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Abstract. This paper considers population transfer between eigenstates of a finite

quantum ladder controlled by a classical electric field. Using an appropriate change of

variables, we show that this setting can be set in the framework of adiabatic passage,

which is known to facilitate ensemble control of quantum systems. Building on this

insight, we present a mathematical proof of robustness for a control protocol – chirped

pulse – practiced by experimentalists to drive an ensemble of quantum systems from

the ground state to the most excited state. We then propose new adiabatic control

protocols using a single chirped and amplitude shaped pulse, to robustly perform any

permutation of eigenstate populations, on an ensemble of systems with badly known

coupling strengths. Such adiabatic control protocols are illustrated by simulations

achieving all 24 permutations for a 4-level ladder.

1. Introduction

Population transfer from eigenstate k to eigenstate l of a quantum system refers to

finding a control input such that the projection of final system state on eigenstate l of the

free Hamiltonian has the same norm as the projection of initial system state on eigenstate

k. Applications of population transfer range from population inversion [1], where k and

l are lowest and highest energy eigenstates, to quantum information processing [2, 3, 4],

where logic gates would (selectively) permute the populations of several eigenstates.

In many applications, including those mentioned, relative insensitivity to variations in

system parameters is important for robustness issues.

In the present paper, we show how control inputs designed on the basis of

adiabatic passage can implement any given permutation of eigenstate populations for

a finite anharmonic quantum ladder. The controls we use are chirped pulses [5] with

appropriately modulated amplitudes and exploit the idea of eigenvalue crossing [6].

The ladder consists of a free Hamiltonian with approximately equidistant eigenvalues
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and where the control input couples eigenstates associated to consecutive eigenvalues.

A striking robustness feature is that our control fields must only satisfy a set of key

properties and achieve population transfer independently of the values of dipole moments

coupling consecutive levels of the ladder. This is a major difference with respect to early

non-adiabatic approaches to molecular ladder dissociation using chirped pulses [5].

In this sense, we achieve a specific form of ensemble control. Ensemble control in

its most general form wants a same input to drive an ensemble of systems, with different

values of some parameter p, from given p-dependent initial state to given p-dependent

final state [7, definition 1]. Currently, solutions to this general problem are essentially

restricted to two-level systems, achieving approximate ensemble control in finite time

and exact ensemble control in infinite time [7, 8, 9]. They rely on accurate knowledge

of laser-system coupling strengths and accurately tailored inputs, involving e.g. exact

instantaneous “π-amplitude-impulses”. In our setting, system parameters need not be

exactly known and the input must only satisfy a few key properties. In turn, regarding

initial-to-final-state transformations, we are limited to population permutations (with

arbitrary relative phases between components of different eigenstates) that are constant

as a function of system parameters. Driving an ensemble of 2-level systems from a

common initial to a common final state has also been much studied in the NMR context,

e.g. with geometric methods [8].

Adiabatic passage is a control strategy that builds on the adiabatic evolution

property: A system state initially close to an eigenstate of a time-varying Hamiltonian

H(t) approximately follows the time-varying eigenstate ofH(t) if it varies slowly enough;

the slower H(t) varies, the better the adiabatic approximation. A thorough formal

study of adiabatic evolution can be found in [10, 11, 12], on which we build the

proofs of our results. Adiabatic evolution has been standard since the early days of

quantum mechanics [13], e.g. when interpreting system evolution in terms of “avoided

eigenvalue crossings”. In a ladder control context, population inversion in two-level

systems by a “chirped” pulse — where frequencies of a Gaussian laser pulse are spread

out in time — is known by experimentalists and theoretically explained in the adiabatic

framework [14]. This is the most basic case of our control, section 3 with N = 2. Many

experimentalists have then focused on multiple-laser techniques, individually addressing

pairwise couplings in an N -level system; this includes stimulated Raman adiabatic

passage (STIRAP), see e.g. [15, 16, 17]. For N -level ladder systems specifically, the

possibility of population transfer from the lowest to the highest energy eigenstates with a

single chirped laser pulse has been recognized and exploited in “adiabatic rapid passage”

experiments [18, 1, 19, 17]. An analysis of N -level adiabatic molecular dissociation with

chirped pulses is given in [20] based on the Floquet representation. In the present

paper we provide a simple mathematical proof of population inversion with avoided

crossings (gap condition) based on Favard’s Theorem [21] and on the roots of orthogonal

polynomials [22], and extend the framework by adding amplitude control to perform not

only population inversion but all different permutations of free Hamiltonian eigenstates.

The paper is organized as follows. Section 3 gives the formal statement and section
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6 the proof for N -level population inversion with “adiabatic rapid passage”, actually

proving how initial population of level k is finally transferred to level N − k − 1 in

adiabatic approximation. The key point for using adiabatic passage is a change of

frame that depends on time-varying control input phase; it is detailed in section 2 after

formal description of the ladder system. The proof then applies the standard “adiabatic

theorem with spectral gap condition”, where time-varying eigenvalues are shown to

remain separated for all times. The inversion is insensitive to exact energy values of the

individual levels in the ladder. Section 4 proposes adiabatic control inputs to transfer

population between two arbitrary eigenstates. It requires the control field to vanish at

specific times which depend on (some) energy levels of the anharmonic ladder, such

that we select a pair of time-varying eigenvalues to cross. System evolution is then

ruled by the “adiabatic theorem without spectral gap condition”. A complementary

study of system behavior in the neighborhood of two crossing eigenvalues and valid for

more general systems than ladder ones, can be found in [23]. We again provide a formal

proof of the control’s effect and highlight its ensemble/robustness features in section 6.

Section 5 finally shows how any permutation of eigenstate populations can be achieved

in this adiabatic passage framework. Each control protocol is illustrated by a simulation

at the end of the corresponding section.

Notation: We use the Dirac bra-ket notations: |ψ〉 ∈ CN denotes a complex vector,

〈ψ| = |ψ〉† is its Hermitian transpose, and 〈.|.〉 : CN×CN → C : (|ψ1〉, |ψ2〉) → 〈ψ1|ψ2〉 =
〈ψ1||ψ2〉 is the Hermitian scalar product. For z ∈ C we note ℜ(z) its real part and z∗

its conjugate. HN is the set of N × N Hermitian matrices, where N ∈ N. We note I

the N × N identity matrix. For any matrix A ∈ CN×N , we denote its Frobenius (or

Hilbert-Schmidt) norm ‖A‖ =
√
trA†A where tr · denotes trace. For H ∈ HN , it holds

‖H‖ =
√∑N−1

i=0 λ2i where λ0, . . . , λN−1 are the (real) eigenvalues ofH . ForH ∈ HN and

λ an eigenvalue of H , we denote Pλ ∈ HN the orthogonal projector on the eigenspace of

H associated to the eigenvalue λ. If H has M distinct eigenvalues {λ0, .., λM−1}, with
M ≤ N , then H =

∑N−1
k=0 λkPλk

is the spectral decomposition of H . If M = N , then

H is called non degenerate and each Pλk
is a rank-one projector. When M < N we say

that H is degenerate; then some Pλk
have rank larger than 1.

