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Abstract: We propose an engineered reservoir
inducing the relaxation of a cavity field towards
non-classical states. It is made up of two-level
atoms crossing the cavity one at a time. Each
atom-cavity interaction is first dispersive, then
resonant, then dispersive again. The reservoir
pointer states are those produced by an effective
Kerr Hamiltonian acting on a coherent field. We
thereby stabilize squeezed states and quantum
superpositions of multiple coherent components in
a cavity having a finite damping time. This robust
method could be implemented in state-of-the-art
experiments and lead to interesting insights into
mesoscopic quantum state superpositions and into
their protection against decoherence.

Non-classical states of the radiation field are the focus
of a considerable interest. Squeezed states (SS), with re-
duced fluctuations on one field quadrature, are interesting
for high precision quantum measurements [1]. Mesoscopic
field state superpositions (MFSS), involving coherent com-
ponents with different classical properties, are reminiscent
of the famous Schrödinger cat [2], in a superposition of
the “dead” and “alive” states. Their environment-induced
decoherence sheds light on the quantum-classical bound-
ary [3]. We envision in this Letter a reservoir engineering
setup in Cavity Quantum Electrodynamics (CQED) for
the generation and stabilization of such states.

Many experiments on MFSS have been proposed or re-
alized, particularly with trapped ions [4] (whose harmonic
motion is equivalent to a field mode) or CQED [3], with
a single atom coupled to a single field mode. Introducing
the atom in a state superposition and finally detecting it
leads to the preparation of a MFSS, conditioned by the
atomic detection outcome [3, 5, 6, 7, 8, 9, 10, 11].

Deterministic preparation of MFSS could, in principle,
be achieved by propagation of a coherent field in a Kerr
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medium [12], described by the Hamiltonian:

HK = ζK N + γK N2 (1)

(N: photon number operator ; ζK is proportional to the
linear index ; γK : Kerr frequency; units are chosen such
that ~ = 1 throughout the paper). An initial coherent
state |α〉 evolves with interaction time tK through nonclas-
sical states e−i tKHK |α〉 of mean photon number |α|2 [3,
Section 7.2]. For tKγK � π, the field is in a quadrature-
squeezed state |sα〉 with a nearly Gaussian Wigner func-
tion W . For slightly larger interaction times, the field has
a ‘banana’-shaped Wigner function. For tKγK = π/k,
we get a MFSS |kα〉 of k equally spaced coherent com-
ponents. For tKγK = π/2, a “Schrödinger cat” state
|cα〉 = (|αe−iϕ〉 + i |-αe−iϕ〉)/

√
2 is reached (ϕ = ζKtK).

Note that the collisional interaction Hamiltonian for an
atomic sample in a tightly confining potential or in an
optical lattice is similar to HK [13].

The unconditional preparation, protection and long-
term stabilization of SS and MFSS is an essential goal for
the study and practical use of these states. Reservoir engi-
neering [14, 15] protects target quantum states by coupling
the system to an “engineered” bath whose pointer states
(stable states of the system coupled to the reservoir) [16]
include the target. The system is effectively decoupled
from its standard environment by its much stronger cou-
pling with the engineered bath.

For trapped ions, reservoirs composed of laser fields can
stabilize a subspace containing superpositions of coherent
vibrations [14, 11]. However, they do not prevent mix-
ing of states belonging to the stabilized subspace, making
it impossible to protect a specific MFSS [3, pp. 487-488].
A complex reservoir could stabilize a superposition of n
phonon number states using n + 2 lasers [15]. In CQED
proposals, reservoirs protect squeezed states [17] and en-
tanglement of two field modes [18]. In [19], a reservoir
made up of a stream of atoms crossing the cavity stabi-
lizes MFSS (cotangent states). However, the scheme is
based on the fragile trapping state condition [20] (a res-
onant atom entering the cavity in its upper state under-
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Figure 1: Scheme of the ENS CQED experiment.

goes a 2pπ quantum Rabi pulse in an n-photon field), and
state protection is jeopardized by thermal excitations of
the cavity at finite temperature.

We propose a robust method to stabilize SS and MFSS
in a realistic CQED experiment. It uses an engineered
reservoir made up of a stream of 2-level atoms undergoing
a tailored composite interaction with the field, dispersive,
then resonant, then dispersive again. The reservoir pointer
states are then ≈ e−i tKHK |α〉, in which α and γKtK can
be chosen at will. With proper interaction parameters, we
stabilize in particular the states |sα〉, |kα〉 and |cα〉.

