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Abstract

The rheological behavior of an ultra high strenitfiS) steel is investigated by Gleeble
tensile tests at low deformation rates and highpeature, from 120°C up to solidus
temperature. Results show that large thermal gnéslieexist in specimens, resulting in
heterogeneous deformation, which makes difficult ttlentification of constitutive parameters
from the directly deduced nominal stress-straivesr The advantages of an inverse identification
method - associating a direct finite element madebleeble tests and an optimization module -
are demonstrated in such conditions. The constéyiarameters identified by this technique have
been successfully applied to additional tests, nmmeplex in nature than those used for the
identification of parameters. However, such tesisilaining successive loading and relaxation
stages have revealed some limitations of the cersiticonstitutive model.

Keywords: constitutive model, inverse modelling, numericaridfication, high temperature,
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NOMENCLATURE

A unknown parameter vector

A material constant (3

E elastic Young's modulus (N fror GPa)

the identity tensor
electrical current density vector (A?n
imp prescribed electrical current density (A)m
P,®*¢  volume heat source due to Joule effect (resistaaating) (W nr)

Pee  interface heat source due to Joule effect (rewistheating) (W if)

interface
Q apparent activation energy (J Ml
R perfect gas constant (J rifdd ™)
S original cross-section area of the specimef) (m
-
T

[ SR

stress vector (N fhor MPa)
temperature’C or K)

Tenv environment temperature (°C or K)

Vimp  imposed velocity of the mobile grip (rif)s

b thermal effusivity (J M K* s*?
Co specific heat (J kKgK™)
e unit vector in specimen axial direction
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h specific enthalpy (J kb

Pelec effective electrical transfer coefficier®@ ¢ m?)

he heat transfer coefficient at interface between ispexc and grips (W i K)

hin ef  effectiveheat transfer coefficient at the surface of spenifmetween grips, or
at the surface of grip in contact with framework (W K)

L specific latent heat (J Ky

lo length of the effective working zone (m)

In boundary length associated with boundary no@®)
m strain rate sensitivity coefficient

n outward unit normal vector

n strain hardening coefficient

p pressure (N )

Cimp imposed heat flux density (W

le radial coordinate of the element center (m)
M radial coordinate associated with boundary noia)
s deviatoric stress tensor (Nn

tms the starting time of the mechanical tension

v velocity vector (m $)

Vg grip velocity vector (m$

Al elongation of specimen (m)

JAY P element dimension along radial direction (m)
a material constant (Nm? or MP&")

£ total strain rate tensortps

g elastic strain rate tensor'{s

g thermal strain rate tensor'js

£ irreversible (viscoplastic) strain rate tensob (s
g von Mises equivalent strain raté'(s

& . nominal strain rate (3

Eom nominal strain

A thermal conductivity (W mK™)

0 density (kg nit)

% Poisson’s ratio

¢ electrical potential (V)

oelec  €lectrical conductivity®@* m?)

g von Mises equivalent stress (Njn

o Cauchy stress tensor (N3n

Ohom  Nominal stress (N i)

Oz axial stress component (N3
Xo penalty coefficient

v cost function

1. Introduction

Various defects in as-cast products are often arieoced in shape or continuous
casting production. In industrial practice, hotrteg is a frequent defect (also called
solidification cracking), which occurs in the enfdtioe solidification process, at very
low liquid fraction. Hot tears initiate just aboselidus temperature in the mushy zone



when it is subjected to a tensile stdteSuch defects, either near the surface or in the
core part of the as-cast products, cannot be dii@th by post thermo-mechanical
treatments. For the prediction of hot tears or loacks, many hot tearing
“macroscopic” criteria have been proposed mostiplving critical stres$, critical
strain ®® or critical strain ratd®. Therefore, the mathematical modeling of the
formation of hot tears and cracks in cast prodiscgscomplex task, which requires in
particular a good knowledge of the constitutive atgpns and parameters of the
material especially at high temperature.

Experimental studies of the rheological behavionaf-ferrous metals have been
reported in literature for many years. On the camirthere are quite few papers
dealing with the characterization of steels at ‘egh temperature, namely over 1200
°C and up to the mushy state. The difficulties aaénhy caused by the very high level
of steel melting point in comparison with non-farsometals like aluminum alloys,
which demands strict requirements for the expertaledevices. The Gleeb%!
thermo-simulator systems are efficient tools toghbject, as they provide means for
characterizing mechanical properties of metalsigih hemperature, under vacuum,
and along complex thermal-mechanical testing patRegarding parameter
identification for steel at very high temperatumy strain rate and low strain, it has
been achieved by using the force-displacement eurkexorded on Gleeble
thermo-simulators, under the assumption of unifstress, strain and strain-rates in
the deformed region of the speciméff. However, it should be noted that as reported
in literature!”®, thermal gradients always exist at high tempeeatnrGleeble-type
specimens. Because the mechanical properties ef ate temperature dependent,
such thermal gradients are the source of deformaisberogeneity in specimens. As a
consequence, the estimation of strain in the "deéor region" is somewhat arbitrary.
An accurate analysis of Gleeble tests, therefdraylsl be conducted by means of the
numerical modelling of such tests, instead of rejybn usual assumption of uniform
stress, strain and strain rate in the effectivemheation zone of the specimen. Based
on an accurate reliable direct numerical modelbfid@sleeble tests, inverse methods
are efficient tools to evaluate the interestingstibutive equations and identify the
unknown parameters. Hojny and Glowalki*" developed such an inverse numerical
method to identify constitutive parameters for kfeem Gleeble compression tests
under high strain and strain rate, which was apmte for semi-solid processing
such as thixoforming. In the present work, the lbgical behavior of an UHS steel is
investigated by Gleeble tensile tests at high teatpee from 1200C up to solidus
temperature, under small strain rates (£ ) and strains (< 5%). An automatically
inverse numerical identification method, involvinghe direct coupled
electrical-thermal-mechanical modelling of Gleetdsts, is set up and used for the
identification of the constitutive parameters underch conditions, in view of
application to the solidification context, includinthe prediction of hot tearing
initiation.

