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Conditional Prediction

Intervals of Wind Power

Generation

Pierre Pinson, George Kariniotakiglember, IEEE

Abstract—A generic method for the providing of prediction
intervals of wind power generation is described. Predictia inter-
vals complement the more common wind power point forecasts,
by giving a range of potential outcomes for a given probabiliy,
their so-called nominal coverage rate. Ideally they inform of
the situation-specific uncertainty of point forecasts. In oder to
avoid a restrictive assumption on the shape of forecast erro
distributions, focus is given to an empirical and nonparamé&ic
approach named adapted resampling. This approach employs
a fuzzy inference model that permits to integrate expertiseon
the characteristics of prediction errors for providing conditional
interval forecasts. By simultaneously generating predigon in-
tervals with various nominal coverage rates, one obtains 1l
predictive distributions of wind generation. Adapted resanpling
is applied here to the case of an onshore Danish wind farm,
for which three point forecasting methods are considered as
input. The probabilistic forecasts generated are evaluat based
on their reliability and sharpness, while compared to foreasts
based on quantile regression and the climatology benchmark
The operational application of adapted resampling to the cae of
a large number of wind farms in Europe and Australia among
others is finally discussed.

Index Terms—Wind power, forecasting, uncertainty, nonlinear,
nonstationary, fuzzy inference, resampling.

NOMENCLATURE
Nominal proportion of quantile forecasts.

e e
Qi

bounds of prediction intervals.

Fuzzy set.

Nominal coverage of interval forecasts.
Number of bootstrap replications.

Forecast condition.

Set of forecast conditions.

Support of a fuzzy set.

Forecast error.

Indicator variable for quantile forecasts.
Probability density function, density forecast.
Cumulative distribution function (cdf), esti-
mated/predictive cdf.

Fuzzy inference model.

Common indices.

Interval forecast.
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Nominal proportions of the lower and upper

k Forecast horizon.

n Size of the error sampl§.

N Size of dataset used for evaluating probabilistic
forecasts.

v Function permitting to identify the subsets of
forecast conditions.

Q Set of forecast errors.

q,q Quantile, quantile forecast.

S Sample of forecast errors.

Sc Scoring rule for probabilistic forecast evaluation.

SSc Skill score for probabilistic forecast evaluation.

t Time index.

T Membership function of a fuzzy set.

] Wind speed forecast.

v Influential variable.

% Set of values for an influential variable.

w Weight in the combination of probability density
functions.

Y, U Wind power measurement, forecast.

2(®) Number of hits when evaluating the quantile

forecasts with nominal proportiom.

I. INTRODUCTION

ORECASTS of wind power output are traditionally pro-
vided in the form of point forecasts. They have the
advantage of being easily understandable because thik sing
number is expected to tell everything about future power gen
eration. In practice though, they just tell about the cdodil
expectation of the power production process for each look-
ahead time. It is known that the accuracy of such forecasts
is highly variable, and fairly low on average. One of the
priorities in wind energy research in the short to medium-
term relates to the improvement of wind power forecasting
methodologies [1]. A large part of research efforts is dttua
still focused on point forecasting only, with the main oljee

of increasing forecast accuracy. A review of the state of the
art in wind power forecasting is available in [2], [3]. Even
though such efforts may lead to a better understanding and
modeling of both the meteorological and power conversion
processes, there will always be an inherent and irreducible
uncertainty in every prediction. This epistemic uncetain
originates from the incomplete knowledge one has of the
processes that influence future events [4].

For the communication of forecast uncertainty, [5] has
introduced two complementary approaches, which consist of
providing forecast users with skill forecasts based on risk
indices [6], or with probabilistic forecasts. The preseapgr
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focuses on the latter form of uncertainty estimates, whidonditions. The method is subsequently applied in Sectbn |
may be either derived from meteorological ensembles [1], [8o the test case of an onshore wind farm in Denmark, for
based on physical considerations [9], or finally producedhfr which point forecasts are available from three differeatest
one of the numerous statistical methods that have appeaoédhe-art methods. Evaluation results include a comperat
in the literature, see [10]-[13] among others. They magnalysis with a common benchmark (climatology), as well
take the form of quantile, interval or density forecasts. Hs with another state-of-the-art method, time-adaptiantjle
appropriately incorporated in decision-making methollsyt regression (described in [12]). Our experience with ajapin
permit to significantly increase the value of wind generatioof the method to a number of wind farms worldwide allows us
Recent developments in the literature support this claim. t& discuss certain operational aspects in Section V. Cdirgiu
first example relates to dynamic reserve quantification, foemarks end the paper in Section VI.

which the optimal reserve level to be defined by the system

operatqr is a function of the combined uncertainty of loaq| EypiricAL AND NONPARAMETRIC APPROACH TO THE
and wind power forecasts, as well as of the outage rates ESTIMATION OF PREDICTION INTERVALS

of the conventional power plants [14], [15]. In a similar ) ) . )

manner, information about wind power forecast uncertainty ' "€ nonlinearity of the wind power generation process,
has been shown to be beneficial for the optimal operation Bfinly due to the power curve [9], makes that assumptions
combined wind-hydro power plants [16]. Finally if consitfey that.pre.dlctlon errors follow a known parametnc family qf
the design of trading strategies in liberalized elecyigools, distributions appear as weak assumptions. It has especiall
the optimal bid of wind power producers has been shown l&_@en shown thgt such con(_jltlonal dIStI’!butIOI’lS cannot lme co
be a specific quantile of probabilistic forecasts, which ban sidered Gaussian [19]. This then motivates the development

determined through stochastic optimization methods [IAg Of Nonparametric approaches. In parallel, if using an eicggir
method introduced here is of the statistical type, and irreti  @PProach relying on past forecast errors of a point foreugst
to as adapted resampling since it is inspired by the genefafthod of interest only, no assumption is made about the

class of resampling (and bootstrapping) methods extelgsiviNderlying model employed for issuing point forecasts. A
described in [18]. nonparametric and empirical approach to forecast unceytai

