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Abstract 

The present study is dedicated to the reforming of Diesel fuel with Diesel engine exhaust gas 

using a non-thermal plasma torch for NOx trap regeneration application. The plasma technology 

developed is based on a high voltage / low current non-thermal plasma torch. In the first part of 

the paper, experimental results on production of synthesis gas from Diesel fuel reforming with 
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Diesel engine exhaust gas are reported. In the second part of the paper, these experimental results 

are compared with a 1D multistage model with n-heptane as surrogate molecule for Diesel fuel. 

Two compositions of synthetic Diesel engine exhaust gas, corresponding to high and low engine 

loads respectively, have been studied. It has been demonstrated that the oxygen from CO2 and 

H2O hardly ever intervene in the exhaust gas Diesel fuel reforming. In the most favorable 

condition corresponding to higher O2 rate, a production of 7.10
-3

 mol.s
-1

 of syngas has been 

reached corresponding to an energy efficiency and a conversion rate of 40 % and 95 % 

respectively. The 1D multistage model shows good trends with experimental results despite an 

important correlation shift due to thermal losses which are not taken into account in the 1D 

model. 

Keywords: Diesel fuel reforming, syngas production, non-thermal arc discharge, 1D model, 

plasma reformer, NOx trap regeneration application, Diesel engine after-treatment. 

Introduction 

Today in Europe, Diesel powered vehicles account for almost 50% of the passenger car market 

and up to 78% in France. Diesel engines offer several advantages over other internal combustion 

spark ignition engines due to their high energy efficiency and low level of CO2 emissions. On the 

other hand, Diesel engines are generally characterized by higher nitrogen oxides (NOx) and 

Particulate Matter (PM) emissions than gasoline engines. 

In Europe, Euro stage VI regulation for Diesel engines, coming into force in September 2014, set 

a 56 % reduction of NOx emissions compared to Euro stage V (80 mg.km
-1

 vs. 180 mg.km
-1

). 

This regulation forces car manufacturers to develop new efficient solutions. While current Three-
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Way Catalysts (TWC) can efficiently lower NOx from spark ignition engines which operate 

under close to stoichiometric conditions, these technologies cannot be applied to Diesel vehicles 

since they are ineffective under oxidizing environment such as exhaust gas emitted from Diesel 

engines. 

In Diesel engines, technologies based on NOx trap catalysts are one of the technological solutions 

under development to meet the further emission regulations. NOx trap technology, also called 

NOx Storage and Reduction (NSR), was first developed by Toyota in 1994
1
. This system 

operates with cycles composed of successive storage and regeneration modes. In storage mode, 

the NOx trap stores NOx emitted from the engine on a catalyst material generally based on Ba. 

Once full, the classical way to regenerate NOx trap catalysts consists in operating the engine 

under rich combustion conditions for a short while in order to produce reducing species in the 

exhaust gas
2
, that will convert NOx into N2. This method is not totally satisfying since it suffers 

from a significant drawback known as oil dilution problem. Oil dilution is the phenomenon 

characterized by Diesel fuel mixing together with engine oil. This phenomenon requires 

increasing change oil frequency. 

To pass through oil dilution problem, it is possible to produce reducing species such as H2 and 

CO by Diesel fuel reforming whose species will be used for NOx trap regeneration. When the 

NOx trap is full, a part of the Diesel engine exhaust gas is by-passed to the reformer and is mixed 

with a small amount of Diesel fuel, which provides the necessary species to regenerate the NOx 

trap catalyst. This method has the distinct advantage of not modifying engine conditions (i.e. 

avoiding short/rich combustion cycles) and avoiding oil dilution problem. 
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The catalytic exhaust gas fuel reforming of Diesel fuel is studied for several years by Megaritis et 

al. mainly for reformed exhaust gas recirculation (REGR) application
3-7

. The authors have 

demonstrated that REGR can reduce the exhaust emissions. They have investigated different 

hydrocarbons : natural gas
8
, Diesel fuel

9,10
, ultra low sulphur Diesel fuel (ULSD) and ultra-clean 

synthetic gas to liquid (GTL)
4,11

, Biodiesel
6,10

, Rapeseed methyl ester (RME)
12

, bioethanol
8,13,14

 

and mixture
10,13

 for Diesel engine
3-5,15

 or HCCI engine
8,13,16,17

. The authors have focused their 

analysis on NOx and particulate matter (PM) reduction, the improvement of engine performances 

and the fuel economy
5,7,18

. The reformer was a nickel-free prototype catalyst, containing a low 

loading of precious metal promoted by metal oxides designed to promote all of the desired 

reactions: oxidation, steam reforming, dry reforming, and water gas shift reaction (WGSR) while 

at the same time inhibiting coke formation
4
. Some experiments have been realized for an 

aftertreatment unit, containing a HC-SCR catalyst
5,15,19

. The investigations have concerned 

essentially the EGR rate, the reactor inlet temperatures, the reformer configuration, the O/C ratio 

and λ. The aftertreatment unit performances was promoted by the presence of H2 but inhibited by 

CO. Ref. 15 contains an exhaust gas composition very similar to our condition 2. 18 % of wet 

fraction of syngas has been achieved. The authors have tried to promote the H2 production by 

WGSR and steam reforming for this application. High content of CO2 has been also produced (+ 

8 %) and almost no CH4. 

