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3D keypoint detectors and descriptorsfor 3D objects recognition
with TOF camera

Ayet ShaieK? Fabien Moutard&
®Robotics laboratory (CAOR) Mines ParisTech 60 Bd/&thel, F-75006 Paris, France;

ABSTRACT

The goal of this work is to evaluate 3D keypoingtetttors and descriptors, which could be used dasigreal time 3D
object recognition. The work presented has threén modjectives: extracting descriptors from real tthepmages,

obtaining an accurate degree of invariance andstokss to scale and viewpoints, and maintainingdingputation time
as low as possible. Using a 3D time-of-flight (Tal€pth camera, we record a sequence for severadtstit 3 different
distances and from 5 viewpoints. 3D salient poares then extracted using 2 different curvaturegdaketectors. For
each point, two local surface descriptors are cdatgply combining the shape index histogram andntivenalized

histogram of angles between the normal of referéeatire point and the normals of its neighboursofparison of the
two detectors and descriptors was conducted onffdrefit objects. Experimentations show that bottecters and
descriptors are rather invariant to variations adle and viewpoint. We also find that the new 3Qpants detector
proposed by us is more stable than a previouslpgeed Shape Index based detector.

Keywords: 3D Keypoint Detector, 3D Keypoint Desciptor, Shapgex, Histogram Of Normals, Point Clouds, Time-
Of-Flight Camera, Depth Image, 3D Objects Recogniti

1. INTRODUCTION

3D object recognition, an important research figlds been successfully studied in the case of glesiiewpoint.
Robustness to pose and viewpoint variations remairchallenging problem for objects recognition &gtlons.
Meanwhile, using new devices, such as time-offtlifhiOF) 3D cameras, may be a step forward to pevibust
geometric information about objects.

In this context, two components of an object raitign system are necessary: descriptions extnagittase where an
interpretation of the image data is given, andrttaching phase which consists of assigning an iigeiot the extracted
descriptions.

The existing approaches for solving this issuelmmnolassified in two ways:

- A group of 3D methods which suggest the use of éhire 3D model and base the recognition on the
comparison of estimated model with reference mofedsid a group of 2D/3D approaches that projecBihe
model into different 2D image$ ® and compute 2D featured survey of 3D and multi-modal 3D+ 2D
approaches has been doné.in

- Aclass of global methods , like the work “ofvhich suggest to use volumetric part-based desmnig and a
class of local ones which describe local regioesipa example it , and in” where Viola and Jongzoposea
set of “rectangle” features.

Local representations using keypoint have beengirdwe perform well in 2D recognitioh Therefore, many recent
researches have investigated in finding 3D deteanidrdescriptor (eg: SIFT 2°b

The proposed approach is in the line of Chen arehBis work'® who presented a local surface descriptor for 3@aibj
recognition. In the work presented here, we usepdhdcamera “ZCam” (Figure 1) to capture four @gkcts (Figure 2)
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from different distances and viewpoints in ordecharacterize their 3D shape. In the following,witt focus on the 3D
keypoint detection and the 3D descriptor extraction

SO v _ a poanydiuce
F »
Depth Value —— d ™

Cantroller

Tihumination
Source
& Pulse Driver

Figure 1. The time-of-flight (TOF) camera used progs depth video with the following principle: megsof time
delay between infrared pulse emission and the terepf its reflection.

Figure 2. The range images of the four objectsuofdataset.

2. METHODOLOGY

2.1 General scheme of the method

Pre-processing

Our methodology is the following: objects are pthom a turning tray which is pivoted to 5 positi¢fs, 25°, 50°, 75°
and 100°) in front of the camera during each recohen, we repeat this for 3different distancethefcamera to objects
(at 50cm, 80cm and 110cm). The 3D camera produ@edepth images/s, and the typical total recordingetis 3.3
seconds, therefore, the total number of frameixésifto 100 for each record.
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Figure 3: Relation between true 3D point (X,Y,Z)dahe (x,y) position of depth pixel in the focahpé.