A primary objective that motivated the development gestimation can consequently be suitable for applicatiqrotot

the adapted resampling method relates to the possibility [9f€casting methods either of the statistical or physigaet or
complementing any wind power point forecasting method wi/e" if being the result of some combination procedure [12],
prediction intervals in an operational environment. Intthal3]: [2_1]' . _

sense, it has an empirical and nonparametric nature: piedic AN important shortcoming of nonparametric approaches
intervals are directly based on past errors made by the poSed on quantile regression (as described in [10], [12], [1
forecasting method considered, without assuming any shagel) however, is that a specific model needs to be set-up and
of error distributions. Point forecasts can consequendy Hained for each quantile of the predictive distributiontie
“dressed” with a set of prediction intervals with differentSSu€d. This may lead to a large number of models for building
nominal coverage rates in order to obtain full predictiv1® Whole predictive distributions, thus raising compiotzal
distributions of wind power. Such an approach also permits €0Sts: And, since models are independently trained, this ma
accommodate two important characteristics of the wind povv%'so yield inconsistent results in certain situationsdressing
generation process that are its nonstationarity and neaity. quantiles, which is not desirable from both theoretical and
More particularly for the last point, the adapted resamplirPractical point of views. In contrast here, the proposecpeth
method integrates a fuzzy inference model allowing to aféSampling method permits modeling the whole distribuéion
ditionally rely on expert knowledge of forecast uncertpintONCe. thus avoiding the potential problem of crossing glemt
characteristics, consequently making the issued predictiMmportant definitions related to nonparametric probatilis
intervals conditional to forecast conditions. The backm fore.castlng are given first, followed by a description of the
idea of adapted resampling has originally been introducB8Sis empirical approach.

in [5]. Since then, this method has been fully developed,

evaluated on a number of offline and online test cases, and Basics of Nonparametric Probabilistic Forecasting
used operationally as an integrated module of the ANEMOS . . .
Denote byy, the power production measured at tim&hich

wind power prediction platform, installed in various looats o .

) . ) . corresponds to a realization of the random variakileThen
worldwide, including some European countries and Australl " o . .
amona others write f; and F; the probability density function and related

9 o . ._cumulative distribution function o¥;, respectively. Formally,
The empirical and nonparametric approach to the estima- . . . . : . ;
rovided thatF; is a strictly increasing function, the quantile

tion of prediction intervals, which comprises the core o?(a) _ _ _ .
the adapted resampling method, is introduced in Section {i, With proportiona € [0, 1] of the random variabld’; is

The way expert knowledge is integrated via classification &nlquely defined as the minimum value sfsuch that
forecast conditions, and through the design of a fuzzy infer P(Y; < z) = a, (1)
ence model, is described in Section Ill. This inference rhode .

defines conditional prediction intervals based on a continina Or equivalently as

of empirical error distributions for various sets of forsta qt("‘) = Ft_l(a). (2)
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Then, a quantile forecaaﬁ)k‘t with nominal proportiony is  used as a sliding window for storing the errors. When a power

an estimate Oflt(i)k produced at time for lead timet + , megsurement is receivgd, itis compar_ed with all the past pre
given the information se®, up to timet. dictions made for that time. Note that in the following hqurl

Interval forecasts (equivalently referred to as predictigPredictions are considered for the sake of example, without
intervals) give a range of possible values within which thémiting the applicability of the method to different temyab
true effecty, is expected to lie with a certain probability, its"eSolutions. The size of the sliding window determines the
nominal coverage raté —3), 3 € [0, 1]. A prediction interval Size Of the samples of errors. At time a separate sample
i® issued at time for time ¢ + k is defined by its lower St 1 is defined for each prediction h_onzd:n(Le_. f_or 1-hour _
atrﬁlfjpper bounds, which indeed are quantile forecasts, ahead, 2-hour ahead, and so on) since prediction uncegrtaint

significantly varies depending upon look-ahead time. Write

I t(fgc‘ ;= [qt(ﬁl » qt(i)k\ o 3) Qt,.k the set qf past prediction errors associatef-ttep ahead
. . point predictions up to current timg
whose nominal proportions and & are such that
Qe ={e—ithp—i» 1 €N, i >k}, (7)

a—a=1-0. (4)

_ o - where €;_; ;—; is the normalized prediction error related
This general definition of prediction intervals makes that @ the point forecast; ;.. Since the wind generation
prediction interval is not uniquely defined by its nominaprocess is bounded, we will hereafter only deal with normal-
coverage rate. It is thus also necessary to decide on the Wayd errors and predicted values (both normalized by nomina
they should be centered on the probability density functioapacity Pn). Straightforwardly, by renumbering the eletse

Commonly, it is chosen to centre (in probability) the intev of ), ;, an error samplé; ;. containing the last k-step ahead
on the median, so that there is the same probability that gsint prediction errors at timeis given as

uncovered true effeqi;. ;. lies below or above the estimated )
interval. This translates to Stk ={€ € Uy, i=1,...,n} (8)

a=1-a=g/2 (5) If a given sample is full when aiming at adding a new
- error value, the most aged error value is discarded while
Such prediction intervals are commonly referred to as eéntreplaced by the most recent one. This idea is motivated by
prediction intervals. A discussion on the other types of préhe nonstationary aspect of wind power prediction errors.
diction intervals whose bounds can be defined from Egs. (3)The empirical distribution functiorf}_,c of errors, at timet
and (4) is given in [19]. and for horizonk, is defined as the discrete distribution that
For a wide range of decision-making problems related fmuts probabilityl /n on each element of; ;. It can be shown
wind power management, a single quantile forecast is rtt:ﬂatf;,€ is the nonparametric maximum likelihood estimate of
sufficient for making optimal decisions. It is instead neeeg the true distribution function of errorf, (see the definition
to have the whole information about the random variahlg, of nonparametric maximum likelihood in [18, p. 310], as well
for each look-ahead time. A nonparametric foregé&;tk‘t of as the proof of the above), meaning that the likelihood is
the density function of the variable of interest (i.e. wirm\@r maximized, but without making any parametric assumption
production) can be generated by gathering a set @fuantile about the error process. Consequently, any pararﬁéﬁgrk)
forecasts estimated fromffk is the nonparametric maximum likelihood
estimate of the parametéf ft ). For practical use, we intro-
duce the cumulative distribution functidﬁk(x), which gives
that is, with chosen nominal proportions spread over thé uithe fraction of errors less than or equalito
interval. Such probabilistic forecasts are hereafterrreteto . 1
as predictive distributions. fr(T) = ﬁ#{q € S| € <z} 9)