S1 denotes the unit circle equivalent to R modulo 2π. For J an interval of R, the

derivative of a differentiable function f : J → S
1 is a function from J to R. For all

n ∈ N, we denote Cn(J,K) the set of n times continuously differentiable functions

from J to K, where J is an interval of R and K is an interval of R or S1. A multi-

component function is n times continuously differentiable, e.g. H(s) ∈ Cn(J,HN), if all

its components belong to Cn(J,K). For f ∈ C1(J,K ⊆ Rn), we note f ′(y) ∈ C0(J,Rn)

the value at y ∈ J of the derivative of f . R>0 is the set of strictly positive real numbers;

we use analog notation with ≥, ≤ or <. Nb
a is the set of integers from a to b, both

boundaries included. When writing c0, . . . , cN−1 ∈ S we mean that ck belongs to the set

S for each k ∈ NN-1
0 . Infimum and supremum of a set are noted sup and inf respectively.
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2. Problem setting

2.1. Standard formulation

Consider a quantum system with wavefunction |ψ〉 ∈ CN , 〈ψ|ψ〉 = 1, N ∈ N, whose

dynamics is governed by the Schrödinger equation (with ~ = 1)

i
d

dt
|ψ(t)〉 = (H0 + u(t)H1) |ψ(t)〉 . (1)

The Hamiltonians H0 ∈ HN and H1 ∈ HN respectively characterize free and control-

induced evolution, u(t) being a real scalar control. In the present paper, we consider a

quantum ladder for which the Hamiltonians, in the eigenbasis {|0〉, . . . , |N − 1〉} of H0,

take the form

H0 =

N−1∑

k=0

k(ω0 +∆k) |k〉〈k| (2)

H1 =
N−2∑

k=0

µk (|k〉〈k + 1|+ |k + 1〉〈k|) , (3)

with ω0 ∈ R>0; ∆0, . . . ,∆N−1 ∈ R; and µ0, . . . , µN−2 ∈ R>0. We assume that system

(1) features two very different orders of magnitude,

||u(t)H1|| ≈ |∆k| ≪ ω0 for all k and all t . (4)

Physically, H0 is the free Hamiltonian of a quantum ladder with mean resonant

frequency ω0 and anharmonicities ∆k. We call eigenstates |0〉, . . . , |N − 1〉 of H0 the

levels of the ladder. H1 is the dipole moment matrix and models couplings between

consecutive eigenstates; it is therefore tridiagonal with zero diagonal elements, and can

be taken real positive and symmetric without loss of generality. Condition (4) expresses

that control amplitude is relatively weak and that the ladder is close to a harmonic

one, i.e. eigenvalues of H0 associated to consecutive eigenstates are close to equidistant.

This allows to exploit resonant transitions between all consecutive eigenstates with a

control of carrier frequency ω0. We consider a typical such control with a small positive

parameter ε,

u(t) = 2ℜ
(
eiω0tE(t)

)
, E(t) = A(εt)e

i

ε
θ(εt) (5)

with ‖ d
dt
E(t)‖ ≪ ω0 , (6)

where A(t) ∈ R and θ(t) ∈ S1 for all t ∈ R≥0. Parameter ε governs the rate of variations

in the envelope A(εt) and frequency d
dt

1
ε
θ(εt) = θ′(εt) of E(t); we show in the next

sections how taking ε small allows to apply adiabatic passage properties. The slow but

nonzero frequency variation is a key element for our control strategy. Physically, control

fields like (5) are obtained e.g. by “shaping” a single laser pulse [24].

The rotating wave approximation (RWA), standard in quantum systems modeling,

consists in writing (1) with the change of variable |φ(t)〉 =
(∑N−1

k=0 eikω0t |k〉〈k|
)

|ψ(t)〉
and neglecting fast oscillating terms, to keep only those that vary at frequencies ≪ ω0.
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It can be justified by averaging theory [25] thanks to inequalities (4),(6). Within this

approximation, |φ〉 follows the dynamics

i
d

dt
|φ(t)〉 = (H̄I + H̃I(t)) |φ(t)〉 (7)

where

H̄I =

N−1∑

k=0

k∆k |k〉〈k|

H̃I(t) =
N−2∑

k=0

µk(E(t)|k〉〈k + 1|+ E∗(t)|k + 1〉〈k|) .

2.2. Change of frame

Hamiltonian H̃I(t) contains a control field whose phase 1
ε
θ(εt) varies on timescales

of order one. The key idea to apply adiabatic passage to the N -level system is an

appropriate further change of frame on (7), such that all explicit time-dependence

in the resulting dynamics involves timescales of order ε. To this end, we extend the

change of frame given in [14, Section 4.6] for the two-level case and define |ξ(t)〉 =∑N−1
k=0 ek

i

ε
θ(εt) |k〉〈k| |φ(t)〉. Dynamics (7) becomes

i
d

dt
|ξ(t)〉 = (HR(ω(εt)) + A(εt)H1) |ξ(t)〉 (8)

with ω = θ′, H1 given by (3) and

HR(v) =

N−1∑

k=0

k(∆k − v) |k〉〈k| for all v ∈ R . (9)

Define the propagator Uε to be a time-dependent N by N unitary matrix such that

the solution of (8) is given by |ξ(t)〉 = Uε(t)|ξ(0)〉 for all t and for all |ξ(0)〉. Then Uε

follows the dynamics

iε
d

ds
Uε(s) = H(s)Uε(s) , Uε(0) = I (10)

with H(s) = HR(ω(s)) + A(s)H1 (11)

in the time scale s = εt. In the following, we study system (10) for s in the interval

[0, 1] and with A(s) and ω(s) as controls. Our goal is to achieve:

(a) Adiabatic approximate eigenstate permutations:

lim
ε→0+

max
k∈G

‖Uε(1)|k〉〈k|Uε(1)† − |σ(k)〉〈σ(k)| ‖ = 0 (12)

for given G ⊆ NN-1
0 and given permutation σ of (0, . . . , N − 1).

(b) Ensemble control: a single control (A, ω) achieves such eigenstate permutation on an

ensemble of systems with different parameter values; the parameters are the dipole

moments (µ0, . . . , µN−2) and, in some cases, the anharmonicities (∆0, . . . ,∆N−1).

(c) Robust control inputs: the above holds for any (A, ω) that satisfy a set of key

properties.
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Remark 1. Writing (12) in terms of |k〉〈k|, the projector on eigenspace {β |k〉 : β ∈ C},
expresses that the goal is really population transfer, i.e. we allow Uε(1)|k〉 ≈ eiχk |σ(k)〉
with arbitrary phases χk ∈ S1. Both frame changes — for RWA in section 2.1 and

θ-dependent in section 2.2 — involve only phase changes on eigenstates. Therefore, for

all t and for all |k〉,
‖|ψ(t)〉〈ψ(t)| − |k〉〈k|‖ = ‖|φ(t)〉〈φ(t)| − |k〉〈k|‖

= ‖|ξ(t)〉〈ξ(t)| − |k〉〈k|‖ .

