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Abstract

Materials presenting a negative Poisson’s ratio (auxetics) have drawn attention for the past two decades, especially
in the field of lightweight composite structures and cellular materials. Studies have shown that auxeticity may result
in higher shear modulus, fracture toughness and acoustic damping. In this work, three auxetic periodic lattices are
considered. Elastic moduli are computed and anisotropy is investigated by the use of finite element method combined
with numerical homogenization technique.
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1. Introduction

In the case of isotropic elasticity, mechanical behavior is described by any couple of variables among these:
Young’s modulus E, Poisson’s ratio ν, bulk modulus K and Lamé’s coefficients λ and µ (also referred to as G, shear
modulus). Poisson’s ratio is defined as the ratio of the contraction in the transverse direction to the extension in the
longitudinal direction. Thermodynamically, ν lies between −1 and 0.5. Most materials naturally present a positive
Poisson’s ratio, although negative Poisson’s ratio materials, or auxetics [1], have been engineered since the mid-1980s
[2–11]. Such materials have been expected to present enhanced mechanical properties such as shear modulus and
fracture toughness [12], indentation resistance [13–15] but also acoustic damping [16–18]. Besides, ν < 0 allows
synclastic curvature of plates [19], thus enabling the manufacture of doubly-curved sandwich panels without core
buckling. Moreover auxetic foams seem to provide better resistance to crash than conventional cellular materials [20].

This paper deals with the numerical determination of the effective elastic tensor components of three auxetic
periodic lattices, including a new transversely isotropic microstructure. Finite element method (FEM) coupled with
3D periodic homogenization technique is used to compute elastic moduli and characterize anisotropy. Comparison
between the architectured microstructures is made and their use in terms of design and engineering applications is put
into perspective.
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2. Numerical homogenization

In this work, numerical homogenization consists in determining effective mechanical properties over a unit-cell
(defined by its periodicity vectors vi ) with periodic boundary conditions (PBC) using FEM [21–23]. Such an approach
is quite popular within the mechanics of composites community, while scarce in the auxetics research.

The macroscopic stress and strain tensors Σ∼ and E∼ are defined by the spatial averages:

Σ∼ =̂ σ∼  =
1
V


V
σ∼ dV E∼ =̂ ε∼ =

1
V


V
ε∼ dV (1)

PBC over the unit-cell give displacement field u such as:

u = E∼ .x + v ∀x ∈ V (2)

with v periodic fluctuation. It takes the same value at two homologous points on opposite faces of V , whereas the
traction vector t = σ∼ .n takes opposite values, n being the normal vector. By applying either macroscopic strain or
stress, one can compute the effective elastic moduli fourth-rank tensor C≈ and compliance tensor S≈ of materials:

Σ∼ = C≈ : E∼ E∼ = S≈ : Σ∼ (3)

3. Sandwich core microstructures

3.1. Hexachiral lattice
This chiral microstructure was first proposed by Lakes in 1991 [6], then fabricated and studied by Prall and Lakes

in 1997 [9] and Alderson et al. in 2009 [11]. Based on the the parameters defined in [11], cell geometry can be
described this way: the circular nodes have radius r, the ligaments have length L, and both have in common wall
thickness t (cf. Figure 1(a)) as well as depth d, which in our case is considered infinite due to periodicity conditions.
Hence, three dimensionless parameters are defined: α = L/r, β = t/r and γ = d/r. On Figure 1(b), α = 5, β = 0.1
and γ → +∞. These parameters correspond to a volume fraction of 7%. The 6–fold symmetry provides transverse
isotropy.

3.2. Tetra-antichiral lattice
This microstructure was proposed and studied by Alderson et al. in 2009 [11]. Cell geometry can be described

exactly as for the hexachiral lattice (cf. Figure 2(a)). Here, α = 10, β = 0.25 and γ → +∞ (cf. Figure 2(b)). Volume
fraction is 6%. The cell presents 3 orthogonal planes of symmetry, which corresponds to orthotropic elasticity.