Frone ={@\50, 10< a1 < ... <ai <... <ap <1}, (6)

In the above, ‘# is the cardinality mathematical operator,
B. Description of the Basis Empirical Approach which returns the number of elements of the set it is applied
The development and successful application of empiricd-
type approaches to prediction interval estimation canaeett ~ An underlying assumption of the empirical approach is that
back to [22]. Variants of this method have been applied fgture uncertainty can be expressed from the recently wit-
some other forecasting exercises for which predictionrerrg1essed behavior of the point prediction method. This tedesl
proved to be non Gaussian. Especially, one of those variatissaying that the empirical distribution function of esor
has been employed for estimating prediction intervals -ass , ¢an be seen as an estimate of the distribution of errors
ciated to point forecasts of electricity load produced wath associated to the point forecast ;. Therefore, an empirical
neural-network-based method [23]. predictive distributior]fwk‘t of wind power output at lead time
The first step consists of collecting forecast errors that- & can be constructed as following:
the point forecasting method under consideration has made 2 .
in the recent past, thus allowing to rely on the most recent Feene = {Geare + €6 € € Send, (10)
information about the method’s performance. For that psepo with an equal probabilityl /» associated to each element of
a window in the past (a certain number of hours) is defined a!ﬁg%‘t.
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Since the bounds of the central prediction interﬁgﬂclt of forecast conditions. Such combination is finally perfedn
with nominal coverage ratd — 3) are defined as the quantilesvia the use of a multi-sample resampling scheme.
with proportionsa. anda of the predictive distributiory, 4.,

as defined in Eq. (5), they are given by: A. Classification of Forecast Conditions
~(a) A e —1 Let us define a forecast conditiep;, at timet¢ and horizon
+ F Q 11 ik
qt(lj;““ Yerhlt o 1(_) (1 k as a set of values of the considered influential variables.
Gyre = Derwpe + F (). (12) Denote byv! the! influential variable (say that we consider
L different variables, hende= 1,..., L), andu; , its value at

Such a construction of the predictive distributigh, t: time ¢ and for horizonk. For instance, one can defing, =

of wind generation from recent performance implicitly as@t%‘t andth,k — Gy 5e, With .y, the wind speed forecast

sumes the representativeness of the sample data. This §Rgq as input to the point forecasting method. These wihbe t
of assumption is actually made by any type of forecastingy influential variables considered in the illustrativeample
procedure. This means that issued prediction intervals mag¥ine mapping of the power curve presented hereafter. It is
only provide a lower bound on real forecast uncertaintysThissymed that influential variables are bounded, since valiie

will be illustrated in Section IV. meteorological variables or power production must stay in a

At this stage, one may consider building prediction insgrtain physical range, and can thus be normalized,
tervals directly based on empirical distributions themss]

or alternatively by employing kernel smoothing techniques vy € Vi=[0,1] VIt k. (13)

The former option is preferred here, since for the applicRjyte that forecast errors are also normalized and bounded,
tion considered empirical distributions can be defined bytﬁough they lie in the rangg-1, 1].

large number of data points, thus diminishing the interdst o A forecast condition at time for lead timet -+ k is uniquely

kernel smoothing. In addition, employing kernel smoothingeﬁned by the association of the values of each of the
techniques would require the introduction and estimatibn Qs ential variables

an additional parameter, namely the kernel bandwidth. iBhis
not desirable in view of our main objective which is to propos ct,x = {Vt ks Vg - - Uik}, e €C=Vix...x Vg, (14)
a model-free and empirical method. Note though that furth

) : I Wherec is the set of possible forecast conditions at any time
research may envisage this possibility.

t and look-ahead timé.
Then, C is mapped with a finite number of subsets to
[1l. CONDITIONAL PREDICTION INTERVALS WITH A which are associated different kinds of characteristics of
Fuzzy INFERENCEMODEL prediction error distributions. For that purpose, considg

For the specific case of wind power forecasting, a numbgnges of possible values for each ijfhe influential vaesis|
of variables may influence the characteristics of forecasre (! =1,-..,L). Consequently, defmﬁ the subset o¥; that
distributions, which will be referred to as influential \@bles. Contains the variable values in thie" range. By construction,
They obviously include predicted power [9], but they mayalsV: iS the union of all of its subsets
include_ predic_ted wind _speed an_d direction, etc. Vi=VuV2u...uvh v (15)
Prediction intervals issued with the empirical approach )
described above would be the same whatever the level $ch that none of these subsets are overlapping
influential vari.ables:_ they actually are unconditipnglehval Vin sza =0, V4,4, i#j. (16)
forecasts. It is unlikely that samples of prediction errors _ _ _
would be representative of the current-and thus conditiona Now that the sets of possible values for the various influ-
uncertainty. Consider the following illustrative examplver ential variables are split into subsets accounting foredéfht
the previousn hours, all forecasts and measurements wegdaracteristics of prediction error distributiotscan also be
in the low power range, therefore translating to the sampl&glitinto all possible associations of the subsets for tireous
S;, containing small forecast errors only. At the presemfluential variables. Write
time however, wind power forecasts are in the medium power (L. i — (1. I
range, where forecast uncertainty is much higher. Predicti {30} 51( "]1);2" 3 ’]L)J)L ,
intervals derived from the sample% , would therefore be VI V52 o vk, Ve (17)
too narrow and not reflect the current forecast uncertaisy. these subsets corresponding to the" range of values for