The camera’s output is a depth grayscale imagevwtbaconvert into a cloud of 3D points. The comgataof the 3D
points from the depth image is straightforwardjllastrated in Figure 3: for each pixel at linericacolumn j, we first
compute (using the actual pixel width 0.0112 mmtloa sensor), its (x,y) position in the focal plafrem this and the

. - 77 — (X,y,f) . H H
focal length f, we can deijuce the normalized dingcvectorV = —m, the true 3D point (X,Y,Z) is then
obtained agX,Y,Z) = D.V where the distance D depends directly on the gedgsvalue g of the depth image by

D=P;+ PW.ZSZST;g ; whereP; and P,, are respectively the primary distance (i.e. midiraage distance) and the

primary width (i.e. difference between maximal anohimal range distance), which can both be tunedually on the
camera.

One of the problems with TOF depth cameras is atiger high level of noise of the output data. Theodute precision
of each depth pixel is ~1cm only (and quite depahada the reflectance of the object material), #mete can be an
offset of absolute distance as high as 6cm, aaegridi our tests. We partly overcome the noise pralby averaging
the 100 frames recorded during 3s into one dep#géthat we crop after to remove outliers in boueda

M ethod

Once the 3D points cloud have been generated thhermean frame, we select salient 3D points beforeputing a 3D
descriptor of regions around those detected podis.method is based on differential geometry tecdbe the shape of
objects. Particularly, we consider surface nornzald curvatures which measure how the surface bendgferent
directions at one point.

In prectice, a uniform n x n lattice (grid) is ds® sample the 2D cropped depth map (where n =Tk®n, each cell is
subdivided into r x r sub-regions (r = 3). Usingrds belonging to this window, we fit a quadratiafaces to the r x r
patchs, of the form f(x,y) = & by’ + cxy + dx + ey + f, and estimate the parametéth® quadratic surface with the
least square method. That allows us to computeréifitial geometry and extract the surface normaijsSian curvature
and principal curvatures at each patch. Using &ofaguality based on curvatures, we select feapaiats with the
largest shape variation. Then, the shape indexesadwme cumulated and the histogram of angles batitenormal of
reference feature point and that of its neighbayrggions is computed. Hence, our descriptor isctimbination of the
two histograms forming a 17+34=51 dimensional vecto evaluate the proposed detector and descriptonparison
with Chen’s detector and descriptor in term of #ityband invariance to the 5 viewpoints and thec2les of the same
object has been done.

2.2 Keypoint detectors

The first detector is based on a keypoint qualisasure introduced by Mian et 8. After the sampling step (100 cells),
we associate at each cell k a quality measuyris @ven by:

Qi = =5~ ZIK| + max(100K) + [min (100K)| + max(10 k,") + [min (10k,?)|; K = k,"k,* (1)




where P%p and Igp are maximum and minimum principal curvatures, eetipely. Summation, maximum and minimum
values are calculated over the r x r sub-regiohsolute values are taken so that positive and ivegatirvatures do not
cancel each other; positive and negative valuaziofatures are equally descriptive. Keypoints arked according to
this measure and a threshold is chosen to sekedtdst ones.

The second detector is the one proposed’irand uses the shape indey) (for feature point extraction. It is a
guantitative measure of the surface shape at @ ppand defined by Eq. (2)
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With this definition, all shapes are mapped in@ ititerval [0, 1]'2. Larger shape index values represent convex surfaces
and smaller shape index values represent concafaxes.

The central point is marked as a feature poirisiShape index, satisfies Eq. (3) within an r x r window
I, = max of shape indexes and+ (1+a) * p;
or I, = min of shape indexes angkk (1-8) * 1;
wherep is the mean of shape index over the I*l values an@® <=a ,f <=1 3)

In Eq. (3)a, B parameters control the selection of feature points

2.3 Keypoint descriptors

Around each selected keypoint P, a local patchd®imstituted of the r x r neighbours. For everynp& belonging to R,
we compute its shape index value and the atdletween the surface normals at the feature poand®N. Then, we
form, first, a 2D histogram by accumulating poimtsparticular bins along the two axes based on(Egwhich relates
the shape index value and the angle to the 2Ddresto bin (R, v,). One axis of this histogram is the shape indeickwh

is in the range [0, 1]; the other is the cosindghef angle (co$) between the surface normal vectors at P and bite o
neighbours in R. It is equal to the dot producthaf two vectors and it is in the range [-1, 1]Ba.( 4), (R, v) are the
indexes along the horizontal and vertical axeseaethypely and (b b)) are the number of bins along the horizontal and
vertical axes, respectively.