The method is quite general and could be applied in a
variety of CQED or circuit-QED settings. For the sake
of definiteness, we discuss its principle in the context of
the ENS CQED setup (Fig. 1, details in [3, 7] and below).
A microwave field at frequency ωc/2π is trapped in the
cavity C. Atoms are sent one after the other through C.
The transition frequency between the atomic lower and
upper circular Rydberg states (|g〉 and |e〉 respectively) is
ω0/2π. The atom-cavity detuning δ = ω0−ωc � ωc can be
controlled with a good time resolution via the Stark effect.
The atoms are excited in state |g〉 in B and prepared by
a classical microwave pulse in the Ramsey zone R1 in the
initial state |uat〉 = cos(u/2)|g〉+sin(u/2)|e〉 (without loss
of generality, we take phase references so that 〈g|uat〉 and
〈e|uat〉 are both real). On a Bloch sphere with |e〉 at the
north pole, it corresponds to a vector at an angle u with
the north-south vertical axis. For the engineered reservoir,
the final atomic state is irrelevant. Ramsey zone R2 and
the state-selective detector D are used to reconstruct the
field state generated by the engineered reservoir, using a
method described in [7].

Atom-cavity interaction is ruled by the Jaynes-
Cummings Hamiltonian HJC . In a proper interaction rep-
resentation:

HJC =
δ

2
(|e〉〈e| − |g〉〈g|) + i

Ω(t)

2
( |g〉〈e|a†− |e〉〈g|a ) (2)

where Ω(t) is the atom-cavity coupling, varying with time
during the atomic transit through the Gaussian mode (a:
photon annihilation operator). The unitary evolution op-
erators corresponding to resonant (δ = 0) and strongly
dispersive (|δ| � Ω) interactions are, within irrelevant

phases [3]:

Ur(Θ) = |g〉〈g| cos(Θ
√
N/2) + |e〉〈e| cos(Θ

√
N+1/2)

−|e〉〈g|a sin(Θ
√
N/2)

√
N

+ |g〉〈e| sin(Θ
√
N/2)

√
N

a† ,(3)

Ud(φ0) ≈ |g〉〈g| e−i φ0N + |e〉〈e| e+i φ0(N+1) , (4)

where Θ =
∫

Ω(t) dt is the quantum Rabi pulsation in
vacuum integrated over time during the resonant interac-
tion and φ0 = −1/(4 δ)

∫
Ω2(t) dt measures the total field

phase shift produced by the atom during the dispersive
interaction.

Resonant atoms initially in |g〉 absorb photons. The
reservoir’s pointer state is then the vacuum |0〉. Resonant
atoms initially in |uat〉 realize a ‘micromaser’ with coher-
ent injection [19, 21]. Noticeably, when pumped below
population inversion (0 < u� 1), with Θ� 1, this maser
stabilizes a coherent state |α〉. Starting e.g. from |0〉 in an
ideal cavity, repeated atomic emissions produce a coherent
state with a growing real amplitude β. The atoms then
undergo a coherent resonant Rabi rotation in this field,
with a Bloch vector starting initially towards the south
pole of the Bloch sphere. Assuming Θ � u, the atomic
Bloch vector rotates under Ur(Θ) by an angle −Θβ. For
Θβ < 2u, the atomic energy decreases on the average and
β grows. When β reaches α = 2u/Θ, the average atomic
energy is unchanged after interaction and the field ampli-
tude remains constant as an equilibrium is reached. This
intuitive approach is supported, for u,Θ � 1, by devel-
oping to second order in u,Θ the master equation for the
coarse-grained average of the field density operator map
ρ → Trat

[
Ur(Θ) (ρ⊗ |uat〉〈uat|) Ur(Θ)†

]
[22]: the atoms

act on the field approximately like a coherent injection plus
damping. For any initial condition, numerical simulations
for u,Θ ≈ 1 show that the field state rapidly converges
towards a pure state close to |α〉 with α ≈ 2u/Θ.

Our key observation is that sandwiching Ur(Θ) between
two opposite dispersive interactions Ud(φ0) and Ud(φ0)† =
Ud(−φ0) is equivalent to sandwiching it between adjoint
evolution operators generated by the Kerr Hamiltonian
HK . This yields a pointer state resulting from the action
of HK on the pointer state of the resonant reservoir i.e.
the coherent state |α〉.