a consequence, it is necessary to propose a more dynagigh of thel different influential variables. This hence yields
approach that would be appropriate for issuing conditional, subsets, where

prediction intervals. L

The idea of classification of forecast conditions is intro- Ne=]] 7 (18)
duced in the first stage, followed by the description of a yuzz =1
inference model permitting to issue conditional predittio As an illustrative example, let us again consider forecast
intervals. The fuzzy inference model conceptually definegind power and forecast wind speed as influential variables.
distributions of prediction errors as a weighted comboratf Three subsets are defined on the range of forecast wind power,
the empirical error distributions obtained for various setls while two are only defined on the range of forecast wind
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fuzzy sets power curve
T

high power

medium power

power (% of Pn)

fow power

25 30
fuzzy sets
1
no cut-off risk cut-off risk
0] t
0] 5 10 15 20 | 25 30

wind speed (m/s)

Fig. 1. Example mapping of the forecast uncertainty induzgdhe power curve (normalized by the nominal capacity Phe flange of possible predicted
power values is divided into three ranges (‘low’, ‘mediuntida‘high’), to which are associated three trapezoidal fugeys, in order to account for the
nonlinearity induced by the power variable. Similarly, tiaage of possible forecast wind speed values is dividedtimboranges (‘no cut-off risk’ and ‘cut-off

risk’), owing to the nonlinearity induced by the cut-off, ¥hich are associated two trapezoidal fuzzy sets.

speed. Such a situation is represented in Fig. 1, where thi#And finally, as was done in Eq. (8), we can extract from
classification reflects the influence of both the nonlineat aach subsef, . ({(l,;)}) a sampleS; . ({(l,7;)}) of sizen
bounded nature of the power curve and its cut-off. The examnntaining the last forecasting errors, but in similar forecast
ple subset of forecast conditiod$(1, 1), (2,1)) corresponds conditions

to the case for which both predicted wind speed and power ) , )

lie in their first subset, and for which forecast uncertaiisty Sex{l)}) = {6 € Qe )}), i=1,...,n}. (20)

expected and known to be low. In parall€l((1,2),(2,1))  Therefore, each of the subsef¢{(,7)}) is character-
relates to the case where predicted wind speed lies in jfgq py ts own empirical distribution functiofy , ({(1, j:)}),
In contrast forecast uncertainy 1 known to be. signiianiira ffom @ diferent sample of past ertofs,{(1.))) i
high there A classification of forecast conditions witHetiént thus a c_on_ditiqnal distribution fungti(_)n since it iTC’ an extte
related ch.aracteristics of prediction error distribusipsuch as .Of the_d|str|but|on function (.)f pred_|c_t|on erro_rs g|ven th@*.’“
the example one discussed here, can only be the result 0 ﬁn ftem Of.c.({(l’jl)})' This empirical d|str|but!on function
thorough analysis of the error-generating process. Aeralygs$ s probabilityl /n on each element of, ({(l, 7)}):
forecasting errors are often very informative (see e.g.])[19 o)) — e, e € See{L )N} (21)
and allow the analyst to gain expertise about the prediction
problem at hand. Note that for the case study of Section I&/, th
level of predicted power will be seen as the unique influgnti- The Fuzzy Inference Model
variable, following our analysis of the forecast uncerpin The previously described classification is the basis for
characteristics, and supported by works on forecast erdgriving an empirical and distribution-free method thap-pr
analysis [19] or wind power probabilistic forecasting mbdevides conditional prediction intervals, given particularecast
building [12], [13]. conditions. The choice of the influential variables, as vasll
In order to associate specific characteristics of predictiéhe splitting of the sets of possible values into variousssth
error distributions to each subset®fthe empirical approach with different characteristics of related prediction erdistri-
described above is extended by associating a collection ftions, are the result of the expertise one has of the psoces
recent prediction errors to each of these subsets. As intemti Of interest. A fuzzy inference modéiy(c; ) is introduced
in Eq. (7),9.x is the set of all the pagdt-step ahead prediction here, which conceptually defines conditional distribusiaf
errors up to timet. Define now(, »({(1,1)}) the subset of prediction errorsff, (c: ) given the forecast conditiory .
past prediction errors corresponding to the subset of &mtec Fuzzy logic is an alternative paradigm to that of binary
conditionsC({(l, 5:)}) logic. It considers that to each event a degree of truth being
a continuous function between 0 and 1 can be associated. A
Qe ({1 g0)}) = {er—iqnyi—i € Qur | ct—ixe € C({(1,71)})}.  nice introduction to fuzzy logic theory can be found in [24].
(19) Section lll-A, the set of possible forecast conditions has been
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mapped with several subsef${(/,7;)}) related to different  The inference procedure based on this fuzzy logic model
forecast uncertainty characteristics. Particularly\e@gisubset consists of applying the rule-base to the forecast conlitio
C({(l,71)}) is defined as the association of the subséts ¢, in order to provide the overall conclusion as the weighted
(I =1,...,L) for the various considered influence variablesiverage of the conclusion of each rule. The weightor each
see Eq. (17). Here, a fuzzy set' is associated to each ofrule is given by the degree of truth of the related premise,
thesel’-subsets, as is done in the illustrative example of Fig.rlormalized by the sum of the weights for each rule

where the mapping of forecast conditions is based on the .
7(ct k(1))

known nonlinearities induced by the power curve. A fuzzy set  wj(ctx) = —x- —, 1=1,..., N, (30)
is characterized by a membership functigh, which defines Y i ek, m(i))
the degree of truth of; , being an element of’', with 7(cy,, () defined by Eq. (23).
lel 3vi,k Hlel (vi,k) € [0,1]. (22) By doing so, the fuzzy inference model tells what the

contribution of each of the error distributiorfs . (n(z)) in the
The subset of forecast conditiod${(, j;)}) is defined as error distributionf;, is, given the current forecast condition

the association of thé, subsetsV;’. Therefore, the degreec: .. The fuzzy inference model can finally be written as

of truth of a given forecast condition, ;, = {viﬁk}lzlp_,,L

. K . R N
being an element a?({(/, 7;)}) is given by the product of the Iyt ok — €opnp ~ fip = Zwi(ct,k)ff_k(n(i))- (31)

membership values for every influential variable, =

L
T(err, {L3)}) =7 (eew € C{(1,3)}) = [[ 7' (). C. Combining Error Distributions with a Multi-Sample Re-
=1 (23) sampling Scheme