3. Robust ensemble transfer from |k〉 to |N − k − 1〉

In this section we consider a control protocol – chirped pulse – used by physicists to

drive a system from the lowest eigenspace, spanned by |0〉, to the highest eigenspace,

spanned by |N − 1〉, of the free Hamiltonian H0 given in (2). In fact we prove that

a general (robust) class of control inputs transfers population from eigenstate |k〉 to

eigenstate |N − k − 1〉, for all k, on an ensemble of systems with different values of

parameters µ0, . . . , µN−2 (dipole moments) and ∆0, . . . ,∆N−1 (anharmonicities).

The key requirements on the control are (i) to use a sufficiently chirped pulse —

condition (b) in Theorem 1 — and (ii) to avoid all eigenvalue crossings — condition (c)

in Theorem 1.

3.1. Transfer Theorem

For k = 0, . . . , N − 1 let λRk (s) = 〈k|HR(ω(s))|k〉 = k(∆k − ω(s)), the eigenvalues of

HR(ω(s)).

Theorem 1. For given ∆ > 0, µmax > µmin > 0, consider S an ensemble of systems

of type (10) with µj ∈ [µmin, µmax] for all j ∈ NN-2
0 and ∆j ∈ [−∆,∆] for all j ∈ NN-1

0 .

Take controls A and ω with:

(a) A and ω ∈ C2([0, 1],R)

(b) ω(0) and ω(1) are such that, for all systems in S,
λR0 (0) < . . . < λRN−1(0) and (13)

λR0 (1) > . . . > λRN−1(1)

(c) A(0) = A(1) = 0 and A(s) 6= 0 for s ∈]0, 1[
Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

k∈NN-1
0

‖ Uε(1)|k〉〈k|Uε(1)† − |N − k − 1〉〈N − k − 1| ‖ ≤ Cε .

The proof of this theorem is given in section 6; we there actually replace the simple

condition (c) on A by a more general one: A(0) = A(1) = 0 and A(s) 6= 0 for all

s ∈ Iω(S), where
Iω = {s ∈ [0, 1] : HR(ω(s)) is degenerate for some system ∈ S} . (14)
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The argument is based on the facts that the system approximately follows eigenstates

of H(s) for small enough ε (adiabatic theorem), eigenvalues of HR are inverted between

s = 0 and s = 1 thanks to ω(s) (chirping), and nonzero A(s) avoids all crossings for

eigenvalues of H(s) such that e.g. the initial highest-energy level |N − 1〉 connects to

the final highest-energy level |0〉 (see Lemma 1 in section 6). Theorem 1 implies that for

a given control satisfying the assumptions, taking ε small enough allows to invert the

state populations of a whole ensemble of systems featuring different parameter values.

The control inputs only need to satisfy a few weak conditions and are therefore robust

to many perturbations. These insensitivity properties of the adiabatic passage protocol

have long been recognized by experimentalists. They commonly use the following type

of control, see e.g. [17].

Example 1. A function ω satisfying the inequalities (13) is e.g. ω(s) = α(s − 1
2
), for

a large enough positive α; such ω is said to perform a frequency sweep. Except for the

finite extension of time domain, such inputs are obtained by a “chirped” Gaussian laser

pulse, which takes the form E(t) = E0

∫ +∞

−∞
e−ζ2τ2 eiκζ

2

e−iζt dζ where κ 6= 0 characterizes

chirping.

Theorem 1 still holds if inequality (13) is replaced by

λR0 (0) > . . . > λRN−1(0) and λR0 (1) < . . . < λRN−1(1) ,

i.e. the direction of the frequency sweep in Example 1 can be inverted (taking a large

enough negative α). However, for a given system, choosing one inequality over the other

may allow to get a lower value for the constant hidden in the “order of magnitudes”

result. This brings a mathematical foundation to the experimental observations made

e.g. in [19].

3.2. Simulations

We simulate system (10) with a control satisfying assumptions (a), (b) and (c) of

Theorem 1. We consider a 4-level quantum ladder (so N = 4). We take ε = 10−2,

∆0, . . . ,∆3 ∈ [−0.4, 0.4] and µ0, µ1, µ2 ∈ [µmin, µmax] = [1, 5]. The control is ω(s) =

8(s− 1
2
) and A(s) = s(1− s), represented on Fig.1.a. Fig.1.b shows how the eigenvalues

of H(s) (thick lines) avoid crossing For the illustrated random choice of detunings, the

eigenvalues of HR(ω(s)) (thin lines) are very close to concurrent between s = 0.5 and

s = 0.6. This poses no problem for the adiabatic transfer from |k〉 to |N − k − 1〉.
The successful transfer is illustrated on Fig.1.d, which shows the squared norm of the

projection of Uε(1)|k〉 onto |p〉, for all pairs (|k〉, |p〉) of eigenvectors of H0; this is

equivalent to the squared norm of element on row p, column k of matrix Uε(1) that acts

by left-multiplication on initial column-vectors, for Uε(1) expressed in basis (|0〉, . . . , |3〉).
Fig.1.c shows ensemble control on ten systems with different random values of ∆0, . . . ,∆3

and µ0, µ1, µ2.



Adiabatic passage and ensemble control of quantum systems 8

0 1
0

1

C
o

n
tr

o
l a

m
p

lit
u

d
e

 A
(s

)

0 1
−5

5

C
o

n
tr

o
l f

re
q

u
e

n
cy

 
ω

(s
)

0 1
−15

0

15

Eigenvalues of H(s)

 

 

λ
0
(s)

λ
1
(s)

λ
2
(s)

λ
3
(s)

0 1
0

1

|<3|U
ε
(s)|0>|

2

Time s 0 1 2 3

3

2

1

0

k

p

|<p|U
ε
(1)|k>|

2

(a) (b)

(c) (d)

Figure 1. Control scheme transferring |k〉 to |N − k − 1〉. (a) control inputs A(s),

ω(s). (b) s-dependent eigenvalues of H(s) (thick lines) and of HR(ω(s)) (thin lines).

(c) population on level |3〉 for 10 systems whose parameters µ0, µ1, µ2 and ∆1,∆2,∆3

were randomly picked respectively in [1, 5] and [−0.4, 0.4], and all starting at the initial

state |0〉. (d) squared norm of the matrix elements of Uε(1), represented in shading

from white (value 0) to black (value 1).

4. Robust ensemble transfer from |l〉 to |p〉

In this section we propose a new robust control protocol to drive a system from the

eigenspace (of free Hamiltonian H0) spanned by |l〉 to the eigenspace spanned by |p〉,
for any given l and p in NN-1

0 . The population transfer works on an ensemble of systems

with different values of µ0, . . . , µN−2 (dipole moments), and for a general class of inputs

where zero-crossings of A(s) must be correlated with degeneracies ofHR(ω(s)); the latter

depend on ω(s) and (some of the) anharmonicities ∆0, . . . ,∆N−1, which must hence be

fixed.

4.1. From |0〉 to any |p〉

For the sake of clarity, we start by giving sufficient conditions on A and ω for the

particular population transfer from |0〉 to arbitrary level |p〉. Section 4.2 generalizes the

result to arbitrary initial state |l〉. Consider the following assumptions:

(A1) S is an ensemble of systems of type (10) with µj ∈ [µmin, µmax] for all j ∈ NN-2
0 , for

some given µmax > µmin > 0, and with given sequence of detunings (∆0, . . . ,∆N−1),
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such that the set {k(∆k − v): k ∈ NN-1
0 } contains at least N − 1 distinct values for

any v ∈ R;

(A2) ω is analytic and d
ds
ω(s) > γ > 0 for all s ∈ [0, 1];

(A3) ω(0) and ω(1) are such that (13) holds.

