positive even in the backwards dynamics
which is instable due to the dissipation termIin Such an
observer would reduce the size of the admissil§i®s given

a noisy measurement record, the robustness will therefore
be increased. However, no dramatic improvement should be
expected since the information on some matrix elements
of p(0) are hidden in high derivatives of the measurement
record.

Second, although the observability criteria insures the ex
istence of a control such thaim; .., Z(t) = 0 implies

lim; ,~ p(t) = 0, we don’t have any well known method to
find such a control. The higher the dimension, the harder it is
to find a control which makes the dag&t) informationally
complete about the initial staig0).

We now give some simulations which show that our BFN
protocol still works well for a system of total angular
momentumF = 1 (d = 3). Consider the system:

@ ot

—i[H(t), p(t)] + TD[O]p(t)
y(t) Tr(Op(t))

Where H is the systems Hamiltonian ar8[O] the Lind-
blad superoperator. We havéi(t) = grup(B.(t)F, +
B,(t)F,) + BTE,%. gr,up,I" and3 are positive constants,
B,,B, are the controls and”,, F,, F, are the angular
momentum operatorsD) is the observable, and we take
O = VTF,. DO]p(t) = Op(t)OT = (OO0 p(t)+p(t)OT0).

(17)
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Fig. 5. The upper envelope &}, = Tr((5(2kT))?). Notice that it
decreases and seems to converge to zero.

The superscript stands for conjugate transpose. The term
BTF,? is necessary to insure the observability of the system

[11]. We now consider the following observers:

d 4

o) = —i[H(t), pL(t)] + TD[O]p (1)
— YO (1) — (1)) (18)
gl@t)y = Tr(0opl(t)
Do) = BT 1), () - TDIOJA()
YO(R(t) — y(T — 1)) (19)
gt = Tr(0p()

with the conditions: p%(0) = pf(T) and pf(0) =
ph_.(T). We initialize the observer gt} (0) = 11d where
1d is the 3 x 3 identity matrix.

For the numerical simulations in figurfs | and ] we
take:
=1

gr =1 upBo =30

We take B, (t) = Bycos(0(t)) and B, (t) = Bysin(0(t)).

6(t) is found using a numerical search routine aiming to ma

imize a certain criteria (entropy), as explained in [12}%
noise is added to the contral®,, B, and10% noise is added

1 01
to the measuremeni(t). We takep(0) =% (0 0 0
1 01

Notice that the estimated measurement Is almost identi
to the measuremeny(t) (figure E). Also, the sequence
(Vi)r decreases and seems to converge to zero (figlfr%
f). This enables us to reconstruct the initial state with a
96% fidelity where the fidelity7 is computed as follows

F=Tr <\/\/ﬁ§0(0)p(0)\/ﬁ£0(0) [13]. More iterations

are needed than in thelevel case {0 as opposed ta0) to

X_

0.6

T
Measurement y(t)
Estimated measurement

0.4r

0.2 0.4 0.6 0.8 1
Time(ms)

Fig. 6. Measurement and estimated measurement versus ti0%é.

gaussian noise was added to the data. The estimated meastrrésn
obtained by simulatin@) with p(0) = p£ (0) and k = 50.

|p20(0)]

1

0.5

Fig. 7. The density matrix of the system and its estimatoina¢ t = 0.
We plot the modulus of each matrix element.

achieve a similar fidelity. Each back and forth iteratioretak
about0.1 seconds so the presented simulation takes about
5 seconds to run. As mentioned above, the fidelity of the
reconstruction can be increased ibetter control is found.

VI. CONCLUSION

In this paper we propose a BFN scheme to estimate the
initial state of a quantum system when a continuous mea-
surement of a single observable is given over a time interval
[0,7]. A convergence proof and simulations are given for
the two level case, and the considered experimental setting
were similar to those in [5]. We discuss the extension of
this algorithm to the multilevel case outlining the limitats
and possible improvements of this protocol, and we present
simulations in the case of a spinsystem. A quantitative
comparison of this method to the ones considered in [4]

capd [6] in terms of estimation time and robustness will

be necessary to put forward the advantages of this state
construction protocol.
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