The fuzzy inference model introduced here relies on fuzzy Given a specific forecast conditie., The inference model
rules of the type hy defines the distributiorfy , of prediction errors; ), as a

. _ combination of several empirical distributions corresgiog
“IF v, € D(A}) and ... andv/), € D(A}") to the various subsets of forecast conditions. One shoeld th
THEN e e ~ Fr ({00 50)})" (24) propose a method for such a combination, similarly to the
. . issue of summarizing expert opinions in a single combined
whereD(A;") stands for the support of the fuzzy séf'. The istribution, see review of that problem in [25]. With that
IF part is referred to as the premise of the rule, whereas th,mpination objective in mind, we hereafter employ a method
fTHEN_’ part is called the conclusion. Note that the aboveerulyssed on a multi-sample resampling scheme. This method
is equivalent to has been shown to be superior to the more classical linear
“IF cop € D(Ac({(1,31)})) THEN €rage ~ e (L)1) opinion .po.ol for the vyind power forecas_ting applicat_ion][.19
’ (25) A description of the linear opinion pool is available in [26]
where Write S = {¢;};=1,..,» @ random sample from a proba-
. . bility distribution f. The observations; are assumed to be
D (Ac({(l,51)})) = D(AY) x ... x D(A"). (26) j.i.d. (independent and identically distributed). Foliog the
Actually, the rule of Eq. (25) states that if the forecadfrminology of the bootstrapping literature (see e.g. Jlie
condition c; ; can be considered as being an element of Ug-in estimate of a parametér= h(f) is defined to be
given subse€({(l, j1)}) of C, then the prediction errar, , 0 = h(f). 'I_'h|s means that we estimate the true parameter of
follows the distributionz, ({(7, ji)})- f by applying the same function to the empirical distribution
Subsequently, a rule base is composed by rules similartiction f. This is what is performed in Egs. (11) and (12)
that given by Eq. (25), which span all the possible subsé&r estimating the lower and upper bound; of the pre_dlctlon
of C. The number of fuzzy rules is hence given by thintervals. The eIe_ment_schare_ used fo_r setting up an es_tlmate
number of subset®, used to map the set of possible forecadt Of the cumulative distribution function associated wjth _
conditions. For convenience, an indejs associated to each Denote by X = {w;};— ., a random sample that is
of the N, subsets, and we introduce the functigf) that |.|.d.1U[O, 1]. Prob_ab_ll!ty theory tells us that the sample
returns the{(l, 5;(i)) }i=1.....r pairs that serve to identify the {F~(;)}j=1,...n is Lid. f. Then, the idea of resampling

corresponding subset states that sincé’ is an estimate of the true cumulative distri-
bution function, one can use it for drawing alternative skesp

n:i€{l,...,No}t = {(l,5i(i) hi=1,....L, (27)  that would lead to other empirical distribution function o

the true distributionf. In practice, this alternative sample

such that each of thé(l,j;(i))}i1=1,.... pairs is given by a
unique value of. Thei*" rule of the fuzzy rule base is of the
form

S® (b = 1,...,B), called bootstrap sample, is obtained
by picking randomly and with replacementvalues out of
the original samples. () is a bootstrap replication of the

“IF ¢t € D(Ac(n(i))) THEN €, g ~ Ff 1 (n(i))", (28) statistic. The obtained set of bootstrap replications nieyt
be employed for statistical inference on the true paranteter
o o The basic idea of resampling is employed here for estimat-
D(Ac(n(i))) = DAY x ... x DA, (29) ing a given parameterof a combined probability distribution,

where
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by having an interpretation of the combination given by the IV. APPLICATION AND RESULTS
fuzzy mference_ model of Eq. (31) slightly different fr.on‘ath A. Description of case-studies
of the linear opinion pool. Remember that the fuzzy infeeenc
model assigns a weight to each of thé, distributions The test case of an onshore Danish wind farm located
ff1(n(@)). The distributionsf; , (n(i)) can be approximatedin Klim, North Jutland, is considered. Its nominal capacity
by the empirical distributionss , (1(7)). The linear opinion iS defined as Pn = 21MW. Series of wind power point
pool approach states that these weights can be seen as priigcasts are available from 3 statistical forecastinghous:
bilities and that one can construct a combined distributipn Sipredlico [27], Armines Wind Power Prediction System (AW
associating these probabilities to each sample. The difter PPS, [28]), and Wind Power Prediction Tool (WPPT, [29]).
introduced here is that these weights (i = 1,...,N,) are They use the same meteorological forecasts of wind speed
to be used for defining the share of each of the representa@il direction from HIRLAM (High Resolution Limited Area
samples of errors), . (n(i)) in a representative sample drawrModel) as input. Correspondmg wind power measurements are
from the combined distribution. This interpretation leads also available. The period covered by these point forecasts
generatingB bootstrap Samp@t(bk) and compute a bootstrap@nd corresponding measurements is from tRleol March
T A : 2001 until the 29 of May 2003. For confidentiality reasons
replicationd®) for each of them. Given the size of the error y '

