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Abstract 

The rheological behavior of an ultra high strength (UHS) steel is investigated by Gleeble 
tensile tests at low deformation rates and high temperature, from 1200 oC up to solidus 
temperature. Results show that large thermal gradients exist in specimens, resulting in 
heterogeneous deformation, which makes difficult the identification of constitutive parameters 
from the directly deduced nominal stress-strain curves. The advantages of an inverse identification 
method - associating a direct finite element model of Gleeble tests and an optimization module - 
are demonstrated in such conditions. The constitutive parameters identified by this technique have 
been successfully applied to additional tests, more complex in nature than those used for the 
identification of parameters. However, such tests combining successive loading and relaxation 
stages have revealed some limitations of the considered constitutive model. 

Keywords：constitutive model, inverse modelling, numerical identification, high temperature, 
UHS steel, Gleeble 

 

 
NOMENCLATURE 
 
A  unknown parameter vector 
A  material constant (s-1) 
E  elastic Young’s modulus (N m-2 or GPa) 
I  the identity tensor 
J  electrical current density vector (A m-2) 
Jimp  prescribed electrical current density (A m-2) 
Pv

elec volume heat source due to Joule effect (resistance heating) (W m-3) 
elec

interfaceP  interface heat source due to Joule effect (resistance heating) (W m-2) 

Q  apparent activation energy (J mol-1) 
R  perfect gas constant (J mol-1 K-1) 
S0  original cross-section area of the specimen (m2) 
T  stress vector (N m-2 or MPa) 
T  temperature (oC or K) 
Tenv environment temperature (°C or K) 
Vimp  imposed velocity of the mobile grip (m s-1) 
b thermal effusivity (J m-2 K-1 s-1/2) 
cp  specific heat (J kg-1 K-1) 
ez  unit vector in specimen axial direction 
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h  specific enthalpy (J kg-1) 
helec  effective electrical transfer coefficient (Ω-1 m-2) 
hc  heat transfer coefficient at interface between specimen and grips (W m-2 K) 
hth_eff effective heat transfer coefficient at the surface of specimen between grips, or 

at the surface of grip in contact with framework (W m-2 K) 
L specific latent heat (J kg-1) 
l0  length of the effective working zone (m) 
ln  boundary length associated with boundary node n (m) 
m  strain rate sensitivity coefficient 
n  outward unit normal vector 
n  strain hardening coefficient 
p  pressure (N m-2) 
qimp  imposed heat flux density (W m-2) 
re  radial coordinate of the element center (m) 
rn  radial coordinate associated with boundary node n (m) 

ssss  deviatoric stress tensor (N m-2) 
tms  the starting time of the mechanical tension    
v  velocity vector (m s-1) 
vg  grip velocity vector (m s-1) 
∆l  elongation of specimen (m) 
∆re  element dimension along radial direction (m) 
α  material constant (N-1 m2 or MPa-1) 
ε�  total strain rate tensor (s-1) 

el
ε�  elastic strain rate tensor (s-1) 

th
ε�   thermal strain rate tensor (s-1) 

vp
ε�   irreversible (viscoplastic) strain rate tensor (s-1) 
ε�   von Mises equivalent strain rate (s-1) 

nomε�  nominal strain rate (s-1) 

εnom  nominal strain 
λ   thermal conductivity (W m-1 K-1) 
ρ  density (kg m-3) 
v  Poisson’s ratio 
φ   electrical potential (V) 

σelec  electrical conductivity (Ω-1 m-1) 
σ   von Mises equivalent stress (N m-2) 
σσσσ  Cauchy stress tensor (N m-2) 
σnom nominal stress (N m-2) 
σzz  axial stress component (N m-2) 
χp  penalty coefficient 
Ψ   cost function 

 

1. Introduction 

Various defects in as-cast products are often encountered in shape or continuous 
casting production. In industrial practice, hot tearing is a frequent defect (also called 
solidification cracking), which occurs in the end of the solidification process, at very 
low liquid fraction. Hot tears initiate just above solidus temperature in the mushy zone 
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when it is subjected to a tensile state [1]. Such defects, either near the surface or in the 
core part of the as-cast products, cannot be eliminated by post thermo-mechanical 
treatments. For the prediction of hot tears or hot cracks, many hot tearing 
“macroscopic” criteria have been proposed mostly involving critical stress [2], critical 
strain [3-5] or critical strain rate [6]. Therefore, the mathematical modeling of the 
formation of hot tears and cracks in cast products is a complex task, which requires in 
particular a good knowledge of the constitutive equations and parameters of the 
material especially at high temperature. 