Using af(N) = f(N+1) a, we get for the total evolution

operator Ut = Ud(φ0)Ur(Θ)U†d(φ0):

Ut = |g〉〈g| cos(Θ
√
N/2) + |e〉〈e| cos(Θ

√
N+1/2)

−|e〉〈g|a sin(Θ
√
N/2)

√
N

e2iφ0N

+|g〉〈e| sin(Θ
√
N/2)

√
N

e−2iφ0N a† . (5)

When the atom remains in the same state, the dispersive
interactions cancel. When it switches level in Ur(Θ), the
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dispersive phase shifts add up. In semi-classical terms,
an atomic absorption (emission) decreases (increases) the
field amplitude and increases (decreases) its phase. After
many atomic interactions, a larger field is expected to have
a smaller accumulated phase than a smaller field, in close
analogy with the Kerr effect action.

More precisely, using

e−iφ0N(N+1) a eiφ0N(N+1) = a e2iφ0N ,

and defining h0(N) = φ0N(N + 1), we have Ut =
exp[−ih0(N)]Ur(Θ) exp[ih0(N)]. Since exp[−ih0(N)] is
the evolution operator in HK for γKtK = ζKtK = φ0, we
get as a pointer state any of the non-classical states pro-
duced by HK by adjusting the interaction parameters. In
particular, for φ0 = π/2, we get, up to an irrelevant phase,
the MFSS |cα〉 = (|-iα〉+ i |iα〉)/

√
2.

Let us give an intuitive insight into the stabilization
of this cat state |cα〉. We assume that, before its in-
teraction with an atom, the field is in the state |ψ0〉 =
(|-iα0〉+ i |iα0〉)/

√
2 with α0 < α [23]. The first dispersive

interaction entangles atom and field in a mesoscopic quan-
tum superposition, correlating two π-phase shifted atomic
dipoles |uat〉 and |(-u)at〉 with coherent states |α0〉 and
|-α0〉 respectively. As explained above, during the reso-
nant interaction each dipole state amplifies the correlated
coherent component from ±α0 to ±α̃ (α0 < α̃ < α). The
second dispersive interaction disentangles atom and field.
The final field state is thus independent upon the atomic
one and writes |ψt〉 = (|-iα̃〉+ i |iα̃〉)/

√
2, a ‘larger’ MFSS.

Similarly, if α0 > α, the atomic interaction reduces the
cat amplitude. Altogether, the atoms stabilize a sizable
MFSS.

Eq.(4) is valid in the large detuning limit. For smaller δ
values, of the order of the maximum atom-field coupling,
a more complex expression using the full dressed states
should be used. In particular, there is a finite transition
probability between atomic levels at the end of the first
dispersive interaction. Further analysis [22] and numerical
simulations of the exact dynamics surprisingly show that
our main findings remain quite valid even in this regime.
The reservoir’s pointer state is still that produced by the
Kerr hamiltonian acting onto a coherent state close to |α〉,
within a classical phase rotation.

We have performed numerical simulations of the field
evolution in realistic experimental conditions, correspond-
ing to the present ENS CQED setup (Fig. 1). The cavity
and atomic frequencies are close to 51 GHz, correspond-
ing to the transition between circular rubidium Rydberg
levels with principal quantum numbers 51 and 50. Tak-
ing the origin of time when the atom crosses cavity axis,
Ω(t) = Ω0 e−v

2t2/w2

in the Gaussian mode of C, where
v is the adjustable atomic velocity, Ω0/2π = 50 kHz and
w = 6 mm. The simulations take into account the stan-
dard cavity relaxation towards thermal equilibrium. The

photon lifetime in C is Tc = 0.13 s and the residual thermal
field at the mirrors temperature (0.8 K) corresponds to a
mean number of blackbody photons per mode nt = 0.05.
The engineered reservoir is meant to protect non-classical
states from this decoherence.

The composite atom-field interaction is achieved with
a ladder of Stark shifts during the atom-cavity interac-
tion time. The corresponding evolution operators are com-
puted exactly from HJC [Eq. (2)], using the quantum op-
tics package for MATLAB [24] (Hilbert space is truncated
to the 60 first Fock states). The atom-field interaction is
supposed to start when vt = −1.5w (dispersive coupling
equal to ∼ 1% of its maximum value) and ends when
vt = 1.5w, the total interaction time being ti = 3w/v.

During ti, δ is first set at δ = ∆ > 0, implementing U†d ,
then at δ = 0 for a short time span tr centered on cavity
center crossing time, and finally δ = −∆ for Ud.

Atomic samples are produced at regular time intervals
in B. The probability for having one atom in a sample,
pat ' 0.3, is kept low to avoid having two atoms at a time
in C. The interaction with the next sample starts imme-
diately after the previous one has left C. Thus, smaller
ti implies more frequent atom-cavity interaction, that is a
stronger engineered reservoir, more efficient against stan-
dard cavity relaxation. We trace over the irrelevant final
atomic state to compute the field density matrix ρ after
each atomic interaction.

