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The recrystallized volume fraction of Ti 3Al 2.5V seamless tubes is measured using Electron 

BackScatter Diffraction (EBSD) after annealing under various conditions. Standard tensile 

tests and Contractile Strain Ratio (CSR) measurements are carried out in order to analyze the 

effect of recrystallization on the tensile behavior and the anisotropy of the tubes. The tensile 

tests show anomalous yield-point phenomena, which become stronger when the recrystallized 

fraction is increased. CSR value changes through recrystallization, from 0.8 in the Cold 

Worked Stress Relieved (CWSR) state to 1.1 in the fully recrystallized structure. Orientation 

Distribution Functions (ODF) calculated from X-ray data reveal a decay in the intensity of 

the crystallographic texture as recrystallization advances. This can explain the tendency 

towards isotropy when complete recrystallization is achieved. 

 

Ti-3Al-2.5V alloy is a near alpha titanium alloy widely used for the production of seamless 

tubes destined for the aeronautic industry. The predominant alpha phase has a hexagonal 

structure and can be textured through processing. The cold pilgering process is a widespread 

seamless tube forming operation in which the tube wall thickness and the inner diameter are 
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reduced simultaneously. Tailoring of the mechanical properties in cold pilgered tubes of 

Titanium-base and Zirconium-base alloys is mainly achieved through control of the strain 

paths during the cold working stages. It is now widely accepted that forming operations with a 

high ratio of wall thickness to diameter reduction produce a preferential orientation of the 

basal poles nearly parallel to the radial direction of the tubes which benefits the final 

mechanical properties.
[1,2]

 This fact has promoted the use of Kearns factors as a common 

industrial parameter to quantify the anisotropy of cold-pilgered tubes.
[3]

 Nevertheless, Ti-3Al-

2.5V seamless tubes are mostly employed in the CWSR condition. In industrial practice, some 

recrystallization might take place during the final heat treatment, which has a major effect on 

adjusting the mechanical properties (as the yield stress, the mechanical strength or the total 

relative elongation) to the user requirements. The purpose of this work is to study and explain 

the impact of the parameters of the final heat treatment on the microstructure and 

crystallographic texture of the tubes, and consequently, on their final mechanical properties 

and anisotropy. 

 

Experimental 

 

The Ti-3Al-2.5V (ASTM grade 9) tubes were formed by several cold pilgering passes with 

intermediate heat treatments. After the final pilgering pass, which involved 66% equivalent 

strain, the cold worked tubes were annealed for 120 minutes at different temperatures listed in 

Table 1. In this work, the effect of the heat treatment temperature was characterized through 

the recrystallized volume fraction (Rx) at the end of the heat treatment. Then, the effect of 

recrystallization over the evolution of microstructure, texture, tensile properties and 

anisotropy was analyzed. 
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Table 1. Recrystallized volume fraction, Kearns factors, and texture index values obtained 

after final annealing for 2h at the displayed temperatures. 

Annealing 

temperature 

[K] 

Recrystallized 

vol. fraction 

[%] 

fRD 

[a] 

fTD 

[a] 

fED 

[a] 

Texture 

index J 

- 0 (CW) 0.4354 0.4405 0.1241 3.188 

838 7 0.4528 0.4337 0.1134 3.604 

863 21 0.4408 0.4693 0.0898 4.142 

883 46 0.4381 0.4410 0.1209 2.847 

933 90 0.4699 0.3914 0.1387 1.959 

993 100 0.4356 0.4074 0.1570 1.817 

[a] fRD,  fTD and fED are the Kearns factors,
[3]

 calculated for: RD, the radial direction, TD, the 

tangential direction and ED, the elongation direction. 