Experimental studies of the rheological behavior of non-ferrous metals have been 
reported in literature for many years. On the contrary, there are quite few papers 
dealing with the characterization of steels at very high temperature, namely over 1200 
oC and up to the mushy state. The difficulties are mainly caused by the very high level 
of steel melting point in comparison with non-ferrous metals like aluminum alloys, 
which demands strict requirements for the experimental devices. The GleebleTM,1 
thermo-simulator systems are efficient tools to the subject, as they provide means for 
characterizing mechanical properties of metals at high temperature, under vacuum, 
and along complex thermal-mechanical testing paths. Regarding parameter 
identification for steel at very high temperature, low strain rate and low strain, it has 
been achieved by using the force-displacement curves recorded on Gleeble 
thermo-simulators, under the assumption of uniform stress, strain and strain-rates in 
the deformed region of the specimen [7, 8]. However, it should be noted that as reported 
in literature [7-9], thermal gradients always exist at high temperature in Gleeble-type 
specimens. Because the mechanical properties of steel are temperature dependent, 
such thermal gradients are the source of deformation heterogeneity in specimens. As a 
consequence, the estimation of strain in the "deformed region" is somewhat arbitrary. 
An accurate analysis of Gleeble tests, therefore, should be conducted by means of the 
numerical modelling of such tests, instead of relying on usual assumption of uniform 
stress, strain and strain rate in the effective deformation zone of the specimen. Based 
on an accurate reliable direct numerical modelling of Gleeble tests, inverse methods 
are efficient tools to evaluate the interesting constitutive equations and identify the 
unknown parameters. Hojny and Glowacki [10, 11] developed such an inverse numerical 
method to identify constitutive parameters for steel from Gleeble compression tests 
under high strain and strain rate, which was appropriate for semi-solid processing 
such as thixoforming. In the present work, the rheological behavior of an UHS steel is 
investigated by Gleeble tensile tests at high temperature from 1200 oC up to solidus 
temperature, under small strain rates (< 10-2 s-1) and strains (< 5%). An automatically 
inverse numerical identification method, involving the direct coupled 
electrical-thermal-mechanical modelling of Gleeble tests, is set up and used for the 
identification of the constitutive parameters under such conditions, in view of 
application to the solidification context, including the prediction of hot tearing 
initiation. 

 

2. Experimental Procedure 

An ultra high strength (UHS) steel is studied in this paper, the composition of 
which is: 0.16 wt%C, 0.22 wt%Si, 1.89 wt%Mn, 0.18 wt%Cr, 0.02 wt%Ti, <0.02 
wt%P, <0.013 wt%S, and the solidus temperature is 1437 oC. Cylindrical tensile 
specimens with 10 mm diameter and 120 mm length (Figure 1a) have been tested 
                                                        
1 �������������	�
����	����	����	������������������������������������������������� �!"��#$%%&&&'
������'��(�
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using a Gleeble 1500D thermo-mechanical simulator, which is schematically shown 
in Figure 1b. 

The specimen is rapidly heated by resistance heating, with a regulated alternate 
current (AC) being introduced into the specimen through the copper grips. As shown 
in Figure 2, in a first step, the specimen is rapidly heated up to 1050 oC with a heating 
rate of 15 oC/s and maintained at this temperature for one minute. In a second step, it 
is heated up to the testing temperature (at 2°C/s), and maintained at the testing 
temperature for one minute before loading. During the whole testing period including 
heating and mechanical loading, the input AC is then monitored according to the 
temperature measured by the thermocouple welded on the surface of the specimen, at 
mid-length position (TC0 in Figure 1b). In the following parts of the paper, in the 
absence of complementary information, the temperatures that are mentioned are those 
measured or predicted at this location TC0. To prevent oxidation, the specimen is 
placed in the vacuum chamber with 5×10-4 torr (about 0.067 Pa). A transparent 
quartz tube is used to cover the specimen surface for supporting the possible melt of 
the working zone. 

In order to get the knowledge of the temperature distribution in the specimen, 
temperatures are continuously measured at several locations in specifically dedicated 
tests (see Figure 1a): 

o Along the surface of the specimen, at three locations: mid-length (TC0), 7.5 
mm and 10 mm from center (TC1 and TC2, respectively). This provides 
information on the axial temperature gradient. In addition, the temperature 
measurement in position TC0 is used all along the test for the monitoring of 
the electrical input. 

o In core center, on the symmetry axis, in the mid transverse section of the 
specimen (TC3). By comparison with TC0, this gives access to the radial 
temperature gradient. 

After tms (in Figure 2) that denotes the starting time of tension, the specimen is 
pulled in tension by the grips with a prescribed velocity, possibly time-dependent, the 
value of which determines the nominal strain rates of tensile tests. 

 

3. Direct Modelling of Gleeble Tension Test 

3.1 Geometrical Model 

In the numerical modelling of Gleeble tension tests, both the specimen and 
copper grips are taken into consideration and assumed axi-symmetric, without 
considering the nuts at both ends of the specimen, as is shown in Figure 3. To be clear, 
free surfaces and contact interfaces that will be mentioned in the following sections 
are also indicated. ∂�gf1 and ∂�gf2 are the surfaces of the grips in contact with Gleeble 
framework. ∂�sg is the contact interface between grip and specimen. ∂�s indicates the 
surface of the specimen which is covered with quartz tube. ∂�g_es and ∂�g_is are the 
lateral surface of the grips respectively.  