_ (cos 6+ 1)Xby

hx =Sixbx;'l7y 2

(4)
This descriptor encodes the occurrence frequefishape index values vs. the cosine of the angledsn the normal
of reference feature point and that of its neighbou

The second proposed descriptor concatenates ttogtam of the cosines of angles between normalglantistogram
of the shape index into 1D vector. The unique akibie histogram is composed gf-bb, bins. (cf. Figure 4).

" 2D histogram
Cosb Shape index OShaDE index
histogram histogram !
o= =4

@ > (b)
Figure 4. (a) Concatenate descriptor, (b) Combiresgtiptor

3. EXPERIMENTAL RESULTS

We performed our experiments on our own databasstitated of 4 objects (horse, car, dinosaur, malf) daptured
with the TOF camera which has a spatial resolutibi320 x 240. The computation time of keypoint détn and
description phases is about 2.5s for 50 keypointthe following, we propose to evaluate our deteeind descriptor in
terms of stability and descriptiveness.



3.1 Keypoint stability

In order to measure the repeatability of detecteygbkints between different views/scales, we comghaedistance of
every keypoint in the rotated/scaled point cloudiiefv 1 to the nearest neighbor keypoint deteatediéw 2. Figure 5
illustrates the two plots of keypoint repeatabiligtween the four initial views of the four objeetsd their respective
scaled and rotated views with the quality factosdaadetector (FQD) and the shape index based de(&D). The y-
axis shows the percentage keypoints of the tramsfdrviews which could find a corresponding keypdinthe initial
view within the distance shown on the x-axis. Riesshow that the percentage of keypoints repedtalisl more
important for the FQD than the SID and repeatahilitaches 100% at a nearest neighbor error of mmSor FQD and
at ~10mm for SID. This result suggests that quddittor detector has slightly higher repeatabiiitgn the shape index
detector.
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Figure 5. Keypoint identification repeatability ixeten different scales and views for the two detscto
quality factor based detector (FQD) and shape itdesed detector (SID).
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Figure 6. lllustration of the greater stabilityFedictor Quality Detector (FQD) vs Shape Index Dete¢31D , by positions of detected
keypoints (shown with green arrows) for two differscales in horse 3D points cloud: top line, d&taavith FQD, at respective
scales 50 (a) and 80 (b); bottom line, detectidh BiD, at respective scales 50 (c) and 80 (d).



Figure 6 illustrates the relative stability of keypt's positions when varying scale for the samgob

In addition to the keypoint detection role, the lgyaneasure provides a means of selecting the teegtired keypoints.
A threshold is used to keep the keypoints withg@ater than the threshold. Figure 7 shows keypaiatected on one
view of horse at different cutoff thresholds of tpeality Q.. Notice that as the threshold is decreased, mudenzore
keypoints appear at less curved parts of the model.

Figure 7. (a)Pointcloud of the horsg, %0, KpNb (the number of keypoints) = 53, (b) Egr> 300, KpNb = 44
(c) For Q> 7000, KpNb =21 (d) > 17000, KpNb =11

3.2 Descriptor stability

We employ a rank distribution metric for evaluatihg stability of a keypoint descriptor mod&I This measure gauges
the probability of finding a matching descriptortire set of k-nearest neighbors as a function dfokcompute the rank

distribution, we fix our match set M of descriptdwestween descriptors in view 1 and those of vieWtn, we consider

every pair of descriptors (i, j) in the match setand count the number of descriptors k in desgripet of view 1 such

that|| i— k ||e<||i—j|.

Results are performed on the point cloud of the @djects at view angles 0°, 25°, 50° and 100° @rstales 50, 80 and
110.

After selecting n points and computing their dgsoni in view 1, rotation of the n points is apglie order to recover
their position in view 2 and compute their desanipfThus, the descriptor stability could be evaddaby counting the
number of points in view 2 which the closest dgxori distances corresponds to the initial poinview 1.The same
process is done for scale. We compute the positibh&ypoints in scale 2 corresponding to the dete&eypoint in
scale 1 by applying a homothetic transformation. ¢ the mean of curves representing the evoluticthe number of
correct matching keypoint descriptor as a functbthe number of K nearest descriptors.