. . the results presented in the following are not attached yo an
mpl r mpig) (al f sizen) i nstr o h .~ :
samples, a bootstrap sa Fﬂg’“ (also of sizen) is constructed specific point prediction method. They are related to point

followin - . .
as foflowing prediction methods M1, M2 and M3 instead. This should not
S:Sbk) — {St(f)k)(ﬁ(i))}i:l 7777 N (32) be seen as an issue, since what we aim for is to evaluate
the set of probabilistic forecasts generated from thesatpoi
such that, fori = 1,..., N, predictions, not the point predictions themselves. Botte-fo
O N casts and measurements have an hourly temporal resolution.
Ser (@) =A{e; | €5 € Ser(n(i)) }i=1,....w0in (33)  Forecasts are up to 43 and 48 hours ahead (depending on the

where the items OSt(bk) (n(i)) are picked randomly and with point forecast method), and _updated h_ourly. For _consmtenc
) we only perform a comparative evaluation for horizons up to

replacement frons; ;. ((i)). Note that the number of elements ) ! .
rep t(’f)(n(l_)) . . : 43 hours ahead. Since the first 2000 forecast series are used
in the subsamples; ; (n(i)) is win, wherew; is the weight

. . for initialization of the probabilistic forecasting methowe
given by the fuzzy mf_erence model of Eq._(31). . are left with an evaluation set composed of 16937 series of
The F’f”“ame‘?rs (.)f Interest "?“e 'Erl(f,(bc)]uantlles of the comb NG power point forecasts and associated predictionvater
probability distributionf;,.. Write 17, the related cumula- g,0ngjve description of this dataset, related resultsyedisas
tive distribution function (following the definition of Eq9)). results from other datasets, is available in [19]. Note #eatio

The. bootstrap repIiAc(%'gions. of the _Iower and upper bounds ﬁ’ét consider any benchmark intervals based on a paramstric a
the interval forecast; ,;, with nominal coverage ratd — ) symption about the shape of error distributions. The sofigfi

are given by of adapted resampling against the assumption of Gaussian
d@(b) — 4 Fe,(b)71(a) (34) andg error distributions has already been discussed, see [19]
tklE PRI Tek S and references therein. An example comparison of adapted
cjt(ﬁ(ﬁ) = Yptrt T th’k(b)‘l(o?). (35) resampling with time-adaptive quantile regression [14jiok

is another nonparametric method, will be given here. An

The bootstrap expectation is subsequently obtained by ti¢ensive comparison of these two state-of-the-art metbad
ing the mean of all the bootstrap replications, and yields & tound in [32].

estimate of the interval bounds Regarding the mapping of forecast uncertainty, since the

(@) 1B (a)(b) dataset available only exhibits very few occurrences of cut

Giyke = J > s (36) off events (14 occurrences over the whole dataset), it has no
b=1 appeared appropriate to consider that nonlinearity. Thigcc

(&) 1 & (&)(b) be done in the future when treating other datasets with more

UGk = B th+k\t ‘ (37)  cut-off events. This would only imply a different mapping of
b=1 the power curve, though the overall methodology would lséll

By constituting theseB bootstrap samples, we actuallythe same. However, as for any existing statistical method fo

use all the information included in the individual samplewind power probabilistic forecasting, the relative infueqt

by drawing alternative scenarios. Also, while it is exptdn occurrence of cut-off events may directly impact the qyait

in [18, pp. 124-126] that the bootstrap expectation servessulting probabilistic forecasts. It would actually bdfidult

for calculating the bias associated to the original esématio evaluate them anyways, as evaluation would also be based

of a distribution parameter from a single sample, it has an a few occurrences of such events. In parallel after eixtens

completely different meaning here, since we apply that foramalysis of the dataset available, we have made the choice to

of resampling for a multi-sample problem. The overall methadisregard the potential effect of other meteorologicaialzes,

for issuing conditional prediction intervals of wind powier like wind direction for instance, on forecast uncertairitiis

referred to as adapted resampling owing to its similaritiéth is because their influence has not been found significant.

the original resampling approach. Therefore, focus is only given to the influence of the level of
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Fig. 2. Example of wind power point predictions associateth & set of interval forecasts. The point predictions axemgiby M2 and the central interval
forecasts are estimated consequently with the adaptednplisg method. Nominal coverage rates range from 10 to 90kes@& sets of predictions and
intervals were issued on the ®Zanuary 2001 at 18:00, for the Klim wind farm in North Jutlam@nmark.

predicted power on forecast uncertainty. Note though tbeitp Point forecasts relate to the mean of predictive distrimsj
forecasts of wind power generation are a function of theséhile interval forecasts are centered on the median. When
meteorological variables. Their effect on forecast uragety the asymmetry of predictive distributions is more pronadc
is thus indirectly considered by relying on wind power poinffor low and high predicted power values for instance), the
forecasts as influential variable. This is actually in linghw difference between mean and median becomes larger. This is
some other investigations on probabilistic forecastingvisfd clear here for horizons 3 to 15, or 33 to 43 hours ahead.
power generation, that also considered the wind power poMbreover, the effects of both the lead time and the level
forecast as the main explanatory variable for their prdistioi of predicted power can be seen from the Figure. Prediction
forecasting models [12], [13]. intervals are fairly tight for the very first horizons, duette

Following the guidelines given in [19], the range of powelow level of predicted power and also due to higher forecast
values is divided in 5 equal ranges, associated with tragakzo accuracy of statistical methods for short-range horizdhen,
fuzzy sets of the form of those depicted in Fig. 1. In parallethey become rather wide when predicted power is in the
the error sample size is set to 300 elements, and the numimadium-range: forecast uncertainty is higher in such a.case
of bootstrap replications to 50. Fig. 2 depicts an episodéney then become narrower again for horizons between 20
consisting of a set of point forecasts provided by M2, issued and 25 hours ahead, since predicted power is again at a low
the 27" January 2003 at 18:00 for the Klim wind farm, alondevel. They finally are slightly wider as forecast horizoret g
with corresponding power measurements. A set of intervabser to 2 days ahead.
forecasts generated with the adapted resampling method iFhe evaluation framework presented in [32] is employed
associated to the point predictions, in the form of a fan thahere for assessing the quality of the predictive distribu-
thus yielding predictive distributions. The nominal cauge tions obtained with adapted resampling. This framework is
rates for these intervals were set to 10, 20, 90%, as somehow based on the paradigm of ‘maximizing sharpness
will be the case for all prediction intervals evaluated i thof predictive distributions subject to reliability’ intduced
following. Following Egs. (5) and (6), the resulting pretilte  in [33]. Reliability corresponds to the probabilistic cectness
densities are then defined by a set of 18 quantile forecagifthe forecasts, while sharpness relates to the concimtrat
whose nominal proportions range from 5% to 95%, with 5%f probabilities, or alternatively to their ability to prime a
increments, except for the median. Note that the resultisguation specific assessment of forecast uncertaintyus-ec
predictive densities are censored densities, meaningithagiven first to reliability, followed by an assessment of the
the forecasted probabilities of events outside of the rasfge sharpness of predictive distributions, through evaluatid
possible generation are not null, such probabilities aem ththeir overall skill.
transformed into a probability mass on the related bound, as
discussed in [30], [31] for instance. — .