NOx can also be treated directly by plasma with DBD
20,21

 or by Pulsed or DC Corona 

discharge
22,23

 but the high content of oxygen in exhaust gas leads mainly to oxidize NO to 

NO2
24,25

. Hence non-thermal plasmas alone achieve low NOx abatement. Recent researches on 

NOx removal have focused on hybrid process of non-thermal plasma (NTP) coupled with an 
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absorption process or a catalyst
26-28

. In plasma catalysis technology, the NTP is used as a 

pretreatment, to oxidize NO to NO2, and facilitate the catalysis action.  

For several years, intensive researches have been dedicated at CEP on reforming processes for 

fuel cell powering
29-32

 using a non-thermal plasma torch. An alternative to the catalytic exhaust 

gas reforming of Diesel fuel method is presented in this paper and consists in using a NTP torch. 

Using a plasma torch as a reformer has been previously explored by several research teams
33

. 

Contrary to catalysts, plasma processes are non-sensitive to sulfur, low weight and low space 

device, and have short-transient time. The amount of oxygen in the plasma gas is a key point of 

this application, which directly affects the performance and the electric power needed. At engine 

high load, the oxygen becomes low in the exhaust gas. 

Plasma reforming processes have been widely studied using different hydrocarbons with air 

(partial oxidation)
33-40

, air and water mixture (autothermal reforming)
29,32,33

 or CO2 (dry 

reforming)
41-44 

mostly with CH4.  

Some studies have been dedicated to the plasma assisted Diesel fuel reforming for NOx trap 

regeneration application by Bromberg et al. in association with ArvinMeritor
37-40 

and more 

recently by Park et al.
45

. But all these techniques have used the partial oxidation of Diesel fuel 

with an additional air pump. The plasmatron GEN 2 of Bromberg et al. was one of the most 

advanced technology for POx of Diesel fuel. They have achieved up to 14.3 % and 8.2 % of CO 

and H2
39

 in cycling quickly the plasmatron every 3-5 seconds. The energy efficiency has attained 

70 % for a deposited power up of 250 W
33

. 4.7 % of CO2 have been produced, and also an 

important amount of CH4 and C2H4 (2.6 and 2.4 % respectively). No soot has been observed. 
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To avoid the cost of an additional pump and injector, the plasma-assisted exhaust gas fuel 

reforming of Diesel fuel, with a high content of CO2 and H2O can be directly realized and is 

presented in this paper. 

The partial oxidation reaction for a typical Diesel fuel at stoichiometry is: 

1

2222.4912.31 kJ.mol 1195- = H ; H 11.25 + CO 12.31 O 6.15 + H C -
, (1) 

The POx reaction is highly exothermic. At the contrary, the steam and dry reforming of Diesel 

fuel are significantly endothermic. These reactions are represented by the two equations 

hereafter:  

-1

2222.4912.31 kJ.mol 1780 = H ; H 23.55 + CO 12.31 OH 12.31 +H C , (2) 

1

2222.4912.31 kJ.mol 2887 = H ;  H 11.25 + CO 24.62  CO 12.31 + H C -
, (3) 

The high content of H2O and CO2 in the plasma gas (up to 9 % for each) lead to highly 

endothermic reactions, energetically unfavorable compared to partial oxidation of Diesel fuel, 

commonly studied. 

The present study is dedicated to the reforming of Diesel fuel with Diesel engine exhaust gas by 

using a non-thermal plasma torch. After a presentation of the experimental set up, experimental 

results are presented and compared to thermodynamic and 1D multistage kinetic models. The 

effects of input current, O/C ratio, exhaust gas flow rate and cathode length versus energy 

efficiency and conversion rate are presented and discussed. 
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Experimental section 

The experimental set-up developed in previous researches for fuel cell powering by gasoline, E85 

and ethanol reforming
29,32

 has been adapted to NOx trap regeneration application. Henceforth, it 

enables the injection and evaporation of Diesel fuel which has a higher boiling point than 

gasoline and ethanol. The experimental device also allows the synthetic reconstitution of Diesel 

engine exhaust gas composition corresponding to different operating regimes. 