 

3.2 Electrical Potential Resolution 

The electrical potential field in a conductor is governed by Maxwell’s equation of 
conservation of charge. When assuming steady-state direct current (DC), the 
equations can be written as follows: 
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φσ ∇−= elecJ  (1) 
0=⋅∇ J  (2) 

The solution of the electrical problem consists then in solving the following 
Poisson type equation for the electrical potential: 

( ) 0elec =∇⋅∇ φσ  (3) 
with three types of boundary conditions: 

impφφ =  (4a) 

impJ=⋅− nJ  (4b) 

( )contactelec φφ−=⋅ hnJ  (4c) 

Equation (4a) stands for a prescribed electrical potential φimp at the boundary. This 
boundary condition is used on the surface ∂�gf2 of the fixed grip with φimp=0. 
Equation (4b) corresponds to the imposition of an electrical current density Jimp, n 
denoting the local outward unit normal vector. This boundary condition is used on the 
surface ∂�gf1 of the mobile grip, with the value of Jimp being automatically updated by 
a simple PID (proportional-integral-derivative) algorithm to control the specimen 
temperature. Equation (4c) expresses a non-perfect electrical contact: the input 
electrical current density is then related to the local difference of electrical potential. 
φcontact is the local electrical potential at the surface of the neighbor domain and helec is 
an effective electrical transfer coefficient. This condition is used along the interface  
∂�sg between the specimen and the grips. In the case of a quasi perfect electrical 
contact, an arbitrary large value for helec is used, resulting in a very small difference 
between the electrical potentials, expressing the quasi continuity of φ through the 
interface. 

A standard Galerkin finite element formulation is used to discretize the weak 
form of equation (3), with boundary conditions specified in equation (4), leading to a 
set of linear equations to be solved for the nodal values of the electrical potential. A 
multi-domain iterative resolution strategy is used to solve the electrical potential in 
the grips and the specimen. 

 

3.3 Energy Equation Resolution 

Considering Joule effect, but neglecting the heat source arising from mechanical 
coupling (only low stresses and low strain rates are considered here), the energy 
conservation writes: 

( ) elec
vd

d
PT

t

h =∇⋅∇− λρ  (5) 

where ρ denotes the density, h the specific enthalpy, λ the heat conductivity, T the 
temperature and Pv

elec, the volume heat source associated with resistance heating. The 
electric source term Pv

elec is defined by Joule’s law: 
JJ ⋅= −1

elec
elec

v σP  (6) 

The specific enthalpy h is defined as: 

Lfdch l

T

T p += ∫
ref

)( ττ  (7) 

with Tref an arbitrary reference temperature, cp the specific heat, fl the mass fraction of 
liquid and L the specific latent heat of fusion. However, in the present study, the 
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material will be considered in the solid state only, yielding simply pcTh =∂∂ .  

Three types of thermal boundary conditions are considered: 

imp
qT =⋅∇− nλ  (8a) 

( ) elec
interface

contact
contactc P

bb

b
TThT

+
+−=⋅∇− nλ  (8b) 

( )envth_eff TThT −=⋅∇− nλ  (8c) 
where  

( ) 2/1 
pcb λρ=  and ( )2

contactelec
elec

interface φφ−= hP  

Equation (8a) means a prescribed heat flux. Such a condition is applied to the 
inner and outer side surfaces of grips ∂�g_es and ∂�g_is, and to the end surface of 
specimen ∂�s_es, with qimp=0 expressing assumed adiabatic boundary conditions. 
Equation (8b) represents the non-perfect thermal contact condition at the interface 
∂�sg. The Joule heat power is distributed between the two domains in contact 
according to their thermal effusivity b. Due to the complex heat transfer conditions 
between the specimen, the transparent quartz tube and the environment, an 
equivalent heat transfer model (8c) between the specimen and the environment is 
assumed by defining an effective heat transfer coefficient hth_eff, which is determined 
by an inverse numerical calculation based on the experimental temperature 
measurements. It should be noted that when the current computing domain is one of 
the grips, the heat transfer model of (8c) is also applied at the surface (∂�gf1 or ∂�gf2) 
in contact with the framework. 

Like for the electrical solution, a standard Galerkin finite element formulation is 
used to discretize the weak form of equation (5), with boundary conditions specified 
in equation (8). This leads to a set of non-linear equations to be solved for the nodal 
values of specific enthalpy. This set is linearized by means of an implicit formulation 
and a Newton-Raphson method, for which the tangent stiffness matrix involves the 
nodal values of ∂T/∂h. A Multi-domain iterative resolution strategy is used to solve 
the temperature field in specimen and grips. 

 

3.4 Mechanical Momentum Equation Resolution 

The steel is modeled by a thermo-elastic-viscoplastic constitutive law. The total 
strain rate tensor can be additively decomposed into elastic, viscoplastic and thermal 
contributions, which are described by the following equations: 

 thvpel
εεεε ���� ++=  (9a) 

( )Iσσε ��� tr
1el

E

v

E

v −+=  (9b) 

sε ε
σ

��

2
3vp =  (9c) 

td
d

3
1th ρ
ρ

−=ε�  (9d) 

In equation (9d), the change of the material density ρ expresses the thermal expansion 
terms. I denotes the identity tensor. s is the deviatoric stress tensor as deduced from 
the Cauchy stress tensor σσσσ: 

( )Is σσ tr
3

1−=  (10) 
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Denoting ε� and σ  the von Mises equivalent strain rate and equivalent stress, 
respectively defined by: 

vp
ij

vp
ij εεε ���

3
2= ,  ijijss

2
3=σ  (11) 

Different constitutive equations can be introduced to describe the relationship 
between them. The one dimensional constitutive equation used in this study is adapted 
from the constitutive equation proposed by Han et al. [12]. 