As illustrated in figure 8, according to this mefrihe combined model slightly outperforms the etenate one for most
values of K, including small ones which are the tmekevant.
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Figure 8. Rank distribution for each of the two diggor models (concatenate, combined). The plotshitie probability of finding
the correct match for a descriptor within the grofithe k nearest neighbors in the initial keypaet. Right plot is a zoom on region
for small K values.

3.3 Descriptiveness of the descriptors

In order to recognize one object appearing at idiffeorientations or scales, the used descriptos keep quite similar
values whatever the considered view. [Egtbe the vector formed with values;, g, ;,03;, 0., Whereo; ; is the
standard deviation of the jth descriptor valuesamted for the ith object. To obtain close valuestife same object, the
mean valug E, of E; , must be minimized. In order to discriminate objethe used descriptors must present quite
different values to describe separate objects.Mebe the vector formed with values, ;, m,;, ms; , m,;, where
m; ;the mean value of the jth descriptor values obthifa the ith object. To discriminate objects, tsiandard
deviation of M; , Oy , must be maximized. Consequently, the quotiqm}t/fj , which have been used i is a
criterion which can characterize the descriptofqgrarance.

Table 1 presents the concatenate and the combiescriptor performance regarding to the previouskntioned
criterion for four objects of the database. Thistignt is slightly more important when using thentvned descriptor.

Table 1. Descriptor performance

Concatenate descriptor Combined descriptor

Quotient (ay, /) 5.4148e-005 6.3784e-005

The other criterion proposed to compare the distiacpower of the first representation with the asgt one is the
coefficient of variation which is equal to the sland deviation divided by the meah The coefficient of variation
encodes variability relatively to the mean and sedito compare the relative dispersion in one tfpéata with the
relative dispersion in another type of data.

The diagrams of Figure 9 compare the dispersichefwo tested descriptors. We note that in highesof coefficient
of variation the combined descriptor curve is abtheeconcatenate descriptor curve, which suppbesonclusion that
the combined descriptor is more descriptive thancttncatenated one.



One reason to explain this result is the resolutibhistogram bins in the combined descriptor whihigher (17*34 =
578) than the concatenate descriptor one (17+34Nb1g that increasing too much this resolution witk necessary
improve the results; the models will just fit mor@ise if each dimension is not supported by a messle portion of data
points.
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Figure 9. Average of the coefficient of variatiar the two representations (concatenate and comipfaethe four objects.

4. CONCLUSIONSAND PERSPECTIVES

We originally assumed that computing curvaturesttan point would have allowed us to obtain stable K&ypoints
which describes parts of object with noticeablepghaariation. Experimentations reported here shatlvesdassumption
as relevant. We initially believed that using thHeape index would make it possible to encode thevexaty and
concavity of the surface. We therefore proceeddH wir tests to confirm this assumption. It hagmfbeen suggested
that combining shape index and angles of normalsldvmake it possible to form an invariant descripitrials carried
out to test this assumption proved such to be dise.c

The experiments presented here indicate higheilistatf 3D keypoints selected with a new qualitsiteria based on
curvature under viewpoint variation. Undergoing emments also indicate higher stability under scedeiations.
Regarding the descriptor, our analysis suggest toatbined Shapelndex-NormalAngles has more stabdlind
descriptiveness than the concatenate version.

This new proposed 3D keypoint detector and the dgomsbShapelndex-NormalAngles 3D descriptor, thessfbas the
required properties to allow correct recognitiorB8f objects whatever their pose, and distance, ltlelEng to provide
semantic meaning to a complex scene. As we have #@s result can be explained by the use of difféal geometry
which permits us to describe the local variationtlod surface. It is also likely that if we try coming other 3D
descriptors, descriptiveness will be improved. Nthaless, attention should be paid to the compmriaiime cost for
best match searching that could be induced by Higtensionality of descriptor. Forthcoming investigas include
tests of our approach on more objects, includinglipudatabases, and verification of the performaatéhese 3D
keypoints as a tool for object recognition and gatiation.
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