For any m and n in NN-1
0 with m < n, we note s(m,n) the unique time§ where

λRm(s(m,n)) = λRn (s(m,n)).

As all systems in S have the same sequence of detunings, they feature the same

eigenvalues λR0 , . . . , λ
R
N−1 of HR and hence the same set of s(m,n). The set of all

s(m,n) equals Iω defined in (14), with dependence on particular system ∈ S becoming

irrelevant. The end of (A1) further implies that HR has at most one pair of equal

eigenvalues for any s ∈ [0, 1] i.e. (m,n) 6= (j, k) implies s(m,n) 6= s(j, k), hence

Iω contains N(N − 1)/2 distinct values. Further define Iω
0 = {s1, . . . , sN−1} ⊂ Iω

the N − 1 points where λR0 (s) = λRn (s) for some n ∈ NN-1
1 , numbered such that

s1 < s2 < . . . < sN−1. Thus, for each sk ∈ Iω
0 there exists a unique n ∈ NN-1

1 such that

sk = s(0, n).

The key requirements on the control to achieve population transfer from |0〉 to |p〉
are (i) to use a sufficiently chirped pulse frequency — condition (A3) — and (ii) to

shape pulse amplitude in order to appropriately provoque — (c) in Theorem 2 — or

avoid — (b),(d) in Theorem 2 — crossing of eigenvalues of H .

Theorem 2. Consider S an ensemble of systems satisfying (A1) with a control ω

satisfying (A2) and (A3). Take p ∈ {0, . . . , N − 1} and consider a control A with

the following properties:

(a) A is analytic over [0, 1] and A(0) = A(1) = 0.

(b) A(s) 6= 0 for all s ∈ Iω\Iω
0 .

(c) A(sk) = 0 for all sk ∈ Iω
0 with k ≤ N − p− 1.

(d) A(sk) 6= 0 for all sk ∈ Iω
0 with k ≥ N − p.

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

‖ Uε(1)|0〉〈0|Uε(1)† − |p〉〈p| ‖ ≤ C
√
ε .

The proof, given in section 6, shows that at eigenvalue crossing points the system

adiabatically follows the eigenvector corresponding to the crossing branch.

4.2. From any |l〉 to any |p〉

Under assumptions (A1) to (A3), we denote Iω
k+(s) = {s(m,n) ∈ Iω : m = k, n >

k and s(m,n) > s} and Iω
k−(s) = {s(m,n) ∈ Iω : m < k, n = k and s(m,n) > s},

for any k ∈ NN-1
0 . Further let qk±(s) = inf(Iω

k±(s)) and define gk±(s) by s(k, gk+(s)) =

§ If assumptions (A1) to (A3) hold, then the existence and unicity of s(m,n) is ensured for all m and

n > m: see Fig.2.b or Fig.3.c
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qk+(s) and s(gk−(s), k) = qk−(s) respectively. For p ≤ N − l− 1, construct Iω
lp with the

following algorithm.

1: d := 0; x := 0; k := l; Iω
lp := ∅;

2: while d < N − l − p− 1 do

3: while [ Iω
k−(x) 6= ∅ and qk−(x) < qk+(x) ] do

4: k := gk−(x); x := qk−(x);

5: end while

6: Iω
lp := Iω

lp ∪ {qk+(x)}; d := d+ 1; x := qk+(x);

7: end while

The algorithm is verified to always successfully complete‖. For p ≥ N − l − 1, we can

define Iω
lp with a similar algorithm but where ‘<’ is changed to ‘>’ on line 2 and indices

k−, k+ are switched. Then Iω
lp contains |N − l − p− 1| elements.

Corollary 1. Consider S an ensemble of systems satisfying (A1) with a control ω

satisfying (A2) and (A3). Take l, p in NN-1
0 and consider a control A with the following

properties:

(a) A is analytic over [0, 1] and A(0) = A(1) = 0.

(b) A(s) = 0 for all s ∈ Iω
lp.

(c) A(s) 6= 0 for all s ∈ Iω \ Iω
lp.

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

‖ Uε(1)|l〉〈l|Uε(1)† − |p〉〈p| ‖ ≤ C
√
ε .

Assumption (A1) ensures that each eigenvalue crossing / anti-crossing can be ad-

dressed individually. This ensures that any transfer can be implemented in any situa-

tion, but it is in general not necessary for a given system and transfer, as (simultaneous)

crossings of some eigenvalue branches are irrelevant. The control proposed for Theorem

2 or Corollary 1 is just one amongst many possibilities of “eigenvalue crossing designs”.

Indeed, depending on (l, p) and on the particular arrangement of the s(m,n), one can

find other subsets Jlp ⊂ Iω such that taking A(s) = 0 if and only if s ∈ Jlp, permutes

the eigenvalues in such a way that λl(1) = λRp (1). The controls that we propose are

optimal in the sense that they require a minimal number of pairwise crossings, that is of

annihilations of A at accurate points. Variant annihilation subsets Jlp may be useful (i)

to avoid some crossing points s(m,n) or eigenvalue branches (e.g. because corresponding

∆m or ∆n is poorly known, or because s(m,n) is close to some other point in Iω), (ii)

to optimize adiabatic convergence as a function of ε, or (iii) to simultaneously perform

population transfers between several eigenstates, as we do in section 5.

‖ Indeed by construction, the cardinality of Iω

k+(x) equals N − l− d− 1 (except during the update on

line 6) and the cardinality of Iω

k−
(x) decreases by one each time line 4 is applied; thus it is impossible

to keep applying line 4 infinitely, and line 6 is always well-defined (that is Iω

k+(x) 6= ∅) for d < N− l−1.
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Another approach [26] for transferring |l〉 to |p〉 is to use A(s) Gaussian, i.e. without

any annihilations, but reduce ω(s) to a specific range. Indeed, under the above

assumptions, it is possible to choose ωmin and ωmax such that l(∆l − v̄) = p(∆p − v̄)

for some v̄ ∈ [ωmin, ωmax] and HR(v) is non-degenerate for all v ∈ [ωmin, ωmax] \ {v̄}.
Then taking ω(s) monotone between ωmin and ωmax just induces one avoided crossing

that exchanges |l〉 and |p〉. Pictorially, this is like selecting a particular narrow vertical

slice on Fig.1.b. Depending on the specific system under study and whether it is

experimentally easier to precisely modulate the amplitude or the phase of a field, one

method may be more suitable than the other. A main advantage of our method is that,

unlike the method proposed in [26], it can be extended to achieve any permutation of

eigenstates as is shown in section 5.

4.3. Simulations
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Figure 2. Control scheme transferring |0〉 to |2〉 control scheme; subplots analogue to

Fig.1, except that ∆1,∆2,∆3 remain fixed for (c). A(s) vanishes at s = 0.25 so that

λ0 and λ1 cross instead of avoiding crossing.