The experimental set-up is presented on figures 1 and 2. The plasma reactor is composed of two 

consecutive zones: a plasma zone and a post-discharge zone. The plasma zone is the part where 

the arc plasma really takes place. The post-discharge zone is a passive zone, located downstream 

the plasma zone where most of the reforming reactions ignited in the plasma zone continue to 

take place depending on their kinetic speed.  The power supply is a resonant converter
46

 

controlled in current. The current can be precisely tuned in the range 0.22 – 0.66 A. The 

maximum voltage provided by the source is 15kV. A high voltage is applied to the tip electrode 

(anode as we work in inverse polarity) and the cylinder electrode (cathode) is grounded. The 

anode is 2.5 mm diameter composed mainly of Nickel. The cathode is a stainless steel cylinder 

with 8 mm inner diameter, 25 mm outer diameter and 75 mm or 100 mm long. 

 Three mass flow controllers supply a mixture of air, N2 and CO2 in the range 0-100 slpm 

(Brooks 5831 ES), 0-200 slpm (Air Liquide EL-FLOW) and 0-10 slpm (Bronkhorst F-201-CV) 

respectively. Two diaphragm metering pumps (KNF Stepdos FEM03 TT.18/RC) provide liquid 

water and Diesel fuel in the range 0-0.03 slpm. Water and Diesel fuel are then evaporated 

separately by two glow-plug systems to avoid steam cracking. The electrical consumption of the 
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plug flow systems is not considered in the energy efficiency calculations. The swirl injection of 

the reactants in the plasma torch is realized 10 mm before the tip electrode. The reactant 

temperature can be adjusted between ambient temperature and 600 K. 

The post-discharge zone is 510 mm long. It is composed of a ceramic tube (Mullite C530) of 4 

mm thickness and 22 mm inner diameter for thermal and electrical insulation. The ceramic is 

covered with a stainless steel tube of 1.6 mm thickness for mechanical purpose. The post-

discharge zone is instrumented with 5 type K thermocouples, numbered from T1 to T5, located 

axially at 120, 180, 250, 330 and 460 mm from the cylindrical cathode output respectively. The 

thermocouples are located along the reactor axis except T1 and T2 thermocouples which have 

been off-centered to avoid thermal damage. T1 is located at the surface of the ceramic while T2 is 

located at 5.5 mm from the axis.  After the post discharge output, a fraction of the reformate gas 

is deflected from the main flow and is rapidly cooled down before entering two analyzers placed 

in series. The reformate gas composition is first analyzed by a Rosemount NGA 2000 composed 

of two detectors: a Non-Dispersive InfraRed (NDIR) detector and a Thermal Conductivity 

Detector (TCD). This analyzer enables to continuously measure the dry molar fraction of H2, CO, 

CO2 and CH4. The measurement is based on the assumption that the outlet dry gas only contains 

nitrogen and the four species above-mentioned. This assumption is verified with the second 

analyzer. 

The second analyzer is a gas phase chromatograph Perichrom PR 2100. It is equipped of two 

independent analysis channels. The first channel is used to measure hydrogen with a molecular 

sieve 5Å column and a TCD. The carrier gas is nitrogen. The second channel is used to measure 
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CO, CO2, CH4 and C2 hydrocarbons with a Poraplot U and a molecular sieve 5Å columns, a 

methanizer, a TCD, and a Flame Ionization detector (FID). The carrier gas is helium. 

The electrical signals are analyzed by a HP 54615B oscilloscope (bandwidth of 500 MHz) with a 

high voltage probe Elditest GE3830 1:1000 (up to 30 kV) and hall effect current probe Chauvin 

Arnoux E3N (bandwidth of 100 kHz). The NDIR-TCD analyzer and thermocouples data are 

collected every second by a computer. 

The fuel used is a commercial Diesel fuel. The table 1 reports the main characteristics of the fuel 

used for data analysis and of its surrogate molecule used for calculations. 

Two operating conditions corresponding to different engine loads have been defined for this 

study: the exhaust gas composition of a Diesel engine for two fuel/air equivalence ratios (Φ) of 

0.66 and 0.32 based on combustion equation for a Renault 2.0L 16v dCi turbocharged engine 

(M9R 842 1995cc). The equivalence ratio is defined by: 

 

  stoichair

air

QQ

QQ

fuel

fuel  ,  (4)  

where Qfuel and Qair refer to the molar flow rates of fuel and air respectively at engine intake. The 

first equivalence ratio corresponds to a high engine load and the second one to a low engine load. 

The gas composition for these both operating conditions is given in table 2. 

