Both experimental study and numerical modelling of the effect of temperature gradient on CO2 injection

Jérôme Corvisier, Vincent Lagneau, Emmanuel Jobard, Jérôme Sterpenich, Jacques Pironon

To cite this version:

HAL Id: hal-00634846
https://minesparis-psl.hal.science/hal-00634846
Submitted on 24 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Both experimental study and numerical modelling of the effect of temperature gradient on CO₂ injection

Jérôme Corvisier¹, Emmanuel Jobard², Aurélien Randi², Vincent Lagneau¹, Jérôme Sterpenich², Jacques Pironon²

¹ MINES ParisTech, Centre de Géosciences - 35, rue Saint-Honoré Fontainebleau F-77305 FRANCE
² Nancy-Université, Laboratoire G2R - BP 70239 54506 Vandoeuvre-lès-Nancy FRANCE

jerome.corvisier@mines-paristech.fr - emmanuel.jobard@g2r.uhp-nancy.fr

CONCLUSION & PERSPECTIVES

This problem is crucial as injectivity shall be maintained during the whole CO₂ injection and the combined approaches appear promising in this purpose. The developed experimental set-up will now be used to test various assemblages (cement, reservoir rocks, cap rocks, water composition, gas composition...). Greater analyses will help improve our numerical model and its ability to reproduce quantitatively experimental results and possibly allow upscaled predictions.

CONTEXT

CO₂ injection and underground storage obviously requires dealing with temperature differences between the injection well and the reservoir. For example, in Rousse-Lacq (french capture and storage project led by TOTAL) CO₂ is injected at 50°C in a gas depleted reservoir whose temperature is 150°C.

To assess this issue, an experimental set-up, COTAGES, has been designed and numerical simulations with the reaction/transport code HYTEC has also been performed to reproduce the observed behavior.

NUMERICAL MODELLING USING HYTEC

Temperature enhances both species transport and reactions kinetics, while CO₂ solubility also greatly decreases.

2D numerical simulations have been run with the following assumptions:

- purely diffusive transport (Oelkers & Helgeson 1988),
- kinetically controlled precipitation/dissolution (Kovac et al. 2006),
- aqueous reactions controlled by thermodynamics (www.ctdp.org).

COTAGES EXPERIMENT PROTOCOL

- Loading the reactor with 12 packets of 12.5 g each containing oolitic limestone
- Injecting solution (H₂O + NaCl 4 g/l)
- Heating up zone 3 up to 100°C
- Reaching steady-state (zone 2 = 55°C - zone 1 = 30°C)
- Injecting CO₂ in the cold zone

AFTER 30 DAYS OF EXPOSURE

Mass transfer between the intermediate zone (2) and the hot zone (3):

- HOT ZONE (3) : carbonates precipitation on the surface of grains and formation of aggregates
- INTERMEDIATE ZONE (2) : dissolution around grains and etch pits on the surface of oolites
- COLD ZONE (1) : weak loss of mass linked to moderate dissolution

POSTER ID: GC31B-0876