As in section 3.2 we simulate (10) for a 4-level quantum ladder (so N = 4) with

µ0, µ1, µ2 ∈ [µmin, µmax] = [1, 5]. We now take ε = 10−3 and in accordance with the

statement of Theorem 2 we fix the anharmonicities, taking ∆1 = −1, ∆2 = 0.3, ∆3 = 0

(the value of ∆0, multiplied by k = 0, is irrelevant). We target in particular a transfer

from |0〉 to |2〉. The algorithm of section 4.2 reduces to the simple case of Theorem 2,

requesting a single zero of A(s) at s = inf{s(0, 1), s(0, 2), s(0, 3)} = s(0, 1) = 0.25 in
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addition to A(0) = A(1) = 0. We take A(s) = s(1 − s)(s− 0.25) and ω(s) = 4(s− 1
2
),

represented on Fig.2.a. Fig.2.b shows how the eigenvalues λk(s) of H(s) cross or not

(thick lines); the eigenvalues ofHR(ω(s)) (thin lines) define points s(m,n) for our control

design. Fig.2.d confirms achievement of the intended result by showing the squared norm

of components of matrix Uε(1) in basis (|0〉, . . . , |3〉): we indeed have |〈p|Uε(1)|k〉|2 ≈ 1

for (p, k) = (2, 0) (other values incidental). Fig.2.c illustrates ensemble control on ten

systems with different random values of µ0, µ1, µ2. Since for this particular case the

control only exploits precise crossing point s(0, 1) = 0.25, we might actually allow

ensembles with different ∆2,∆3.

5. Robust ensemble permutation of populations

In this section we describe the most general result of the paper, adiabatically transferring

(|0〉〈0|, . . . , |N − 1〉〈N − 1|) to (|σ(0)〉〈σ(0)|, . . . , |σ(N − 1)〉〈σ(N − 1)|), where σ is any

permutation of NN-1
0 . As in section 4, the population permutation works on an ensemble

of systems with different values of µ0, . . . , µN−2 (dipole moments), and for a general

class of inputs where zero-crossings of A(s) must be correlated with degeneracies of

HR(ω(s)); the latter depend on ω(s) and require anharmonicities ∆0, . . . ,∆N−1 to be

fixed and known. We prove existence of an appropriate control by recurrence on N . In

fact this recurrence method can be used to design A(s), as we illustrate in section 5.2.

5.1. Permutation theorem

Theorem 3. Consider S an ensemble of systems satisfying (A1) with a control ω

satisfying (A2) and (A3). Take σ any permutation of NN-1
0 . Then there exists a subset

IA ⊆ Iω for which, taking control A to satisfy

(a) A analytic over [0, 1] and A(0) = A(1) = 0,

(b) A(s) = 0 for all s ∈ IA,

(c) A(s) 6= 0 for all s ∈ Iω \ IA,

implies: ∃ a constant C > 0 such that, for all ε > 0,

sup
S

k∈NN-1
0

‖ Uε(1)|k〉〈k|Uε(1)† − |σ(k)〉〈σ(k)| ‖ ≤ C
√
ε .

Since the proof of this Theorem is constructive and necessary for the understanding

of the example below, we present it here.

Proof (of Theorem 3). The formal arguments (sup, adiabatic propagator) are presented

in detail in the proof of Theorem 1 in section 6. We focus on the construction of the

control A(s) by following analytic eigenvalue branches of H(s).
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The property is obvious for N = 2: either (σ(0), σ(1)) = (1, 0), which follows

Theorem 1 just requiring A(s(0, 1)) 6= 0; or (σ(0), σ(1)) = (0, 1), which follows Theorem

2 transferring |0〉 to |p〉 = |0〉 with one crossing¶, i.e. just requiring A(s(0, 1)) = 0.

Assume that we can achieve any permutation of NK-1
0 for N = K, and we are given

a permutation σ of NK
0 for N = K + 1 where σ(l) = K and σ(K) = p.

• If l = p = K, i.e. σ(K) = K, then first build the remaining permutation on

levels |0〉, . . . , |K − 1〉 by neglecting level |K〉. This uses the result for N = K; it

just requires A(s) = 0 for some s = s(m,n) and A(s) 6= 0 for some other s = s(m,n),

with m,n < K. Now take a particular such A(s) where in addition, A(s) = 0 for all

s ∈ {s(m,K) : m ∈ NK-1
0 }. Then λK(s), starting at λK(0) = λRK(0), exactly follows

the same crossings as λRK(s) to end up as λK(1) = λRK(1); the other levels remain

unperturbed, so σ is achieved.

• If l 6= K 6= p, then first construct A(s) by applying the result of the preceding point to

σ, defined by

σ(l) = p ; σ(K) = K ; σ(k) = σ(k) for all k 6∈ {l, K} .

A(s) performs the target permutation, except that K remains on K and l goes to p. From

(13) eigenvalue branch λK(s) necessarily crosses, at some s ∈ {s(m,K) : m ∈ NK-1
0 },

the analytic eigenvalue branch that starts at λl(0) = λRl (0) and ends at λl(1) = λRp (0).

Define A(s) to have the same zeros as A(s) except that A(s) 6= 0. This just transforms

the crossing at s into an anti-crossing, such that the analytic branch coming from λK(0)

(resp. λl(0)) now connects to the analytic branch going to λp(1) (resp. λK(1)). Thus

A(s) achieves the target permutation σ. �

Each “eigenvalue crossing design” choice IA yields a particular permutation σIA .

For N > 2, the number 2N(N−1)/2 of possible IA (i.e. subsets of Iω) is strictly larger

than the number N ! of permutations. Thus there are still several IA that yield the same

σ. Unlike in section 4, building A(s) as in the proof of Theorem 3 does not necessarily

yield a minimal cardinality of IA for given σ.

5.2. Example and simulations

We first illustrate the control design by recurrence based on the proof of Theorem

3. Consider target permutation σ(0, 1, 2, 3) = (2, 0, 3, 1). First we reduce it down

to an elementary permutation. Start with K = N − 1 = 3 and note (l, p) = (2, 1)

because σ(2) = K and σ(K) = 1; we thus define σ(0, 1, l = 2, 3) = (2, 0, p = 1, 3)

and impose A(s) = 0 for s ∈ {s(0, 3), s(1, 3), s(2, 3)} reducing the permutation to

0, 1, 2. Then we take K = N − 1 = 2 and note (l, p) = (0, 1) because σ(0) = K

and σ(K) = 1; we thus define σ(l = 0, 1, 2, 3) = σ(p = 1, 0, 2, 3) and impose A(s) = 0

for s ∈ {s(0, 2), s(1, 2)} reducing the permutation to 0, 1. To implement σ we need

A(s(0, 1)) 6= 0. Now we progressively move up to permutations on more levels, removing

¶ Indeed, {Pλ0(1), Pλ1(1)} = {|0〉〈0|, |1〉〈1|} then automatically implies transferring |1〉〈1| to Pλ1(1) =

|1〉〈1|.
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Figure 3. Control scheme generating permutation σ(0, 1, 2, 3) = (2, 0, 3, 1) and

simulation result. Subplots (a),(b),(d) analogue to Fig.1). Subplot (c) shows the

eigenvalues of HR(ω(s)), used to design IA (see text). The points s ∈ IA where

A(s) = 0 are marked on (a).