The reactant mixture is represented in terms of O/C ratio. The O/C ratio stands for the molar ratio 

between oxygen atoms from air and carbon atoms from Diesel fuel and is defined in eq. 5. Note 

that oxygen coming from H2O and CO2 are not taken into account in this ratio.  
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49.2231.12

2

31.12

21.02

HC

air

HC

O

Q

Q

nQ

Q

C

O

mn  

,

 

(5) 

Qi stands for the molar flow rate of species i and n the number of C atoms in the empirical 

formula of the fuel (CnHm). The stoichiometry of the partial oxidation reaction of Diesel fuel is 

O/C =1.  

Plasma reformer performances are analyzed in terms of energy efficiency η and conversion rate 

χ, which are expressed as: 

  
WLHVQ

LHVQLHVQ

fuelfuel

COCOHH 22  ,  (6) 

  fuel

CHCOCO

nQ

QQQ
42  ,  (7) 

where LHVi is the lower heating value of chemical species i and W is the electrical deposited 

power applied to the discharge. The conversion rate (eq. 4) accounts for the fuel transformation 

and is an indicator of the mass balance on carbon atoms. ΔQCO2 corresponds to the difference 

between the output and input CO2 molar flow rate. Only the main species (H2, CO, CO2, CH4) 

was considered in these energy and mass balances. The other species CnHmOk formed were 

analyzed and quantified by GC. They were present in minor concentration when the conversion 

rate is high. In the results presented in this paper, the inlet temperature and working pressure have 

been set to 573 K and 0.1 MPa, respectively. For each measurement reported, the system is 

considered to be at the thermal steady state. A waiting time of 5 min is generally observed in 

order to allow the system to reach this equilibrium. 



 

11 

 

Modeling approaches 

In both models presented below, n-heptane (C7H16) molecule has been chosen for calculations 

because it is a commonly used surrogate molecule for Diesel fuel. n-heptane has a cetane number 

of approximately 54
47

 which is very similar to conventional Diesel fuel.  

The thermodynamic equilibrium calculations are performed with EQUIL module from the 

CHEMKIN II package
48

. The algorithm is based on Gibbs free energy minimization. The 

modeling approach is detailed in ref. 6. This model assumes an infinite reactor, a perfect mix of 

species and a uniform application of the plasma power. Given the initial composition, the initial 

temperature and the reactor pressure, the initial enthalpy is evaluated. The initial temperature is 

573 K and the pressure reactor is 0.1 MPa. The final mixture enthalpy is the sum of the initial 

enthalpy and the enthalpy coming from the plasma. The equilibrium composition and temperature 

are calculated from the final enthalpy. 

The exhaust gas Diesel fuel reforming has also been simulated with a 1D kinetic model 

previously developed for gasoline reforming
31

. The model has been adapted for NOx trap 

regeneration application. Several n-heptane detailed mechanisms have been developed over the 

past two decades
49-56

, widely for engine and propulsion devices. The calculations have been 

carried out using the n-heptane oxidation mechanism developed by Curran et al.
52,53

. It has been 

extensively validated in a wide range of temperature and pressure in different reactors, shock 

tubes and rapid compression machine experiments. This kinetic mechanism is composed of 160 

species and 1540 reactions and can be applied to a wide range of conditions. This large 

mechanism makes it applicable to a wide range of conditions. Recent researches have focused on 
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reduced n-heptane mechanisms
56

 based on the Curran et al. mechanism to integrate them in CFD 

models for example. This mechanism includes radicals, atoms and vibrationaly excited species 

but does not include ionized species. Most of kinetic mechanisms that have been developed 

(mainly for combustion issues) generally do not include all the ionized and excited species due to 

a lack of basic knowledge. Some chemical mechanisms including ionized species have been 

proposed for methane (CH4)
58

, propane (C3H8)
59

 and n-butane (C4H10)
60

 with air. Because of the 

complexity of the involved mechanisms, no kinetic mechanism including charged species is 

available in the literature for higher hydrocarbons under reforming conditions. The plasma-

assisted reforming process is far from these combustion processes due to low amount of present 

oxygen, and even further from the exhaust gas fuel reforming. However, the relevance of a 

combustion kinetic mechanism has been proven by Benilov and Naidis for low current arc 

discharge
61

. The mechanism has been first tested numerically in exhaust gas fuel reforming 

conditions in a plug flow reactor (PFR) for a very long time (~10
8
 s) and then have been 

compared to a thermodynamic model based on T&TWinner
62

 database. The results with the n-

heptane kinetic mechanism from Curran et al. were consistent with the thermodynamic model. 