3.3. Rotachiral lattice
This chiral microstructure has been designed for this work based on ideas from [10] and [9], the aim was to study

the impact of ligaments geometry on auxeticity for chiral lattices. Cell geometry is similar to the hexachiral case,
except for the straight ligaments that have been replaced by circular ones with diameter D (cf. Figure 3(a)). Another
dimensionless parameter is defined: δ = D/r. As shown on Figure 3(b), δ = 2, β = 0.1 and γ → +∞. Volume fraction
is 7%. The 6–fold symmetry provides transverse isotropy.

4. Numerical results

Elastic moduli are computed for a comparable volume fraction (VV ∼ 0.06–0.07) using Z-Set FEM software1

(Figures 5, 4.2 and 4.3). An isotropic bulk material with Young’s modulus E0 = 210000 MPa and Poisson’s ratio
ν0 = 0.3 is considered. Components are expressed in MPa using Voigt notation. νeff is the effective Poisson’s ratio,
E = Eeff

E0×VV
characterizes the elastic modulus along the traction vector l . µ = µeff

µ0×VV
is the normalized shear modulus,

with µ0 =
E0

2(1+ν0) . Angles θ and φ are used to describe the anisotropy, as shown on Figure 4. In-plane elastic properties
(functions of θ) are studied for all lattices (Table 1 and Figure 8(d)), although their use in engineering applications
might involve out-of-plane loading. Hence, νeff, E and µ were also plotted against φ (Figures 8(a), 8(b) and 8(c)).

1http://www.nwnumerics.com/
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(a) Hexachiral unit-cell (b) Hexachiral lattice

Figure 1: Periodic cell with geometric parameters (left). Hexachiral lattice with unit-cell (blue) and periodicity vectors v1 and v2 (red).

(a) Tetra-antichiral unit-cell (b) Tetra-antichiral lattice

Figure 2: Periodic cell with geometric parameters (left). Tetra-antichiral lattice with unit-cell (blue) and periodicity vectors v1 and v2 (red).

(a) Rotachiral unit-cell (b) Rotachiral lattice

Figure 3: Periodic cell with geometric parameters (left). Rotachiral lattice with unit-cell (blue) and periodicity vectors v1 and v2 (red).

Figure 4: Definition of angles θ and φ with respect to the plate.

4.1. Hexachiral lattice

Transverse isotropy is verified since C11−C12
2 = C66. Components were used to obtain the in-plane properties

gathered in Table 1. νeff is similar to the value from [11], while our estimation of the normalized Young’s modulus
E is higher. This is discussed later. Figure 8(a) shows an increase of E when the material is streched out-of-plane.
Poisson’s ratio νeff is always negative, except for φ = 0 and φ = π where it takes the bulk material value 0.3.
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Normalized shear modulus µ can be either higher or lower than in-plane value depending on angle φ.

[C≈ ] =



231 −193 114 0 0 0
−193 231 114 0 0 0
114 114 15731 0 0 0

0 0 0 2271 0 0
0 0 0 0 2271 0
0 0 0 0 0 212



Figure 5: Effective elastic moduli tensor for the hexachiral lattice

4.2. Tetra-antichiral lattice

While its geometry is orthotropic, the tensor given below indicates quadratic elasticity (invariant by rotation of π2
in the plane). The small dissymmetry is negligible at the scale of the homogenized material. Figure 8(d) shows that in
the cell’s principal directions, νeff is similar to the value from [11], but the normalized Young’s modulus E is higher.
Besides, µ fluctuates over 4 decades and reaches its minimum in the νeff is close to −1. νeff is negative for short angle
intervals. E is varying over one order of magnitude depending on θ. Figure 8(c) is very comparable with Figure 8(a)
in terms of values and angles. E is higher than or equal to in-plane values. νeff is always negative, except for φ = 0
and φ = π where it takes the bulk material value νeff = 0.3. µ fluctuates more with θ than with φ.