one at a time from our objects. The reader is encouraged to follow crossings/anti-

crossings under the different controls by referring to Fig.3.c, corresponding to our

chirping choice ω(s) = 4(s − 1
2
). Under A the analytic branch from |l〉 = |0〉 to

|p〉 = |1〉 meets the branch staying on |K〉 = |2〉 at s = s(1, 2). We therefore impose

A(s(1, 2)) 6= 0 unlike for A, and for the rest copy the requirements of A: A(s(0, 1)) 6= 0,

A(s(0, 2)) = 0. Now under A the branch from |l〉 = |2〉 to |p〉 = |1〉 crosses the

branch staying on |K〉 = |3〉 at s = s(2, 3). We therefore get requirements for our

actual control A by imposing A(s(2, 3)) 6= 0 unlike for A, for the rest copying the

requirements of A, i.e. A(s) = 0 for s ∈ {s(0, 3), s(1, 3), s(0, 2)} and A(s) 6= 0 for

s ∈ {s(0, 1), s(1, 2)}. To satisfy these requirements, we take the polynomial control

A(s) = s(1 − s)(s − s(0, 3))(s − s(1, 3))(s − s(0, 2)), represented on Fig.3.a. Fig.3.b

shows how the eigenvalues of H(s) cross and anti-cross depending on whether A(s)

vanishes or not. The squared norm components of Uε(1) resulting from a simulation

of (10) with this control and ε = 10−3 are shown on Fig.3.d on a white-to-black scale,

confirming achievement of permutation σ(0, 1, 2, 3) = (2, 0, 3, 1).

Fig.4 shows the same squared norm components of Uε(1) in gray-shades for 24 cases,

corresponding to different control inputs A(s) designed for all 24 possible permutations

of the set (0, 1, 2, 3). The controls A(s) are built as the product of (i) a polynomial
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1

0

Figure 4. Simulation results of (10) for 24 different controls A(s) following Theorem 3

to achieve each one of the 24 permutations of (0, 1, 2, 3) with adiabatic passage. Shading

represents squared norm of elements of matrix Uε(1) expressed in basis |0〉, . . . , |3〉,
from white (value 0) to black (value 1). In other words, each subplot may be read as

a 4× 4 matrix where the black patches are ones and the white patches are zeros; gray

patches indicate intermediate values, reflecting that the unitary propagator obtained

by integrating (10) is not exactly a permutation matrix for the finite ε = 10−3.

vanishing on IA ∪ {0, 1} and only there, and (ii) a set of functions (1 + g(s− s(m,n))),

with g(s − s(m,n)) Gaussians centered on all s ∈ Iω \ IA; the role of the latter is to

amplify A(s) in the vicinity of intended “anti-crossings”, improving convergence of the

adiabatic limit as a function of ε. Fig.4 corresponds to the choice ε = 10−3.

6. Proofs

In this section we give the proofs of all the formal results presented in previous sections.

6.1. Proof of Theorem 1

We start the proof by recalling the following result [27].

Lemma 1. Let DN be a real tridiagonal and symmetric N ×N matrix defined by

DN =
N−1∑

k=0

ak|k〉〈k|+
N−2∑

k=0

ck(|k〉〈k + 1|+ |k + 1〉〈k|) (15)

in some orthonormal basis (|0〉, . . . , |N − 1〉). If ck 6= 0 for all k ∈ N
N-2
0 , then DN is

non degenerate.

Proof (of Lemma 1). Denote Qn the characteristic polynomial of Dn, which is defined

as (15) with N replaced by n, for all n ∈ {1, . . . , N}. The sequence of polynomials (Qn)n
verifies the following recurrence relation: for n ≥ 2,

Qn(x) = (x− an−1)Qn−1(x)− (cn−2)
2Qn−2(x) , (16)
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with Q0(x) = 1 and Q1(x) = x − a0. According to Favard’s Theorem [21], a sequence

verifying (16) where (cn−2)
2 > 0 for all n, is a sequence of orthogonal polynomials.

Furthermore, from [22, Theorem 3.3.1], every polynomial Qn in a sequence of orthogonal

polynomials has n real and distinct zeros; this is in particular true for n = N , therefore

DN is non degenerate. �

Proof (of Theorem 1). We prove the result for any single system in S and conclude

that it remains true for the sup over S. Indeed, the application

(µ0, . . . , µN−2,∆0, . . . ,∆N−1)

→ ‖ Uε(1)|k〉〈k|Uε(1)† − |N − k − 1〉〈N − k − 1| ‖
reaches its sup over the allowed compact space since the state of a (sufficiently regular)

dynamical system at a finite time depends continuously on system parameters (see

e.g. [28, theorem 3.5]). The proof for one system is in two steps: first we prove

that the hypotheses of the adiabatic theorem with gap condition are verified, then we

apply the theorem to compute the image at s = 1 of initial projector |k〉〈k| in adiabatic

approximation.

Step 1: By hypothesis (a), we have H(s) ∈ C2([0, 1],HN) and therefore continuous

over [0, 1]. From [29, section II.5.2], it is then possible to find N continuous functions

λ0(s), . . . , λN−1(s) such that λ0(s) ≤ . . . ≤ λN−1(s) for all s ∈ [0, 1] are the eigenvalues

of H(s). In terms of associated eigenspace projections, note that {Pλk(s) : k ∈ NN-1
0 } =

{|k〉〈k| : k ∈ NN-1
0 } every time A(s) = 0, by unicity of the spectral decomposition of a

non degenerate matrix. However, the pairwise correspondence depends on the value of

ω(s). In particular, by hypotheses (b) and (c),

Pλk(0) = |k〉〈k| and Pλk(1) = |N − k − 1〉〈N − k − 1| (17)

for all k. For a given s ∈ [0, 1],

• either A(s) 6= 0, then H(s) has N distinct eigenvalues according to Lemma 1;

• or A(s) = 0, then H(s) = HR(ω(s)) and it must have N distinct eigenvalues by

hypothesis (c). Hence,

λ0(s) < .. < λN−1(s) for all s ∈ [0, 1] . (18)

Then by continuity over the compact [0, 1], there exists δ > 0 such that λk(s) + δ <

λk+1(s) for all k ∈ NN-2
0 and for all s ∈ [0, 1]: each λk(s) is at all times surrounded by

a “spectral gap” of amplitude δ in which there is no other eigenvalue. We can therefore

apply the adiabatic theorem with gap condition (see [12, Theorem 2.2]) to eigenvalue

λk(s), for any particular k ∈ NN-1
0 , as is done in the following.