Figure 2(a) presents the experimentally accessible [7]
Wigner functions W (ξ) associated to the cavity field state
ρ200 after its interaction with 200 atomic samples for v =
70 m/s (requiring a moderate laser cooling of the rubidium
atomic beam), ti = 257µs, ∆ = 2.2 Ω0, tr = 5 µs, Θ ≈
π/2, u = 0.45π. The (irrelevant) initial cavity state is
the vacuum. We get a two-component MFSS with strong
negativities in W . The average photon number is n =
2.72. The purity P = Tr(ρ2

200) is 51%. We estimate the
fidelity F = Tr[ρ200ρcα ] of this state w.r.t. a MFSS ρcα
of two coherent states with opposite phases, optimized by
adjusting in the reference state the phase and amplitude
of the coherent components and their relative quantum
phase. We get F = 69%. We have checked that cavity
relaxation is the main cause of imperfection, F being 98%
in an ideal cavity.

Figure 2(b) presents as a solid line the fidelity F of the
prepared state w.r.t. the final ideal cat as a function of the
atomic sample number (i.e. as a function of time). The
transient reflects the competition between the fast build-
up of the cat, the fidelity raising over a few atomic samples
only, and the cat decoherence, proceeding on a slower time
scale Td = Tc/(2n) = 27 ms [3, 7]. The steady state fidelity
is reached after ' 100 samples. The dashed line presents
F when we switch off the reservoir after 200 interactions.
It drops much more rapidly than Tc = 0.13 s, illustrating
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Figure 2: Non-classical states generated by the engineered reservoir. (a) Wigner function of the cavity field after 200
steps of reservoir-atom interaction. The state is close to |cα〉. (b) Solid line: fidelity of the generated state against
the closest ideal cat as a function of the number of interactions (bottom axis) or of time (upper axis). Dashed line:
reservoir is switched off after 200 interactions. (c) and (d) Wigner functions of cavity fields close to |kα〉 with k = 3
and to a ‘banana state’ respectively. Detailed conditions in the text.

the high sensitivity of the generated non-classical state to
decoherence and its efficient protection by the engineered
reservoir.

For a slightly larger detuning, ∆ = 3.7 Ω0 (all other pa-
rameters unchanged), we obtain a three-component MFSS
|kα〉 with k = 3 [Fig. 2(c)] with n = 2.70 photons,
P = 56%, and a fidelity w.r.t. the closest three-component
ideal MFSS F = 73%.

In the Kerr dynamics, squeezed states are obtained
in the early stages of the initial coherent state phase
spreading. With v = 300 m/s, ti = 60µs, tr = 1.7 µs
i.e. Θ ≈ 0.17π, u = π/2 and ∆ = 70 Ω0, we generate after
200 samples a Gaussian minimal uncertainty state for the
Heisenberg relations between orthogonal field quadratures
containing n = 21 photons, with a 1.5 dB squeezing.

For larger phase spreads in the Kerr dynamics, the
Wigner function takes a banana shape. These non-
minimal uncertainty states present non-classical negativ-
ities. As an example, Fig. 2(d) presents the Wigner
function of the field obtained after 200 samples with
v = 150 m/s, ti = 120µs, tr = 5 µs i.e. Θ ≈ π/2,
u = π/2 and ∆ = 7 Ω0. The field has n = 3.52 and
P = 91%, due to a reduced influence of relaxation with
the fast and more frequent atoms used here. All these set-
tings are within reach of the present ENS setup. A more
detailed discussion of these simulations will be published
elsewhere [22].

We have checked that this scheme is not sensitive to ex-
perimental imperfections (a few % variation of the inter-
action parameters does not appreciably modify the steady
state), as long as the symmetry between the two disper-
sive interactions is accurate. It does not require recording
the final atomic states, unlike quantum feedback exper-
iments, which can also stabilize non-classical states [25].
Feedback can in fact be used in addition to improve the
performance of the engineered reservoir, using atomic de-

tection results to detect and react to environment-induced
jumps of field state, or to post-select time intervals when
a cat is generated with a high fidelity [22].

In conclusion, we have shown that the composite atom-
cavity interaction scheme realizes an engineered envi-
ronment for the cavity field, driving it deterministically
towards non-classical field states including the MFSS
Schrödinger cat-like states. The scheme is simple and ro-
bust enough to be amenable to experiment with a state-
of-the-art CQED or circuit QED setup.

The engineered reservoir, driving any initial cavity state
to the desired mesoscopic field state superposition and sta-
bilizing these quantum resources for arbitrarily long times,
opens interesting perspectives for fundamental studies of
non-classicality and decoherence.
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