It has been explained in Section II-A that emphasis R Reliability evaluation
here on nonparametric central prediction intervals. Frbm t Following [32], reliability is evaluated as a form of proba-
example of Fig. 2, one clearly sees that interval forecadigistic correctness with reliability diagrams giving tldevia-
are not symmetric around the point forecasts, and that fion between observed.{(*)) and nominal ¢) proportions of
low nominal coverage rates, they may not even cover theguantile forecasts — the closest to zero the better. Remembe
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Fig. 3. Reliability diagrams evaluating the reliability pfobabilistic forecasts obtained when adapted resamdiagplied to the 3 different point prediction
methods M1, M2 and M3. Figures in the legend correspond t@Weeage absolute deviation from the ideal case. Examplganson is made with the case
where probabilistic forecasts originate from the appiwatof time-adaptive quantile regression to the point fasts of M2.

that these nominal proportions range from 5% to 95%, withilistic forecasting method are. In parallel, the averdusoéute
5% increments, except for the median. In practice, if foegsi deviation values are contained between 0.32% and 0.5%. Such
on the quantile forecasts with nominal proportion this small differences among deviations may not obviously be

deviation is defined as due to lower and higher reliability of probabilistic forests,
(@) but may be due to sampling and serial correlation effects
al® — o = ~ o (38) instead [34]. In general, the reliability of the intervalsutd

be expected to be lower for low and high nominal proportions
where NV is the total number of observations, whité®) is since it is harder to model the very tails of error distribus.
the number of hits, that is, the number of times wind powdthis is not the case here. One notices however a general trend
observations actually lie below the quantile forecastshwitvhich is that quantiles for proportions below 50% tend to
nominal proportiorv. The reliability diagrams employed herebe overestimated while those above the median tend to be
summarize these deviations for the various nominal propamderestimated. Prediction intervals are slightly toaomaron
tions of the quantile forecasts defining predictive distiibns. average. This goes along our comment in Section |I-B such

Fig. 3 depicts the reliability evaluation results for pietilie  that methods of estimating future uncertainty usually ety
distributions obtained after application of adapted rgdarg past experience of a given model performance and theretore d
to point forecasts issued by M1, M2 and M3, and after appiiot integrate the additional uncertainty of predicting roiata.
cation of time-adaptive quantile regression to point fasgs In a global manner, it may still be appraised that evaluated
issued by M2. These reliability diagrams are for the wholgrobabilistic forecasts appear sufficiently reliable (ahdbs
forecast length. This means that all probabilistic forecésr whatever the point forecasts used as input to adapted resam-
the various look-ahead times are indifferently used focwaal pling), thus allowing us to move on to sharpness evaluation.
tion of deviations between nominal and observed propostioimportant point is that both adapted resampling and quantil
In Fig. 3, thez-axis gives the nominal probabilities of quantileregression appear to have a similar, and acceptable, Iével o
forecasts, and the various curves display the deviation (ieliability.
percent) from ‘perfect reliability’, as expressed by Eqg8)3
This ideal situation of perfect reliability is representadthe .
dash-dot straight line. Then, a 1%-deviation for the qlhantic' Sharpness evaluation
with nominal proportion 20%, for the example case of M3 in When reliability of probabilistic forecasts has been assés
Fig. 3, actually shows that the observed proportion is etpuala sharpness evaluation of these forecasts can be performed
21%. Figures in the legend correspond to the average absolhrough the study of their overall skill. Skill encompassds
deviation from the ideal case, over the range of nominakpects of probabilistic forecast quality. Following [38)e
proportions (and also over the forecast length). They can $kdll of predictive distributions is studied based on a pmop
seen as the overall probabilistic bias of these probaicilisscoring rule which, for a given predictive distributig‘h%‘t
forecasts. and corresponding realizatiap, ;, writes

One observes from Fig. 3 that the deviations from perfect m
reliability are contained in at1.5% envelope whatever the So(fwk‘t,yt%) — Z (g(ai) _ ai)(yt% _ dt(iz)lt), (39)

considered point prediction method, and subsequent proba- =
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Fig. 4. Skill score as a function of the horizon, for probmhit forecasts obtained when adapted resampling is appiiehe 3 different point prediction
methods M1, M2 and M3. Example comparison is made with the edsere probabilistic forecasts originate from the apgibicaof time-adaptive quantile
regression to the point forecasts of M2.

with £(@) an indicator variable for the quantile forec@ﬂjc)lt, over the whole forecast length, highly significant for short
being equal to 1 if the observation is beb},’gpik)t, and o look-ahead times, and steadily decreasing for further.ohes
otherwise. Over an evaluation set wilfi forecast ‘series, the interesting point is that the choice of a given point prediet
above scoring rule can be applied to evaluate the skill gyethod as input has an influence on the quality of the resgultin

predictive distributions as a function of the look-aheadeti predictive distributions. It appears that considering Mads

k, with to better probabilistic forecasts for the very first lookeatd
1 & . times, whereas considering M2 is better for further ones.
Sg = N ZSCl(ft+k|t, Yetk)- (40) One also sees that the difference between adapted resgmplin
t=1 and quantile regression is negligible (the lines are almost