 

m

nRT

Q
A

/1

sinhexp 






















 −=
ε
σαε�  (12) 

in which ε  denotes the cumulated viscoplastic strain, R is the perfect gas constant. 
The apparent activation energy Q, and the coefficients A, n, α and m are five material 
parameters. 

The local mechanical equilibrium is governed by the momentum conservation 
equation, in which, regarding the low velocities in such Gleeble tests, inertia, as well 
as gravity effects are ignored: 

0=⋅∇ σ  (13) 

Regarding mechanical boundary conditions, the grips are assumed non 
deformable. One grip is fixed while the mobile grip has a prescribed time-dependent 
velocity Vimp(t). Denoting v and vg the velocity fields in the specimen and in the grips 
respectively, the bilateral sticking condition can be expressed by: 

 0=− gvv  (14) 

)( gp vvσnT −−== χ  (15) 
The fulfillment of equation (14) is obtained by means of a penalty method, which 
consists in applying a stress vector T (equation (15)) to the surface of the specimen, 
with χp denoting the penalty coefficient (a large positive number). 

The mechanical problem is solved using a mixed formulation with velocity and 
pressure as primitive variables. The problem to be solved is then composed of two 
equations. The first one is the weak form of the momentum equation, also known as 
the principle of virtual power. Since p is kept as a primitive variable, only the 
deviatoric part of constitutive equations is taken into account and has to be solved 
locally in order to determine the deviatoric stress tensor s. Therefore the second 
equation consists of the weak form of the volumetric part of the constitutive equations. 
It expresses the incompressibility of the plastic deformation. This leads to: 

 ( )







=Ω∀

=Γ⋅−Ω⋅∇−Ω∀

∫

∫∫∫

Ω

Ω∂ΩΩ

                                   0tr   

0:   

vp**

****

dpp

ddpd

ε

εs

�

� vTvv
 (16) 

where v* and p* are respectively a vector and a scalar test functions which can be seen 
as virtual velocity and pressure fields. The form of the term integrated in the second 
equation is: 

 ( ) ( ) ( ) ( ) ( )
t

p
E

v

d
d1213

trtrtrtr thelvp ρ
ρ

+−+⋅∇=−−= ����� vεεεε  (17) 

After spatial discretization with the triangular mini-element (P1+/P1), for which 
details can be found in literature [13], equation (16) can be cast into a set of non-linear 
equations, the unknowns of which are the nodal velocities and pressure. This system 
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is solved by a Newton-Raphson method [14]. 
 

4 Inverse Optimization Method 

To determine the unknown set of parameters A = (m, n, Q, α, A) in the 
constitutive equation (12), a numerical inverse optimization method is used. 
Considering a set of Gleeble tension tests performed under specific conditions 
(temperature, imposed grip velocity), the calculated tensile forces, which depend on 
the unknown parameters A, can be obtained by the direct simulation of these tests, 
and can be compared to the measured results through the following and so-called 
"cost function": 

( )
∑ ∑

= = 

























 −
=

exp

1 1

2

exp
,

exp
,

cal
,

exp

11 L

j

M

i ij

ijij

j

j

F

FF

ML
Ψ

A
 (18) 

where cal
,ijF  and exp

,ijF  are the calculated and measured tensile force at the ith 

sampling point on the jth test curve. Lexp is the total number of test curves, Mj is for 
each test j (j=1, Lexp) the number of sampling points used for comparison. The aim of 
automatic identification is to find the values of parameters A resulting in a minimum 
of the cost function Ψ . 

The commercial software package IOSO [15] with public-licence has been used in 
the present study to identify A. IOSO (Indirect Optimization based on 
Self-Organization) technology is based on the response surface methodology, which is 
very efficient for large-scale optimization tasks [16, 17]. As is shown in Figure 4, the 
house-code R2SOL-CA, responsible for the direct modelling of the Gleeble tension 
test, is linked with IOSO module by an interface that is used to transfer the 
successively updated sets of parameters A from IOSO to R2SOL-CA, and to calculate 
the values of the cost function and transfer them to the IOSO module. At the 
beginning of the inverse calculation, parameters A, provided by IOSO module, are 
used to initialize the model parameters in R2SOL-CA by means of the Interface 
Module. The direct modelling of tension tests involving the coupled 
electrical-thermal-mechanical resolution can be executed to obtain the predicted 
curves of tensile force vs elongation, which then are used in the Interface Module to 
calculate the value of the cost function according to equation (18). The inverse 
calculation is then processed, yielding newly updated parameters A, which will be 
used in the next iteration in the direct simulation. This iterative process runs until the 
convergence conditions are achieved. In IOSO Module, the convergence criterion that 
stops the optimization process is taken as the prescribed accuracy value econv of the 
solution. When the actual search region becomes narrower than econv, at least for one 
of the parameters, the optimization process stops. In the present work, econv is set as 
1x10-4. This is expressed in the following equation: 

( )nmQAx ,,,, α=∈∃ A , ( ) convcurr exxx <− /minmax  (19) 
where xmax, xmin and xcurr denote respectively the upper and lower limit of current 
searching range, the current value of x. 

 

5 Results and Discussion 

5.1 Temperature Distribution 
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The thermal properties of the studied steel, which are used in the present 
simulation, are listed in Table A-1 in appendix A. 