Step 2: The adiabatic theorem ensures that Pλk(s) ∈ C2([0, 1],HN). Define the

“adiabatic Hamiltonian”

Ha,k(s) = H(s)− iεPλk(s)
d

ds
Pλk(s) − iεP⊥

λk(s)

d

ds
P⊥
λk(s)

(19)

where P⊥
λk(s)

= I − Pλk(s), and the “adiabatic propagator” Uε
a,k which verifies, for all

s ∈ [0, 1],

iε
d

ds
Uε
a,k(s) = Ha,k(s)U

ε
a,k(s) with Uε

a,k(0) = I . (20)
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One verifies that this construction ensures

Uε
a,k(s)Pλk(0)U

ε
a,k(s)

† = Pλk(s) (21)

for all s ∈ [0, 1]. The adiabatic theorem states the existence of a constant C1 > 0 such

that

||Uε(s)− Uε
a,k(s)|| ≤ C1ε for all s ∈ [0, 1] ,

in particular for s = 1. This implies

‖Uε(1)|k〉〈k|Uε(1)† − Uε
a,k(1)|k〉〈k|Uε

a,k(1)
†‖

≤ ‖(Uε(1)− Uε
a,k(1))|k〉〈k|Uε(1)†‖

+ ‖Uε
a,k(1)|k〉〈k|(Uε(1)− Uε

a,k(1))
†‖

≤ ‖Uε(1)− Uε
a,k(1)‖ ‖ |k〉〈k| ‖ (‖Uε

a,k(1)‖+ ‖Uε(1)‖)
≤ C1ε · 1 · 2

√
N

since ‖U‖ =
√
trU †U =

√
tr I for any unitary matrix U . Combining this with (17),(21)

yields the result, where C = 2C1

√
N . �

6.2. Proof of Theorem 2 and corollary 1

We start by proving a Lemma about the behavior of time-dependent eigenvalues crossing

each other.

Lemma 2. Assume that H(s) as defined in (11) depends analytically on the real

parameter s on an interval I ⊂ R, with d
ds
ω(s) > γ > 0 for all s ∈ I. Suppose that

HR(ω(s)) is non degenerate on I except for a simple degeneracy at s̄ ∈ I, i.e. HR(ω(s̄))

has N − 1 distinct eigenvalues and HR(ω(s)) has N distinct eigenvalues for s ∈ I \ {s̄}.
If A(s̄) = 0, then:

(a) There exist N unique functions λ0, . . . , λN−1 analytic over I, with λ0(s) < . . . <

λN−1(s) for all s < s̄, and such that {λ0(s), . . . , λN−1(s)} are the eigenvalues of

H(s) for all s ∈ I.
(b) Let k be such that λk(s̄) = λk+1(s̄). Then for all s > s̄ we have

λ0(s) < . . . < λk+1(s) < λk(s) < . . . < λN−1(s) .

Proof (of Lemma 2). Point (a) is a direct consequence of [29, Theorem 6.1]. The order

of the analytic eigenvalues is obviously preserved over time intervals where H(s) is non

degenerate; by Lemma 1, these intervals are {s < s̄} and {s > s̄}. The issue is what

happens at s = s̄. In the following, we show that λ′k(s̄) 6= λ′k+1(s̄). Since the eigenvalues

are analytic and λk(s̄) = λk+1(s̄), a Taylor expansion then yields the conclusion of (b).

We lead calculations similar to those of [13, section XVI.II.8]. According to [29,

section II.6.2], since H is analytic over I and H(s) ∈ HN for all s ∈ I, there exist

rank one orthogonal spectral projections Pλ0(s), . . . , PλN−1(s) which are analytic over I.
Computing the derivative of

H(s)Pλk(s) = λk(s)Pλk(s) (22)
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with respect to s at s = s̄, we get

H ′(s̄)Pλk(s̄) +H(s̄)P ′
λk(s̄)

= λ′k(s̄)Pλk(s̄) + λk(s̄)P
′
λk(s̄)

.

Multiplying the last equation by (Pλk(s̄) + Pλk+1(s̄)) from the left, using (22) and the

fact that Pλk
and Pλk+1

are two orthogonal projectors (P 2
λk

= Pλk
, P 2

λk+1
= Pλk+1

and Pλk
Pλk+1

= 0), we get (Pλk(s̄) + Pλk+1(s̄))H
′(s̄)Pλk(s̄) = λ′k(s̄)Pλk(s̄). Noting that

Pλk(s̄) = (Pλk(s̄) + Pλk+1(s̄))Pλk(s̄), we get

(Pλk(s̄) + Pλk+1(s̄))H
′(s̄)(Pλk(s̄) + Pλk+1(s̄))Pλk(s̄)

= λ′k(s̄)Pλk(s̄) .

The analog holds with k and k + 1 switched. This implies that {λ′k(s̄), λ′k+1(s̄)} are the

eigenvalues of the 2×2 matrix obtained by restricting operator H ′(s̄) to the column space

of (Pλk(s̄) + Pλk+1(s̄)). Since A(s̄) = 0 we have H(s̄) = HR(ω(s̄)). Denoting |m〉 and

|n〉 the two eigenvectors of HR corresponding to eigenvalue λk(s̄) = λk+1(s̄), we have

Pλk(s̄) + Pλk+1(s̄) = |m〉〈m|+ |n〉〈n|. Defining

(H ′(s̄))mn =

(
〈m|H ′(s̄)|m〉 〈m|H ′(s̄)|n〉
〈n|H ′(s̄)|m〉 〈n|H ′(s̄)|n〉

)

and computing

H ′(s̄) = ω′(s̄)
d

dv
HR(v) |v=ω(s̄) +A

′(s̄)H1 , we get

(H ′(s̄))mn =

(
−mω′(s̄) A′(s̄)µmn

A′(s̄)µmn −nω′(s̄)

)
(23)

where µmn = 〈m|H1|n〉. Thus µmn = 0 if |m − n| > 1 and µmn 6= 0 if |m − n| = 1.

In both cases, since ω′(s̄) 6= 0 and m 6= n, the matrix in (23) has 2 real and distinct

eigenvalues, corresponding to λ′k(s̄) 6= λ′k+1(s̄). �

Proof (of Theorem 2). Taking A(s) = 0 at some points where HR is degenerate means

that eigenvalues of H(s) will not remain distinct at those points. We therefore use

the adiabatic theorem without spectral gap condition, see [12, corollary 2.5]. Like for

Theorem 1, we prove the result for one system ∈ S and conclude the result for the sup.

The proof is again in two steps. First we state how the adiabatic theorem can be applied;

then we compute the image at s = 1 of initial state |k〉〈k| in adiabatic approximation.

Step 1: Since H is Hermitian, analytic over [0, 1] and simply degenerate at isolated

points, we can apply Lemma 2(a) repeatedly to conclude that there is a unique set

of functions λ0, . . . , λN−1 analytic over I, with λ0(0) < . . . < λN−1(0), and such

that {λ0(s), . . . , λN−1(s)} are the eigenvalues of H(s) for all s ∈ I. Moreover,

according to [29, section II.6.2], there is a unique set of associated rank-one projectors

Pλ0(s), . . . , PλN−1(s) which are analytic over I. In particular, given assumption (A3)

and as H(s) = HR(ω(s)) for s ∈ {0, 1}, we have (λk(0), Pλk(0)) = (λRk (0), |k〉〈k|) for

all k and {(λ0(1), Pλ0(1)), . . . , (λN−1(1), PλN−1(1))} = {(λR0 (1), |0〉〈0|), . . . , (λRN−1(1), |N−



Adiabatic passage and ensemble control of quantum systems 19

1〉〈N − 1|)}. Note however that, unlike for Theorem 1, the pairwise correspondence

between elements of the latter sets is not obvious a priori, because here eigenvalues of

H(s) do not remain distinct on [0, 1]. A second difficulty is to assess how the system’s

state evolves when eigenvalues become degenerate. This second part is answered by

the adiabatic theorem witout gap condition. Introduce, as in Theorem 1, the adiabatic

Hamiltonian Ha,0 and adiabatic propagator Uε
a,0, given by (19) and (20) respectively with

k = 0. Then by construction Uε
a,0(1)|0〉〈0|Uε

a,0(1)
† = Uε

a,0(1)Pλ0(0)U
ε
a,0(1)

† = Pλ0(1). The

adiabatic theorem states that ∃C such that

‖Uε(s)|k〉〈k|Uε(s)† − Uε
a,0(s)|k〉〈k|Uε

a,0(s)
† ‖ ≤ C

√
ε (24)

for all |k〉 ∈ {|0〉, . . . , |N−1〉}. Thus the actual system adiabatically follows the analytic

Pλk(s), from Pλ0(0) = |0〉〈0| up to Pλ0(1) in particular.