It has been demonstrated that low current arc discharges are highly non-homogenous. This 1D 

multistage model, presented on figure 3, has been detailed in ref. 31. This model is based on the 

following assumptions: (i) the medium is adiabatic, (ii) only a fraction of reactants’ inlet flow 

passes through the arc discharge, the remaining fraction passes near the arc and there is no mass 

transfer between the arc and the cold zone around the arc inside the reactor, (iii) these two 

fractions; i.e. cold and hot streams respectively, are perfectly and instantaneously mixed at the 

reactor exit. The arc is modeled by a Perfectly Stirred Reactor (PSR) where a homogenous input 
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power is applied. Experimentally, we can observe that the plasma radius is around 1 mm, the 

cathode radius being 4 mm. The assumption made is that the fraction of the gas that passes 

through the arc is equal to the ratio between the arc volume and the inner cathode volume. As a 

consequence, the fraction ratio, which can be expressed with the section ratio of the arc and the 

cathode, is equal to 1/16 (6.25%). The mixing temperature is calculated from the global enthalpy 

balance. Finally, the post-discharge is modeled by means of PFR. The model has been 

implemented in FORTRAN code using the PSR and SENKIN modules of the CHEMKIN II 

package
48

. 

Results and discussion 

Various parameters have been studied to assess their influence on the reformer performances: 

O/C, input current, mass flow rate and cathode length. Unless otherwise specified, O/C is equal to 

0.6 for the first operating condition and equal to 1 for the second operating condition, the input 

current is 0.4 A, the exhaust gas molar flow rates are 39.10
-3

 and 32.10
-3

 mol.s
-1

 respectively and 

the cathode length is 75 mm. 

Influence of O/C ratio. Figure 4 shows the results of the influence of O/C ratio in terms of 

conversion rate and energy efficiency for both engine operating conditions. The range of fuel 

flow rate is [0.02 ; 0.24 g.s
-1

] for the range of O/C [0.2 ; 3.2]. The exhaust gas flow rate is held 

constant. 

For condition 2, the Diesel fuel decomposition is higher than 80% for O/C greater than 1.3. The 

second operating condition (Φ = 0.32) reaches an energy efficiency of 40% against only 15% for 

the first one (Φ = 0.66). The strong difference in energy efficiencies is essentially due to the 



 

14 

 

oxygen rate in the gas mixture which is twice higher at low engine load and CO2 and H2O which 

are twice lower. Oxygen has the role to bring energy to the system and allows reaching higher 

temperatures for low engine load as shown on figure 5. In addition, at high load, an important 

part of calories are absorbed by CO2 and H2O present in high concentrations as in an EGR 

system. At low load, the higher the temperatures, the better the decomposition of Diesel fuel, the 

faster the kinetic reactions and therefore the better the energy efficiency. In both conditions, the 

decreasing temperatures between T3, T4 and T5 are due to thermal losses of the system. 

The peak efficiencies are reached at an O/C greater than POx stoichiometry reaction (respectively 

for O/C equals 1.3 and 1.5 instead of O/C = 1). Firstly, temperature is one of the most important 

parameter. As mentioned above, reforming reactions need a lot of energy to set quickly. More 

oxygen is needed to activate reforming reaction and thus a higher O/C ratio. But a part of this 

additional oxygen forms CO2 (cf. figure 6). The increase of H2O mole fraction can also be 

inferred by the low H2 yield shown on figure 7 (H from inlet water not taken into account). The 

non-homogeneity of the plasma reformer can lead to local combustion reaction which higher the 

temperature and leads to better performances but higher CO2 and H2O production. 

For each O/C ratio, figure 6 also shows that, the plasma reformer promotes CO2 production. Dry 

reforming reaction does not take place because a decrease of CO2 molar fraction compared to the 

initial composition is not observed. Concerning steam reforming, it maybe takes place when O/C 

is lower than 1. Indeed, the H2 and CO molar fractions are quite high (4 and 8% respectively) and 

CO2 fraction increases. For O/C lower than 1, the high excess of fuel induces a high production 

of CH4 and a very low conversion rate which can be associate with methanation. CH4 mole 
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fraction must be decreased at maximum as it is a regulated pollutant. For O/C higher than 2, 

conditions are getting close to combustion reaction and high temperature, high CO2 and low CH4 

production are observed. 

The H2/C ratio of Diesel fuel is equal to 0.92 and thus generally more CO than H2 is produced. It 

has been proved that H2 has a higher reduction power than CO
63,64

. But, H2 production is more 

sensitive than CO to the post-discharge temperature. During transient regime, H2 and CH4 

fractions vary inversely proportionally with the temperature.  