The strong heat transfer between copper grips and water-cooled steel framework 
is taken into account by setting the heat transfer coefficients hth_eff as 2000 W/(m2 K) 
along surface ∂�gf1 and ∂�gf2. When equation (8c) is applied to the specimen surface 
∂�s, the heat transfer coefficient hth_eff is inversely determined by the measured 
temperature differences (Tc - Ts) (shown in Figure 5). The coefficient hc in equation 
(8b) is also inversely determined according to the measured surface temperatures 
along specimen axis (Figure 6a). It can be seen that, as expected, the radial 
temperature gradient increases significantly with the surface temperature of the 
specimen. For temperature as high as 1360 °C (TC0), the core temperature will be 
about 1415 °C, which is slightly lower than the melting point 1437 °C. This means 
that tests that have been conducted at temperature from 1200 to 1360 °C (TC0) 
actually cover the range from 1200 °C up to the solidus temperature of the UHS steel. 

Figure 6a shows a comparison between calculated and measured longitudinal 
temperature profiles along the surface of the specimen in its central region (up to 12 
mm from the mid-length transverse section). This comparison is given for three 
controlled temperatures for the central thermocouple TC0: 1200, 1300 and 1400 oC. 
Because of the numerical PID monitoring of the calculated temperature in the 
numerical simulation, there is a perfect agreement between simulation and experiment 
for this position. 

Although the vacuum chamber and quartz tube are used in the tests, there exist 
surface heat losses from the free surface of the specimen between grips. The radial 
thermal gradients are increased with the increasing surface temperature, which can be 
clearly seen on the simulation results in Figure 6b. It can also be seen that the 
identification of coefficient hth_eff yields core temperature in excellent agreement with 
the measurements already reported in Figure 5. 

 

5.2 Identification of Rheological Parameters 

5.2.1 Numerical Identification Method (NIM) 

Inverse identification consists in finding the set of material parameters A, 
minimizing the difference (the cost function in equation (18)) between measured and 
calculated force-elongation curves for a set of tensile tests performed in different 
conditions. Regarding the elongation of the working zone, it is directly obtained in the 
simulation by the following integration of time-dependant imposed velocity: 

( ) ( ) ττ dVtl
t
∫=∆
t

imp

ms

 (20) 

where Vimp is the velocity that is imposed on the movable grip. As for the tensile force, 
its calculation is more delicate. In this finite element approach, it is calculated by 
summing all contact nodal forces associated with the penalty treatment of sticking 
contact:  

( ) ( )∑ ⋅=
n nodecontact  

z2 nnn lrttF πeT  (21) 

where the nodal stress vector (surface force) is calculated by equation (15), ze  
denotes the unit vector along the axial direction, rn and ln are respectively the radial 
coordinate and the control length associated with any boundary node n. In the second 
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method, the force is deduced from the distribution of axial stress components along 
the central transverse section of the specimen:  

( ) ( )∑ ∆=
e

ee rretF πσ 2zz  (22) 

where the summation is applied to the triangular elements e crossed by the central 
transverse section, σzz(e) is the axial stress component calculated at the center of 
element e, re is the radial coordinate of the center of element e, and ∆re is the 
dimension of element e along the radial direction. It has been checked that the two 
methods lead to very close values of F. 

The parameters A = (m, n, Q, α, A) in equation (12) are automatically identified 
by the method introduced in section 4. To concretely evaluate the discrepancy 
between predictions and measurements, the following mean error is used: 

2/1
mean Ψe =  (23) 

To make provision against possible non-uniqueness of the solution, practical 
measures have been taken. First, the weighting factors 1/Mj are introduced in Eq. (18) 
to ensure that the number of selected sampling points for each curve doesn’t affect the 
solutions. Second, the experimental data base covers multiple testing conditions: 15 
tensile tests at five temperatures (1200 to 1360 oC, at TC0) and three constant 
velocities (10-3, 10-2 and 10-1 mm s-1), with about 10 sampling points per curve, are 
taken into account to calculate the minimum cost function. 

In order to calculate the predicted forces in equation (18), the direct modelling of 
Gleeble tension tests can be carried out, including both the heating and tension parts 
(Figure 2) in each direct simulation. However, in order to reduce the computation time 
of the automatic identification process, the direct modelling of tension tests can be 
divided into two successive steps: Direct Heating Modelling (before time tms) and 
Direct Tension Modelling (after time tms). Nodal information, such as temperature and 
coordinates, is stored in the end of the first step and is used as the initialization of the 
second step, which is iteratively executed in the automatic identification process as 
indicated in Figure 4. 

A classical issue in numerical inverse modelling is the estimation of the influence 
of the accuracy of the direct model (here the finite element code R2SOL-CA) on 
parameters identification. In the framework of the present study, the effect of mesh 
size and time steps have been studied in order to combine good accuracy and 
computational efficiency. As shown in Figure 3, the mesh is refined in the deformed 
region (mesh size: about 0.25 mm). In addition, small time steps are used to get 
incremental deformations of about 10-3 in the same zone (dt = 0.1 s for velocity 0.1 
mm s-1, dt = 1 s for 0.01 mm s-1 and dt = 10 s for 0.001 mm s-1, which means that 50 
time increments are prescribed for each test, the elongation being 0.5 mm). It has been 
checked that further refinement of both mesh size and time step does not change 
significantly the results of the direct model for a relevant set of material parameters. 
As a consequence, it can be thought that the influence of those numerical parameters 
on the accuracy of the parameters identification is reduced to a minimum. 