[C≈ ] =



1365 −1329 10.9 0 0 0
−1329 1365 10.9 0 0 0
10.9 10.9 12613 0 0 0

0 0 0 1978 0 0
0 0 0 0 1978 0
0 0 0 0 0 2.01



Figure 6: Effective elastic moduli tensor for the tetra-antichiral lattice

4.3. Rotachiral lattice

Elastic moduli fourth-rank tensor components for the rotachiral lattice are given below. As for the hexachiral
lattice, transverse isotropy is verified by the following relationship C11−C12

2 = C66. The in-plane moduli and Poisson’s
ratio are listed in Table 1. Normalized elastic moduli E and µ are about one order of magnitude lower than for the
hexachiral lattice. Figure 8(b) shows an increase of E when the material is streched out-of-plane. Poisson’s ratio νeff

is always negative, except for φ = 0 and φ = π where it takes the bulk material value 0.3. Normalized shear modulus
µ is always higher than its in-plane counterpart.

[C≈ ] =



11 −2.45 2.56 0 0 0
−2.45 11 2.56 0 0 0
2.56 2.56 16173 0 0 0

0 0 0 1757 0 0
0 0 0 0 1757 0
0 0 0 0 0 6.72



Figure 7: Effective elastic moduli tensor for the rotachiral lattice

5. Discussion

Values obtained in this work for E (Table 1) exceed those from [11]. This is due to the boundary conditions of the
FEM problem. With periodicity over displacements and nodal force loading, the loading in [11] correponds to a static
uniform boundary conditions (SUBC) micromechanical problem, which is known for underestimating elastic moduli
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Hexachiral Rotachiral
νeff −0.83 −0.25
E 4.45 × 10−3 6.46 × 10−4

µ 3.50 × 10−2 1.08 × 10−3

Table 1: In-plane Poisson’s ration and normalized elastic moduli for hexachiral and rotachiral lattices

(a) Hexachiral lattice (θ = π2 ) (b) Rotachiral lattice (θ = π2 )

(c) Tetra-antichiral lattice (θ = π2 ) (d) Tetra-antichiral lattice (φ = π2 )

Figure 8: νeff (solid line, red), E (dotted line, blue) and µ (dashed line, green) as functions of angles φ and θ

[21]. On the other hand, the PBC problem gives exact results for an infinite medium. The hexachiral, rotachiral
and tetra-antichiral lattices all present a strong anisotropy when loaded out-of-plane (cf. Figures 8(a), 8(b) and 8(c)).
Extreme Poisson’s ratio value of −17 can be reached for the rotachiral lattice (Figure 8(b)). It is worth noting that the
tetra-antichiral lattice presents a negative in-plane Poisson’s ratio only for quite small angle intervals. Interestingly,
νeff is always negative when a function of angle φ. The hexachiral and tetra-antichiral lattices show comparable values
in terms of magnitude for normalized elastic moduli as functions of φ. For the same volume fraction, the impact on
mechanical properties from the change in ligaments geometry between hexachiral and rotachiral lattices is critical:
circular ligaments give values which are one order of magnitude lower for both E and µ.

6. Conclusions and prospects

Elastic moduli of three periodic auxetic lattices have been computed using numerical homogenization technique
coupled with FEM. The hexachiral is found to present high in-plane elastic moduli and Poisson’s ratio close to -1. With
its circular (or elliptic) ligaments, the auxetic rotachiral lattice provides a parameter for tuning the microstructure [24]
for specific absorption properties. This lattice can exhibit highly negative Poisson’s ratio when loaded out-of-plane.
The orthotropy of the tetra-antichiral lattice was investigated numerically, showing higher stiffness E in the principal
directions of the cell. For this microstructure, auxetic effects in the plane are restricted to short angle intervals around
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the principal directions. Such lattices can be used in replacement of traditional honeycomb-core for sandwich panels,
especially if produced by extrusion. Samples were made using selective laser melting, a powder metallurgy process,
extending one’s microstructural design spectrum from 2D to 3D. This method has already been used successfully by
others for auxetics [25, 26]. New tridimensional auxetic quasi-isotropic microstructures could be developed using this
technique in the near future. Numerical results will be confronted to experimental data currently being obtained. The
influence of auxeticity on plasticity has to be evaluated. For industrial applications, non-linear phenomena such as
buckling have to be taken into account.
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