Deposited power is represented on figure 8. The lower the oxygen rate, the higher the deposited 

power.  In condition 2 at O/C = 1.3, 15% and 8% of dry molar fraction of CO and H2 respectively 

for a deposited power of 720 W have been reached. In these conditions, the dry molar fraction of 

CH4 is only 1.6%. For condition 2, the energy consumption is comprised between 4.6 and 7.7 

MJ.kg
-1

 of outlet syngas (H2 + CO). Using a pulse discharge could help to decrease the energy 

cost of the process. The deposited are then taken as an input for models. 

In this study, another important parameter to consider is the reducer molar flow rate, which 

determines the NOx trap regeneration duration. The figure 9 shows that the highest syngas 

production rate is for O/C = 0.8 for the first operating condition and O/C = 1.3 for the second 

one. A production of 2.10
-3

 mol.s
-1

 has been reached in the first operating condition and 7.10
-3

 

mol.s
-1

 for the second one. The best compromise between energy efficiency, syngas molar flow 

rate and pollutant emissions are at O/C = 1 and O/C = 1.4 for the operating conditions 1 and 2 

respectively. 
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The Euro V passenger car engines have to emit less than 180 mg.km
-1

 of NOx, and typically their 

real NOx emission are close to 150 mg.km
-1

 of NOx. The Euro VI regulation imposes a NOx 

emission lower than 80 mg.kg
-1

. Consequently, 70 mg.kg
-1

 of NOx have to be treated by the NOx 

trap. The homologation of European vehicles is based on NEDC (New European Driving Cycle) 

which is 11 km long. Assuming one regeneration during the cycle and that the NOx emitted are 

essentially NO2, the NOx trap has to store 16.7.10
-3

 mol of NOx. Internal experiments in Renault 

showed that 5 moles of syngas are needed to reduce 1 mole of NOx. Without scaling up the mass 

flow rate, 7.10
-3

 mol.s
-1

 of syngas leads to a NOx trap regeneration duration of 12 seconds which 

is a very promising. At the contrary, the first condition leads to a NOx trap regeneration duration 

of 45 s and is not competitive compared to catalytic processes. The catalytic reformers achieve 

results close to thermodynamics i.e. close to an energy efficiency of 70 % and a conversion rate 

of 100 %. In the second case, the plasma reformer achieved an energy efficiency of 40 % and a 

conversion rate greater than 90 %. These results are hopeful for a NTP working in a weakly 

oxidative environment. 

Influence of input current. The monitoring of the input current directly affects the input power 

injected in the system. The electrical power onboard a vehicle is an expensive resource and its 

consumption shall be limited for post-treatment purposes. Figure 10 shows the performances of 

the reformer in function of input current. In the input current range [0.25; 0.6 A], the deposited 

power varies quasi-linearly with the current (cf. figure 11) as long as we stay in the glidarc zone. 

The glidarc frequency is determined by hydrodynamic parameters and cannot be varied. In NOx 

trap regeneration conditions, the quasi-continuous regime which gave the best results with 

ethanol, E85 and gasoline
4,5

 cannot be reached anymore. A typical oscillogram is shown on 
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figure 12. The instabilities of the discharge are mainly due to reactive conditions. The stability 

increases with the current.  

The performances at high load are quite low and even a current of 0.6 A (P = 940 W) cannot 

reach an adequate temperature to quicken the POx reaction. At low load, the energy efficiency 

grows quasi-linearly with the input current and hence with the deposited power until 0.4 A. The 

energy efficiency and the conversion rate reached 31% and 58% respectively for I = 0.4 A and 

35% and 60% respectively for I = 0.6 A while the deposited power raises from 730 to 1180 W. 

Afterwards, an input current of 0.4 A is therefore considered because of onboard application 

which has limited usable power.  

Influence of exhaust gas flow rate. One can observe in figure 13 that the higher the exhaust gas 

flow rate, the lower the volume power injected and the lower the performances. Figure 14 shows 

that the syngas molar flow rate is quasi-constant at 1.9.10
-3

 mol.s
-1

 for the first engine condition. 

For the second condition, a better syngas molar flow rate is attained (4.8.10
-3

 mol.s
-1

) between 

30.10
-3

 and 40.10
-3

 mol.s
-1

 exhaust gas flow rate. This exhaust gas molar flow rate corresponds to 

a 3.5 - 4.5% range of total exhaust gas emitted by the engine. Figure 15 shows that post-discharge 

temperatures reach a maximum for both engine conditions around an exhaust gas molar flow rate 

of 42.10
-3

 mol.s
-1

. For lower exhaust gas flow rate, the partial oxidation reaction is aided by a 

higher plasma power density but the low quantities of fuel and oxygen release less energy, for a 

similar enthalpy of reaction. For higher exhaust gas flow rate, the resident time becomes lower, 

the POx reaction cannot set completely and temperatures drop. A scale up of the exhaust gas flow 

rate was not further considered because it did not decrease the NOx trap regeneration duration.  
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Influence of cathode length. In order to optimize the energy cost, the arc length can be tuned by 

means of cathode length.  The plasma reactor allows using different lengths of cylinder electrode. 