Step 2: We now compute Pλ0(1). Define a small interval Imn = [τ omn, τ
f
mn] ⊂ [0, 1]

around each point s(m,n) such that all Imn are disjoint. If A(s(m,n)) 6= 0, then as

shown in Theorem 1, H(s) is non degenerate for all s ∈ Imn, such that for any j, k

with λj(τ
o
mn) < λk(τ

o
mn) we have λj(τ

f
mn) < λk(τ

f
mn). On the other hand, if we take

A(s(m,n)) = 0, then two eigenvalues intersect at s = s(m,n) and the analytic branches

cross so that their order changes as stated in Lemma 2(b). To avoid separate treatment

of limit cases, we define s0 = 0 and sN = 1. Now by construction:

• λj(0) = λRj (0) for all j ∈ NN-1
0 .

• For k ∈ NN
1 , λ

R
0 (s) is the kth smallest eigenvalue of HR(ω(s)) when s ∈ (sk−1, sk).

• As long as A(s0) = . . . = A(sk−1) = 0, that is for k ≤ N − p, λ0(s) follows the

same crossings as λR0 (s); therefore it is the kth smallest eigenvalue of H(s) when

s ∈ (sk−1, sk).

• For s > sN−p−1, we have A(s) 6= 0 so the λk(s) keep the same order, i.e. λ0(s)

remains the (N − p)th smallest eigenvalue of H(s).

• In particular for s = 1, from (13) we identify λ0(1) = λRN−(N−p)(1) = λRp (1), such

that Pλ0(1) = |p〉〈p| by uniqueness of the spectral decomposition. �

Remark 2. To apply the adiabatic Theorem [12, corollary 2.5], it is sufficient to have

Pλ0(s) ∈ C2([0, 1],HN). However, a condition like H(s) ∈ C2([0, 1],HN) does not ensure

the existence of Pλ0(s), . . . , PλN−1(s) ∈ C2([0, 1],HN), see [29, example 5.3]. It is only for

analytic H(s) that we can guarantee analytic Pλ0(s), which then in particular belongs to

C2([0, 1],HN).

Proof (of corollary 1). The arguments are the same as in the proof of Theorem 2. We

concentrate on tracking the analytic eigenvalue branches λ0(s), . . . , λN−1(s) of H(s) to

establish their pairwise correspondence with eigenvalues λR0 (s), . . . , λ
R
N−1(s) of HR(ω(s))

at s = 1. We prove the result for p < N − l − 1; the case p > N − l − 1 is treated

similarly, while p = N − l − 1, implying Iω
lp = ∅, is the case covered by Theorem 1.

Denote s1 < . . . < sN−l−p−1 the elements of Iω
lp, and s0 = 0, sN−l−p = 1.

The algorithm constructs Iω
lp such that the (l + d)th and (l + d + 1)th smallest

eigenvalues of HR(ω(s)) become equal at sd, for each d ∈ N
N-l-p-1
1 . Taking A(sd) = 0
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implies H(sd) = HR(ω(sd)) so the same eigenvalue equalities hold for H(s) at s = sd.

Moreover from point (c) and Lemma 1 all eigenvalues of H(s) remain distinct for

s 6∈ Iω
lp. Therefore the analytic eigenvalue branch λl(s), starting with λl(0) = λRl (0),

exactly evolves through crossings at s1, . . . , sN−l−p−1 such that it is the (l + d + 1)th

smallest eigenvalue of H(s) for s ∈ (sd, sd+1). In particular, λl(1) is the (N − p)th

smallest eigenvalue of H(1) = HR(ω(1)), which from (A2) means λl(1) = λRp (1) such

that Pλl(1) = |p〉〈p|. �

7. Summary and discussion

This paper shows how adiabatic passage can be applied to a quantum ladder system

to achieve permutations of populations on the ladder levels with a single laser pulse.

We explicitly propose control inputs whose precise functional dependence on time is not

important as long as they satisfy a few key features, most notably annihilation or not at

specific times. This makes our strategy robust against multiplicative input disturbances.

Another important advantage of our adiabatic strategy is its ability to simultaneously

control an ensemble of systems with different dipole moment values.

Theorems in the present paper provide a proof of concept in idealized situations.

Several practical issues deserve a more quantitative investigation in future work.

Probably the most important aspect is to characterize precision of the adiabatic

approximation as a function of ε. Indeed, for small ε the actual control time t = s
ε

gets long; this further implies that, at constant power A2(s), the energy given to the

system gets large. Beyond performance requirements, this also invalidates our model at

infinitesimal ε (e.g. regarding finite lifetime of the levels). Although orders of magnitude

are given for the adiabatic limit, variations in the proportionality constant can lead to

significant discrepancies. Investigating them, as well as “optimal paths” minimizing

non-adiabatic losses [30], could yield guidelines for choosing amongst several possible

“eigenvalue crossing designs”. Both precision of adiabatic approximation and modeling

assumptions (e.g. RWA) also limit the range of “ensemble” properties in practice.

It may appear surprising at first sight that two different evolutions are selected

just by taking A(s) = 0 or A(s) 6= 0 at a precise instant s. The elucidation is that

this dichotomy only holds at the limit ε → 0+. For a given ε, the larger |A| in the

neighborhood of s = s, the more the evolution differentiates from the A(s) = 0 case.

Nevertheless, for small ε, the relevant neighborhood around s for selecting population

transfer or not indeed gets small (from there experimentalists’ denomination “rapid

adiabatic passage”). Our scheme might therefore allow selective population permutation

as a function of {∆0, . . . ,∆N−1} on an ensemble of systems, in a scheme resembling

resonance selection. Take A(s) = 0 for s ∈ Iω of a nominal system. If a system has

detunings very close to nominal, then two of its λRk (s) cross at a point s̃ close to s,

where A(s̃) ≈ 0, such that for moderate ε its final state will be close to the adiabatic

result of the nominal system with A(s) = 0. If a system has detunings more different

from nominal, then all its crossings of λRk (s) occur at points where A significantly differs



Adiabatic passage and ensemble control of quantum systems 21

from zero, and with moderate ε its final state will be closer to the adiabatic result of the

nominal system with A(s) 6= 0. A quantitative statement of this idea requires further

investigation.
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