The calculation time for Direct Tension Modelling of each tension test is about 40 
seconds on a computation platform Intel® 2.4 GHz/2Gb. During optimization, the 
value of function Ψ decreases with iterations, as shown in Figure 7a. The searching 
domain for each parameter is reduced with iterations until the convergence criterion 
has been reached at least for one parameter, as is shown by an example of m 



 11 

optimization history plotted in Figure 7b. The parameters A are then automatically 
identified, with results listed in Table 1.  

The predicted curves of force vs elongation by the direct modelling of Gleeble 
tension tests are shown in Figure 8. A good agreement between predictions (solid lines) 
and measurements is observed, with a mean error emean = 2.2 %. However, the 
calculated forces at high temperature and low velocities (in Figure 8c) are 
overestimated compared with the measured results that show apparently a material 
softening phenomenon. This failure in the prediction of the softening phenomena will 
be discussed in section �5.3. 
 

Table 1: Identified parameters by Numerical Identification Method (NIM) 

A (s-1) Q (kJ/mol) α (MPa-1) m n 

1013.821 515.132 0.06096 0.2337 0.0792 

 
5.2.2 Simple Identification Method (SIM) 

Instead of using the numerical identification method mentioned above, a simpler 
identification method based on the calculation of nominal stress, nominal strain and 
nominal strain rate may also be used to identify the set of parameters A. The 
evaluation of those nominal stresses relies on the assumption of a uniform 
deformation of a certain effective working zone around the center of the specimen, 
and on the assumption that elastic deformation can be neglected. Based on the thermal 
analysis of the tests (Figure 6), the length l0 of this effective working zone can be 
roughly and arbitrarily estimated to 10 mm. In this zone, the strain rate and 
accordingly the stress state are supposed uniaxial: εεε ��� ≡= zz  and σσσ ≡= zz . The 

nominal strain εnom and the nominal strain rate nomε� are then defined as follows:  

0
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∆l is the elongation of the effective working zone at time t, which is supposed to be 
equal to the displacement of the moving grip. The calculated nominal stress is then 
directly obtained by inverting equation (12): 
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In this expression, three methods have been used to determine the value of the 
nominal temperature Tnom attached to each test. By reference to the thermocouple 
measurements at positions TC0 (surface temperature Ts) and TC3 (core temperature 
Tc), they correspond to: 

snom,1 TT = ,          ( )csnom,2 5.0 TTT += ,          cnom,3 TT =  (26) 

In this alternative method — SIM (Simple Identification Method), the minimum 
cost function is calculated by the following expression: 
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in which the calculated and measured nominal stresses are used. Regarding now the 



 12 

measured nominal stress in equation (27), it is calculated as: 

0

exp
exp
nom S

F=σ  (28) 

where Fexp is the measured tensile force and S0 is the original cross-section area of the 
specimen. 

The set of parameters A can then be identified by minimizing function Ψ (in 
equation (27)), using the IOSO module. Without consideration of direct numerical 
modelling, the simple identification method is obviously much faster than the 
numerical identification technique. The identified parameters based on the simple 
identification method are listed in Table 2. The calculated and deduced nominal 
stress-strain curves are shown in Figure 9. A reasonable agreement can be observed 
between the predicted and the directly deduced nominal stress-strain curves. However, 
as listed in Table 2, the assumed nominal temperatures attached to each test greatly 
affect the identified values of A and Q, with little influence on the other three 
parameters. The simply identified parameters can predict the nominal stress-strain 
relations, but the prediction ability for real tests should be checked by the accurate 
direct modelling of Gleeble tension tests through electrical-thermal-mechanical 
models aforementioned. The results will be discussed in the next section. 

Table 2: Identified parameters by Simple Identification Method (SIM) 

 A (s-1) Q (kJ/mol) α (MPa-1) m n 

SIM-1: (Tnom,1) 1017.39 629.182 0.07493 0.2396 0.0749 
SIM-2: (Tnom,2) 1016.27 603.446 0.07484 0.2394 0.0774 
SIM-3: (Tnom,3) 1015.29 580.761 0.07481 0.2393 0.0773 

 

5.2.3 Results Analysis 

The simple identification method (SIM) is based on several assumptions, such as 
a uniform temperature distribution and a uniform deformation in a 10 mm long 
working zone. Inversely, no such assumptions have been made in the numerical 
identification method (NIM). Such rough assumptions in SIM lead to the obvious 
high values of Q in Table 2 than that in Table 1. In order to better compare those two 
methods, the SIM-parameters listed in Table 2 have been applied in the direct 
modelling of the Gleeble tension tests to calculate the force-elongation curves, which 
are compared with the experimental measurements, and with the prediction resulting 
from the NIM-identification, as shown in Figure 10. The mean errors calculated by 
equation (23) are listed in Table 3 for the different methods. 