If the arc can reach the cathode extremity, the higher the cathode length, the higher the plasma 

length and the higher the voltage drop. Thus the deposited power can be increased with an input 

current held constant. Figure 16 shows that, even if the input power increases slightly (on average 

7%), the energy efficiency and conversion rate decrease for a longer cathode. We suppose that, 

for a 100 mm long cathode, the arc does not reach the extremity and therefore the arc treats less 

gas. Previous results in POx conditions showed that a shorter cathode (50 mm long) leads also to 

decrease performances. For shorter cathode, the deposited power is insufficient and the reaction 

volume too small. The 75 mm cathode is the most adapted one regarding the energy cost and the 

performances. 

Comparison between the 2 models and the experimental results. To investigate the highest energy 

efficiency which can be obtained, thermodynamics calculations have been realized. The results 

are shown on figure 17. The input power is not kept constant and is based on experimental results 

(cf. figure 8) because the deposited power varies with the operating conditions and O/C.  

For both conditions, the highest energy efficiency is attained for O/C = 0.8 and the energy 

efficiency reaches 86 % for the first condition and 92 % for the second one. For the second 

condition, the highest energy efficiency is at stoichiometry of n-heptane with oxygen from O2, 

CO2 and H2O. For the first condition, the maximal energy efficiency does not correspond to the 

stoichiometry of n-heptane with oxygen from O2, CO2 and H2O. Figure 18 shows that, at 
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stoichiometry, the equilibrium temperature is too low (900 K). n-heptane is not completely 

oxidized and a high CH4 fraction is produced.  

The exhaust gas Diesel fuel reforming has also been simulated by means of a 1D model and the 

results have been compared to the experimental results and thermodynamics results. It can be 

observed, also on figure 17, an important shift in energy efficiency between experiments and 1D 

model. Firstly, the energy efficiency discrepancy mainly comes from thermal losses. The model 

assumes the adiabaticity of the medium. Secondly, the perfect and instantaneous mix at the torch 

exit is far removed from experimental torch exit which is highly non-homogeneous. Local non-

homogeneities could also appear in the plasma reactor leading to H2O and CO2 production 

instead of H2 and CO. However, the model trends are similar to the experimental trends. For O/C 

higher than 1.5, the experiments and the 1D model are very close to thermodynamics results and 

consequently close to the maximum achievable results. The small bump in figure 17 (right side) 

for O/C close to 1 is due to the consideration of real input power because it does not appear for a 

constant input power (not shown in this paper). In the first case, for O/C = 3.2, the experimental 

point is higher than thermodynamics results. This can be due either to measurement uncertainties 

or to a shift in O/C we have observed and seen by the efficiency peaks. 

Figure 19 represents the main species along the reactor. N2 is not represented for convenience 

reason. Considering only the main species, the mass balance equals 0.996 for the case 

represented. This figure confirms that steam reforming and dry reforming reactions are poorly 

involved in the exhaust gas Diesel fuel reforming process in these conditions. Indeed, comparing 

with the initial H2O and CO2 molar fractions (~ 4%), CO2 is created along the reactor axis and a 
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high fraction of H2O is produced (+ 6%) due to reactions wherein hydroxyl radicals (OH·) are 

involved. Hydroxyl radicals are highly reactive and promote H2O production. This slight CO2 

production and this high H2O production lead to decrease the syngas production and especially 

H2. Nevertheless, after the reaction peak, H2O and CO2 rates slightly decrease to form H2 and 

CO. As a consequence, water gas shift, steam and dry reforming play a minor role in the process 

after the reaction peak. To achieve the kinetic equilibrium, a 6 times longer adiabatic reactor is 

needed. 

These results corroborate the experimental results which show a high conversion rate but a low 

H2 yield, up to 40 % on figure 7. However, with the current state of development of our 

experimental test bench and associated diagnostics, it is not possible to compare the experimental 

reaction rates with the model. Such a comparison requires advanced diagnostic methods 

(intrusive and non-intrusive) such as mass spectrometry or emission optical spectroscopy.  

Conclusions and Perspectives 

The exhaust gas Diesel fuel reforming has been investigated using a non-thermal high voltage 

and low current arc plasma torch. The low O2 availability in the plasma gas made the plasma 

assisted Diesel fuel reforming harder. First, it has been demonstrated that the oxygen from CO2 

and H2O hardly ever intervene in the exhaust gas Diesel fuel reforming. At contrary, they absorb 

a part of calories and lower the temperature. This implies lower temperatures, lower kinetic 

reaction speed and lower energy efficiency compared to POx reaction. To higher the temperature, 

more oxygen is needed but local combustion can happen and promote H2O and CO2 production. 