This scoring rule is positively oriented — the higher thettet top of each other). This is while adapted resampling has the
and admits a maximum value @f for perfect probabilistic advantage of being model-free, and only requiring a singfle s
predictions. up to produce full predictive densities, in contrast to ttg&e 1
In order to appraise the actual skill of predictive distrimodels that are needed to be proposed for quantile regressio
butions, they should be evaluated with respect to a relevdhe. one for each of the quantiles).
benchmark. The most common benchmark for probabilisticNote that since predictive distributions actually relate t
forecasts of weather variables and weather-related psesesstimates of the error distributions of the point forecaats
(such as wind power generation) is climatology. The clirhatopoint prediction method with sharper error distributionsl w
ogy predictive distribution is given by the distribution all Yyield sharper probabilistic forecasts. This comment iscfrse
available observations, and is thus a unique and unconditiovalid only if the prediction interval estimation approachsh
probabilistic forecast. Note that the climatology protiabc a real ability to reflect the error distribution associatedat
forecasts are by definition probabilistically reliabledénoting given point forecast. For the test case of the present pager,
by S¢ the scoring rule value for climatology for a given look-0bserve a significant difference in skill among the probsti
ahead timek, one then defines the skill score, forecasts generated from the various point forecasts used a
sd _ Sg, input. And in view of comparison with other application
—+ =, (41) test cases documented in [19] for instance, it appears that
@ one may also expect significant differences in the skill of
giving the improvement (in percent) of the probabilisticfe probabilistic forecasts depending of the site charadiesisin
casting method considered over the climatology benchmarierms of terrain, size of the wind farm(s), offshore or onrgho
Fig. 4 depicts the evolution of this skill score as a functién conditions, etc., which can be explained by inherently bigh
the look-ahead time, for predictive distributions obtaineth or lower predictability at this particular site.
adapted resampling (with input the point forecasts from M1,
M2 and M3) and with quantile regression (with input from V. DISCUSSION ONOPERATIONAL ASPECTS
M2). The skill score steadily decreases with the look-aheadThe developed approach has been implemented into an
time, meeting the general statement that it is harder toigiredbperational module and integrated in the ANEMOS wind
for lead times further in the future, as is also the case famtpo power forecasting system developed in the frame of an EU-
forecasts. The improvements over climatology are positivended project under the same [35]. This module produces

SSg. = 100
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prediction intervals for point predictions coming fromsdécal Danish wind farm, while it has been explained that other
wind power prediction models or for the combination of suckvaluation results exist for a number of offline case-stdie
predictions. The advantage of this two-step approach is ttee well as for a large number of operational ones. This is due
it permits to maintain the classical deterministic physima to the fact that adapted resampling is integrated in the f@irm
statistical models within the modeling chain. These poit module in the ANEMOS wind power forecasting platform,
forecasting models are especially designed and traineldaian installed and operated in a number of European countries
the result of several years of research and improvements. &md in Australia. Adapted resampling appears to be (prob-
alternative approach would be a one-step approach where dbdistically) reliable. In parallel, the sharpness of giotive
modeling chain contains only one model that directly getesra distributions issued from this method is bounded by theityual
the whole probability density function of wind productioorf of the point predictions they complement. This follows from
each look-ahead time. This two-step approach is also btraigthe fact that probabilistic forecasts are based on the riragel
forwardly applicable to produce prediction intervals foiet of the point forecast error distributions. The sharper ¢hes
aggregated production of a group of wind farms which is oftatistributions, the sharper the resulting probabilisticefrasts.
an operational requirement. This is done by considering ths a consequence, it may be advised that future methods for
aggregated wind power prediction as input to the uncestairpirobabilistic forecasting of wind power generation do redyr
module. Such a solution is preferable to that consisting oh point forecasts as input, but directly consider the madel
generating probabilistic forecasts for each individuahavi of predictive distributions from meteorological condit®
farms and then aggregating the estimates. This is becaisse thlt is unlikely that in the near future probabilistic foretas
aggregation would then correspond to summing nonparanetsill be fully integrated into the wide range of decision-nivak
densities of interdependent random variables (both djyatigproblems related to wind power management, trading, and
and temporally), which can be a complex task. Note thattegration into the electricity network. This is even tigbu
some developments towards the understanding and modeiingan be shown that for a large class of decision-making
of complex temporal and spatial interdependence strudtureproblems, decisions based on traditional point forecasktg o
wind power forecast uncertainty have been initiated in [36] prove to be suboptimal. Efforts in that direction will have
The module has been operationally applied to several realbe concentrated on appropriate research, demonstmaftion
world cases including SONI, the TSO of Northern Irelandesulting benefits, and transfer of knowledge via trainifig o
UK, and the Market and System Operator of Australia AEM@elevant personnel.
(ex Nemmco), as well as others. In these cases prediction
intervals are produced for all wind farms in the area of
these operators as well as for several aggregation levels. A )
important issue that appears in an operational environisent The authors would like to thank Elsam (now part of DONG
how to handle situations where there is ‘down-regulatign’ &nergy) for providing the power and meteorological dateduse
power (i.e. controlled reduction of the wind farm outputedu@S input. The authors are also grateful to Ismael Sancheéz an
to network or other constraints. The consideration of sutezti Torben S. Nielsen for providing the Sipreolico and WPPT
maintenance of wind turbines within a wind farm is also ROiNt forecasts, respectively. Jan K. Mgller provided thabp
challenge. A solution can be to proceed with a simple scali@gilistic forecasts based on time-adaptive quantile s=joe
of the prediction intervals, this scaling being influenced bUSed in the application results. Four anonymous reviewers a
the operational constraints, or by the number of wind tubin finally acknowledged for their comments and suggestions.
out of order. In practice, this translates to considerirag the
wind farm (or group of wind farms) has a potentially varying REFERENCES
nominal capacity.
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