As already seen in Section �5.2.1, the predicted force-elongation curves calculated 
with the numerical identified parameters (listed in Table 1) agree quite well with the 
measured experimental data, with the mean error 2.2%. This expresses the relevance 
of the selected constitutive equation (equation (12)). Regarding the simple 
identification method, it is quite interesting to note that, contrary to the curves 
nominal stress vs nominal strain in Section �5.2.2 (Figure 9), the predicted 
force-elongation curves associated with the three methods SIM-1, -2 and -3 now show 
significant differences. Because of temperature gradients, when the parameters listed 
in Table 2 are used in the real direct modelling of Gleeble tension tests, this results in 
quite different force vs elongation curves. This is clearly shown in Figure 10. The 
predicted forces by NIM basically are between the forces predicted by SIM-1 and 
SIM-3, and close to that predicted by SIM-2. This means that in the case of simple 
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identification, it is preferable to choose the mean temperature between core and 
surface as the nominal temperature. This leads to the lower error between predictions 
and measurements among the three options regarding the estimation of the nominal 
temperature: a 6.6 % error is obtained instead of more than 11 % for the other two 
options. 

These results show the difficulty and unreliability of the simple identification 
method that relies on critical estimations like the nominal testing temperature and the 
assumption of the length of an effective deformation zone. They demonstrate the 
advantages and the reliability of the numerical identification method in presence of 
thermal gradients and deformation heterogeneity. 
 

Table 3: Obtained mean errors on force vs elongation curves with the different 
identification methods 

 NIM SIM-1 SIM-2 SIM-3 

emean 2.2 % 11.8 % 6.6 % 11.2 % 
 

5.3 Application of the identified constitutive model 

In order to test the prediction capability of the numerically identified model, more 
complex tensile tests, including stepwise strain-rate changes are considered. They 
consist of a succession of constant velocity and relaxation stages, as indicated in 
Figure 11, in which the specimen elongation and the grip velocity are indicated. The 
specimen is extended in four steps with different deformation rates that are 
sequentially stepwise increased with a 20-second stress relaxation between two 
loading stages and a final 60-second stress relaxation at the end of test. Two tests have 
been experimentally achieved for the studied UHS steel, at two temperatures, 1200 
and 1360 °C. 

The parameters identified by NIM and SIM methods have been used in the 
modelling of the complex tests, with results shown in Figure 12. It can be seen that 
the material behavior is reasonably well reproduced by the numerical prediction with 
parameters identified by NIM (dash lines). The precision of the force evolution during 
each loading step is quite good, leading to a maximum relative error on the force 
value of about 10 % at the beginning of each force plateau. Parameters identified by 
SIM have also been applied to the direct modelling of those tests. Results show that 
numerical predictions with SIM-1 parameters underestimate the forces for the case at 
1360 oC, whereas SIM-2 and SIM-3 over-estimate the force for the two last loading 
stages (Vimp = 1×10-3 and 5×10-4 mm s-1). 

However, the agreement between measurements and predictions by NIM, as well 
as SIM, is less satisfying regarding two aspects. First, numerical results generally 
show an over-estimation of relaxation effects, leading to under-estimated force values. 
Second, the identified numerical model fails in the prediction of material softening at 
low strain rates (the two last stages at Vimp = 1×10-3 and 5×10-4 mm s-1). This 
softening phenomenon could also be observed in Figure 10c. That probably reveals a 
limitation of the selected rheological model itself (equation (12)). 

Regarding over-relaxation, it should be noticed that, as shown in equation (25), 
the strain hardening effect is combined into the constitutive relation with strain rate 
sensitivity effects through a multiplication method. During the relaxation stage 
(loading is ceased with elongation being fixed), the deformation rate decreases to zero 
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dramatically, leading to a rapid decrease of the predicted strength, as has been 
observed in Figure 12. The insufficiency of stress relaxation prediction by the current 
considered constitutive relations probably reflects the shortage of this type of 
constitutive relations that combines strain hardening and strain rate sensitivity effects 
by multiplication and does not include any plastic yield. The prediction ability for 
stress relaxation could be improved by considering an appropriate threshold yield 
stress into the elastic-viscoplastic model, or it can be thought that an additive type 
constitutive equation, providing a better decoupling between those terms, would be 
preferable. Such constitutive equations have been applied for steels at high 
temperature by Bellet and Fachinotti [18] and Bellet et al. [19]. 

Let us consider now the material softening phenomenon that can be observed at 
low strain rate (10-4 s-1 to 10-5 s-1) in the simple uniaxial tests (Figure 10c) and in the 
complex tension tests Figure 12. The current constitutive equation fails in the 
prediction of these phenomena. It can be thought that such testing conditions, high 
temperature (higher than 1200 oC) and low strain rate (below 10-3 s-1), may generate 
specific plasticity phenomena that could be associated with microstructure changes in 
the material. Hence, some specific creep phenomena such as dislocation creep 
(involving the movement of dislocations assisted by the diffusion of vacancies or 
interstitials) or diffusion creep (involving the flow of vacancies and interstitials under 
the influence of applied stress) [20] could account for the phenomenon. Such specific 
phenomena may provide complementary contributions to the current plastic flow 
equations that could result in material softening during test and lead to a better 
agreement with experimental results.  
 