 

 

For texture characterization, the tubular samples were cut to appropriate size (2 cm long), and 

then chemically thinned to achieve the final thickness allowing elastic flattening. The 

macroscopic coordinate system is then: ED –elongation direction, TD – tangential direction, 

and RD – radial direction. All the textures were determined from 5 incomplete pole figures 

measured by X ray diffraction using Co-Kα radiation. The Orientation Density Function 

(ODF) was computed using the MTEX method proposed by Hielscher and Schaeben.
[4]

 

 

Microstructures were characterized using Electron BackScatter Diffraction (EBSD) in 

particular to assess the recrystallized volume fraction. EBSD samples were cut along the 

longitudinal direction and through one of the tube diameters. The surface normal to the 

circumferential direction was then mechanically polished and finally electropolished using a 

10% HClO4-90% CH3OH solution at 17 V and 10°C. EBSD mapping was performed with a 

step size of 0.2 µm in a JEOL 6500F FEGSEM equipped with a HKL EBSD system. To 

ensure the statistical relevance of the recrystallized volume fractions, a minimal area of 18000 

µm² was scanned for each sample. 
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The following EBSD data processing procedure was designed using the Channel5 software. A 

grain was defined as a group of at least 5 neighboring indexed points having the same crystal 

orientation within a tolerated angular deviation of 5°. Also, any given grain was considered as 

recrystallized if its internal mean misorientation was less than or equal to 1.5°, which is the 

maximum measured value of intragranular mean misorientation for the fully recrystallized 

sample. The recrystallized volume fraction was then calculated as the fraction of points in an 

EBSD orientation map belonging to the recrystallized grains. 

 

Tensile tests were conducted at ambient temperature with a cross-head speed maintained at 5 

mm/min, so that the initial strain rate was 2.4 × 10
-4

 s
-1

. CSR measurements were carried out 

in order to evaluate the anisotropy of the tubes. The CSR is defined as the ratio of 

circumferential to radial strain after a given tensile strain (3.5%) as described in the SAE AS 

4076 specification.
[5]

 

 

Results and Discussion 

The estimated recrystallized volume fractions obtained after the heat treatments are displayed 

in Table 1. 

 

Microstructure Evolution. EBSD pattern quality maps (as evaluated here by the band 

contrast value provided by the Channel 5 software) allow one to visualize the microstructural 

changes that occur with recrystallization. Figure 1 shows the pattern quality maps for the 7% 

Rx, 46% Rx and fully recrystallized conditions. In the 7% Rx condition, the pattern quality is 

low because of the crystal distortions caused by the forming process. Nevertheless, a few 

recrystallized grains can be recognized. At the 46% Rx condition, some grains have nearly 

achieved the final grain size, while other grains are smaller. The size distribution may be 
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explained by the nucleation kinetics, new grains appearing sooner or later according to the 

local stored energy level. In the fully recrystallized condition, the microstructure is 

nevertheless quite homogeneous, with an average grain diameter of 4 m. 

 

 

Fig. 1. EBSD Pattern quality maps of (a) 7% Rx, (b) 46% Rx and (c) fully recrystallized Ti-

3Al-2.5V tubes. 

 

 

Tensile Behavior. Examples of the true stress - true strain curves plotted for each of the 

recristallization conditions are shown in Figure 2a. For tubes with Rx over 20% a marked 

yield point phenomenon (plateau) was observed. This can be explained by the advance in 

recrystallization and the consequent decrease of the initial dislocation density, which is then 

suddenly augmented at the beginning of plastic deformation. In order to accommodate the 

imposed strain rate, the speed of the mobile dislocations, which is a strong function of the 
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stress, must decrease, and the yield point phenomenon appears. The so-called Lüders 

elongation increased with the recrystallized volume fraction (Figure 2b).  

 

 

Fig. 2. a) Examples of the true stress–true strain curves obtained for the different 

recrystallization conditions. b) Zoom to the yield point phenomena, observed for samples with 

more than 20% recrystallized volume fraction. 

 

Because of the reduced ductility, CSR measurement was not possible in the cold worked 

condition. The CSR values for the other conditions show an increase of 30% between the least 

(7%) and the greatest (100%) recrystallized specimens, as shown in Figure 3a. 

 

The values of yield point, mechanical strength and relative total elongation, measured at 

different degrees of recrystallization, are plotted in Figure 3b. As expected, the mechanical 

strength and the yield point of the tubes decreased with increasing recrystallization. Both 

values were found to be strongly correlated with the recrystallized volume fraction, showing a 

very good reproducibility of the tensile flow stresses on tubes over tubes after same heat 

treatment. As for the total relative elongation, the results showed a greater dispersion, this 

might be explained by complications related to the tensile test; because no notch was made on 

the tubular samples, necking did not always occur in the gauge length measured by the 
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extensometer. Nevertheless, the observed tendency is the usual increase in ductility which 

comes with recrystallization, as a consequence of the lower dislocation density. 