A compromise has to be done between the Diesel fuel consumption, electric consumption and 
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methane production. At high engine load, O/C = 1 is the most suitable condition. At low engine 

load, an energy efficiency of 40% and a conversion rate of 95% have been reached which 

corresponds to a syngas dry molar fraction of 25%. For these operating conditions, a 75 mm long 

cathode has demonstrated the best results. 

The 1D model has shown good consistency with experimental and thermodynamics trends but a 

shift deriving above all from the strong model hypotheses (adiabaticity and perfectly and 

instantaneously gas mix). In a further step, to obtain better correlations between modeling and 

experimental results, thermal losses and non-perfect mix will have to be taken into account 

together with a 2D fluid model. 

The plasma torch technology for creating reducing species is a promising technology for NOx 

trap regeneration application which needs to be improved. Indeed, for the highest oxygen rate 

case, the results obtained have led to a regeneration duration of 12 s of a typical NOx trap 

designed to respect the Euro VI regulation. The first case, even less oxidative environment, does 

not seem to be competitive compared to catalytic reformer due to high regeneration duration. For 

this particular case, one solution could be the use of a hybrid plasma-catalysis system where the 

plasma will allow to decrease the catalyst volume and consequently to decrease the amount of 

precious metal and catalyst price. The plasma can also heat very quickly the catalyst and so get it 

active quicker. Plasma catalysis technology can compensate the energy cost of heat it up by 

another way and it allows to pre-activate the reforming reactions.  
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Table 1. Main physical characteristics of Diesel fuel and n-heptane. 

 Diesel fuel n-heptane 

Empirical formula C12.31H22.49 C7H16 

Density (g.cm
-3

) 0.833 0.684 

Low heating value (MJ.kg
-1

) 43.7 44.6 

Molecular weight (g.mol
-1

) 170.21 100 
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Table  2. Definition of both operating conditions used for calculations and 

experimentations. 

Conditions 

1 

High load 

2 

Low load 

Φ 0.66 0.32 

O2 (%mol) 6.8 13.9 

N2 (%mol) 75.8 77.4 

CO2 (%mol) 9.1 4.5 

H2O (%mol) 8.3 4.1 
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Figure 1. Schematic of the experimental set-up. 

 

 

Figure 2. Photograph of the experimental bench. 
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Figure 3. Diagram of the 1D multistage kinetic model describing the low current plasma 

reformer. 

 

   

Figure 4. Experimental results of energy efficiencies and conversion rates as a function of O/C 

for both operating conditions. (left: condition 1; right: condition 2). I = 0.4 A. 
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Figure 5. Temperature along the axis of the reactor. 

 

   

Figure 6. Dry molar fraction as a function of O/C. (left: condition 1; right: condition 2). I = 0.4 

A. 
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Figure 7. H2 yield for both engine conditions. 

 

Figure 8. Deposited power into the arc discharge in function of O/C. 
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Figure 9. Experimental H2 + CO molar flow rate as a function of O/C. 

   

Figure 10. Performances of the plasma reformer as a function of input current for both conditions 

(left: condition 1, O/C = 0.6; right: condition 2, O/C = 1). Qfuel = 0.13 g.s
-1

. 
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Figure 11. Deposited power as a function of input current. 

 

Figure 12. Typical oscillogram. Operating condition 2. I = 0.6 A. 
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Figure 13. Performances of the plasma torch in function of exhaust gas molar flow rate. (left: 

high load; right: low load). I = 0.4 A. Qfuel = 0.13 g.s
-1

. 

 

Figure 14. Syngas molar flow rate as a function of exhaust gas molar flow rate. I = 0.4 A. Qfuel = 

0.13 g.s
-1

. 
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Figure 15. Temperature along the axis for both conditions. I = 0.4 A. Qfuel = 0.13 g.s
-1

. 

 

Figure 16. Experimental investigation on the influence of cathode length. Energy efficiency and 

conversion rate for a 75 mm and 100 mm long cathode. Operating condition 2. I = 0.4 A. 
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Figure 17. Exhaust gas Diesel fuel reforming: 1D model, thermodynamics model and  

experimental results as a function of O/C. The model used the Diesel fuel surrogate: n-heptane. 

6.25% of inlet reactants pass through the plasma zone for 1D model. (left: condition 1; right: 

condition 2). 

 

Figure 18. Equilibrium temperature from the thermodynamics model. 
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Figure 19. Main species molar fraction along the reactor. Engine condition 2. O/C = 1.54. 