6 Conclusions 

The rheological behavior of UHS steel at high temperature and low strain rates 
has been investigated by tensile tests performed on a Gleeble thermal-mechanical 
simulator and their associated numerical modelling. The thermal gradient existing in 
the specimen results in the heterogeneous deformation in the specimen, which is a 
source of difficulties in the analytical identification of the constitutive parameters. 
This complexity is taken into account through an automatic numerical identification 
method based upon finite element inverse modelling. This method associates a 
coupled electrical-thermal-mechanical direct finite element analysis (code R2SOL-CA) 
of Gleeble tests with an optimization module (IOSO commercial software). It has 
been demonstrated that numerical identification provides a better agreement with 
experimental data than the approximate simple identification method. In a second part 
of the paper, the numerically identified constitutive equation has been proved to be 
able to predict reasonably well the measured tensile force during more complex 
tensile tests consisting of successive loading and relaxation stages. However, some 
inefficiencies or limitations of the considered constitutive model have also been 
pointed out, which gives a clue to further improvements of the constitutive relations 
depicting the rheological behavior of steel at very high temperature and low 
deformation rates. 
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Appendix A: Physical Properties of the UHS Steel 
 

The thermal electrical and thermal properties of the UHS steel that is studied in the paper 
are listed in the following table: 

Table A-1: Thermal properties of the UHS grade 
T (oC) λ  (W m-1 K-1) cp (J kg-1 K-1) ρ (103 kg m-3) σelec (106 Ω-1 m-1) 
100 40.5 479.0 7.7571 5.23 
200 41.0 526.0 7.7225 3.92 
300 41.6 582.0 7.6875 3.03 
400 40.6 640.0 7.6497 2.40 
500 39.5 710.0 7.6137 1.93 
600 37.5 810.0 7.5799 1.61 
700 33.9 1018.0 7.5560 1.30 
800 35.8 1051.0 7.5618 1.03 
900 24.8 610.0 7.5391 0.98 
1000 27.2 625.0 7.4941 0.95 
1100 29.1 641.0 7.4487 0.92 
1200 29.7 656.0 7.4080 0.89 
1300 30.7 672.0 7.3654 0.86 
1400 32.3 688.0 7.3257 0.83 
1437 33.6 710.0 7.2900 0.82 
1510 40.0 814.0 7.0309 0.76 

Poisson ration is arbitrarily taken 0.3. The temperature dependant expression of E published 
by Mizukami et al. [21] is used. This expression is the following:  

( ) C)( Tth         wi,1018.51090.133.2968GPa o3723 TTTE −− ×−×+−=  
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Figure Caption List: 

 

Figure 1: Schematic diagram of Gleeble 1500D tensile testing system, (a) 
Temperature measurements of the cylindrical specimen; (b) section view 
of the tensile specimen installed in the machine. 
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Figure 2:  Schematic diagram of thermal-mechanical history for tensile test. 

 

Figure 3:  Schematic geometrical model and mesh used in the modelling of Gleeble 
tension test. 

 

Figure 4: Automatic identification strategy with IOSO optimization module and 
R2SOL-CA direct finite element simulation. 
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Figure 5:  Measured radial temperature difference (core with respect to surface) in 
the medium transverse section of the specimen, as a function of surface 
temperature. 

 

Figure 6: Temperature distribution for three different nominal temperatures (a) 
calculated surface temperature profile in the axial direction together with 
experimental measurements; (b) calculated radial temperature distribution 
in the mid transverse section. Superimposed are two measurements at 
position TC3 (center of specimen). 

 

Figure 7:  (a) Cost function optimization history and (b) m optimization history with 
iterations passed by IOSO Module. 
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Figure 8:  Comparisons between calculated and measured force-elongation curves. (a) 
grip velocity 10-1 mm s-1; (b) grip velocity 10-2 mm s-1; (c) grip velocity 
10-3 mm s-1. Calculated curves are obtained with parameters identified by 
NIM, listed in Table 1. 
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Figure 9:  Comparison between the directly deduced (symbols) and calculated (lines) 
flow stresses of UHS steel at various nominal temperatures and nominal 
strain rates of (a) 1×10-2 s-1, (b) 1×10-3 s-1, and (c) 1×10-4 s-1 respectively. 
The predicted curves consist of the dashed lines (SIM-1), the dotted lines 
(SIM-2) and the dash dotted lines (SIM-3), which appear to be perfectly 
superimposed. 
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Figure 10: Comparisons between calculated and measured force-elongation curves. 
Calculated curves result either from the Numerical Identification Method 
(identified parameters in Table 1, solid lines), or from direct finite element 
modelling using the rheological parameters identified by the Simplified 
Identification Method (parameters in Table 2). (a) grip velocity 10-1 mm 
s-1; (b) grip velocity 10-2 mm s-1; (c) grip velocity 10-3 mm s-1. 
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Figure 11: Definition of the successive stages constituting a single complex tensile 
test. 

 

Figure 12: Comparison between measurements and numerical predictions for two 
strain rate stepwise decrease and stress relaxation tests at two different 
temperatures, 1200 and 1360 °C (at TC0). Continuous lines: force 
measurements; dashed lines: NIM identified model prediction; dot lines: 
SIM-1 identified model prediction; dash dot lines: SIM-2 identified model 
predictions; dash dot dot lines: SIM-3 identified model predictions. 

 

 