 

Fig. 3. a) Evolution of the texture index and CSR during recrystallization. b) Elongation (El), 

mechanical strength (Rm) and yield point (Re) for the tensile-tested samples with different 

recrystallized fractions. 

 

Texture evolution. Figure 4 shows that the textures of all investigated samples (cold worked 

and annealed) have the orientation density maxima at the same position. The basal poles are 

spread in the plane normal to the axial direction, with a higher density at 60° from the radial 

direction, and crystals preferentially exhibit a <10-10> direction aligned with the axial 

direction. Only the texture strength decreases when recrystallization progresses over 45% Rx. 
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Fig. 4.          And        pole figures of the a) cold worked, b) 7% Rx, c) 21% Rx, d) 46% 

Rx, e) 90% Rx and f) fully recrystallized conditions. The same grey-scale applies for all pole 

figures. 

 

The texture index gives a description of the sharpness of the texture, it is defined as follows,
[6]

 

 

                      (1) 

 

Where f(g) is the orientation density function and g the orientation. The evolution of the 

texture index during recrystallization is shown in Figure 3a and the calculated values are 

specified in Table 1. J increases at the very beginning of recrystallization, and then decreases 



    

 9 

steadily as recrystallization progresses. This result shows that J is a suitable parameter to 

evaluate the advancement of the recrystallization process in Ti-3Al-2.5V tubes, at least in the 

particular situation where the texture type does not change. 

As illustrated by Figure 4b and c, the rolling texture is reinforced at 7% Rx and 21% Rx 

which is in agreement with the texture evolution observed in commercially pure titanium at 

the beginning of recrystallization.
[7] 

Further recrystallization leads on the contrary to a texture 

strength decrease (Figure 4d, e and f), but the final texture remains close to the deformation 

texture. In particular, the well-known 30°<0001> rotation that describes the texture change 

which is classically observed during annealing of hcp metals, does not occur here. It has been 

shown that this texture evolution during annealing of strongly cold rolled low alloyed titanium 

sheets, leading to the improperly so-called “recrystallization texture”, is actually mainly 

controlled by grain growth.
[8]

 In the present study, grain growth was very limited under the 

applied conditions, which probably contributes to the texture stability. In fact, Ti-3Al-2.5V 

contains some dispersed β phase, stabilized by the vanadium content. The β phase is known to 

reduce the rate of grain growth in alpha or near-α titanium alloys,[9] which may in part explain 

the low average grain size obtained in the fully recrystallized condition. 

 

The Kearns factors, which give a description of the amount of basal poles aligned in each 

direction, were calculated from the (0002) pole figures according to Anderson et al.
[10]

 Those 

calculated values, shown in table 1, do not vary much, and therefore cannot by themselves 

explain the observed CSR increase.  

 

The low values of the CSR at the initial condition are a consequence of the inclination of the 

basal pole towards the tangential direction.
[1,2]

 During recrystallization, the evolution of the 

CSR responds to the same phenomenon observed for the texture index J, also plotted on 

Figure 3a. The weak value of J in the fully recrystallized condition describes the smoothness 
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of the final texture, which is equivalent to saying that the material has lost much anisotropy, 

and, consequently CSR comes closer to the isotropic value of 1. This explains the measured 

tendency of the material towards an isotropic behavior as recrystallization advances. 

 

Conclusions 

1. The variations in the CSR taking place during recrystallization are the result of the 

weakening of the crystallographic texture, which can be quantified by the texture 

index J. 

2. Since the texture changes occurring during recrystallization in alpha titanium alloys do 

not affect the orientation distribution of basal poles, Kearns factors are not suitable to 

describe the observed evolutions. 

3. Recrystallization is associated with the appearance of yield point phenomena and 

Lüders elongation in strongly annealed Ti-3Al-2.5V tubes. 

4. Besides the reported yield point phenomena, the tendencies observed for tensile 

behavior respond to the usual consequences of recrystallization in alpha titanium 

alloys. 
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