2. Experimental Procedure

An ultra high strength (UHS) steel is studied imstpaper, the composition of
which is: 0.16 wt%C, 0.22 wt%Si, 1.89 wt%Mn, 0.18%Cr, 0.02 wt%Ti, <0.02
wt%P, <0.013 wt%S, and the solidus temperature4®7 £C. Cylindrical tensile
specimens with 10 mm diameter and 120 mm lengtbu(Ei 1a) have been tested

1 Gleeble is a registered trademark of Dynamic Systems Inc, Poestenkill, NY 12140, USA (http://www.gleeble.com)



using a Gleeble 1500D thermo-mechanical simulatbich is schematically shown
in Figure 1b.

The specimen is rapidly heated by resistance hgatiith a regulated alternate
current (AC) being introduced into the specimemtigh the copper grips. As shown
in Figure 2, in a first step, the specimen is rgpigkated up to 1058 with a heating
rate of 15°C/s and maintained at this temperature for one tmifn a second step, it
Is heated up to the testing temperature (at 2°@is)l, maintained at the testing
temperature for one minute before loading. Durlmg whole testing period including
heating and mechanical loading, the input AC imntheonitored according to the
temperature measured by the thermocouple welddgbeosurface of the specimen, at
mid-length position (TCO in Figure 1b). In the folMing parts of the paper, in the
absence of complementary information, the tempezatthat are mentioned are those
measured or predicted at this location TCO. To @néwxidation, the specimen is
placed in the vacuum chamber with<80* torr (about 0.067 Pa). A transparent
quartz tube is used to cover the specimen surfacsupporting the possible melt of
the working zone.

In order to get the knowledge of the temperatusgribution in the specimen,
temperatures are continuously measured at sevaaidns in specifically dedicated
tests (see Figure 1a):

o Along the surface of the specimen, at three lonationid-length (TCO), 7.5
mm and 10 mm from center (TC1 and TC2, respectjvalhis provides
information on the axial temperature gradient. dididon, the temperature
measurement in position TCO is used all along é¢isé for the monitoring of
the electrical input.

o In core center, on the symmetry axis, in the mahswerse section of the
specimen (TC3). By comparison with TCO, this gieesess to the radial
temperature gradient.

After tms (in Figure 2) that denotes the starting time oisten, the specimen is
pulled in tension by the grips with a prescribetbery, possibly time-dependent, the
value of which determines the nominal strain rafeensile tests.

3. Direct Modelling of Gleeble Tension Test
3.1 Geometrical Model

In the numerical modelling of Gleeble tension tedteth the specimen and
copper grips are taken into consideration and asdumxi-symmetric, without
considering the nuts at both ends of the speciaeis shown in Figure 3. To be clear,
free surfaces and contact interfaces that will lemtioned in the following sections
are also indicated@Qgr andoQqr, are the surfaces of the grips in contact with Gliee
framework.0Qsg is the contact interface between grip and speci@@gindicates the
surface of the specimen which is covered with quaube.0Qq esandoQq s are the
lateral surface of the grips respectively.

3.2 Electrical Potential Resolution

The electrical potential field in a conductor isrgmed by Maxwell's equation of
conservation of charge. When assuming steady-datct current (DC), the
equations can be written as follows:



'J = _UeleJ]¢ (1)
01J=0 (2)

The solution of the electrical problem consistsnthe solving the following
Poisson type equation for the electrical potential:

u [(UeleJ] ¢) = O (3)
with three types of boundary conditions:
¢ = Gmp (4a)
-Jin=J,, (4b)
‘] (n= helec(¢ - ¢contact) (4C)

Equation (4a) stands for a prescribed electricmal gmp at the boundary. This
boundary condition is used on the surfa®@y, of the fixed grip with @mp=0.
Equation (4b) corresponds to the imposition of &ctecal current densityimp, N
denoting the local outward unit normal vector. Tisindary condition is used on the
surfacedQqs; of the mobile grip, with the value df,, being automatically updated by
a simple PID (proportional-integral-derivative) afghm to control the specimen
temperature. Equation (4c) expresses a non-pedksdirical contact: the input
electrical current density is then related to theal difference of electrical potential.
RontactiS the local electrical potential at the surfat¢he neighbor domain antecis
an effective electrical transfer coefficient. Tlaisndition is used along the interface
0Qsg between the specimen and the grips. In the case qfasi perfect electrical
contact, an arbitrary large value fladiec is used, resulting in a very small difference
between the electrical potentials, expressing th@sigcontinuity ofg through the
interface.

A standard Galerkin finite element formulation ised to discretize the weak
form of equation (3), with boundary conditions sfied in equation (4), leading to a
set of linear equations to be solved for the naddlies of the electrical potential. A
multi-domain iterative resolution strategy is ugedsolve the electrical potential in
the grips and the specimen.

3.3 Energy Equation Resolution

Considering Joule effect, but neglecting the heatee arising from mechanical
coupling (only low stresses and low strain rates ewnsidered here), the energy
conservation writes:
dh

Pt
where p denotes the densiti the specific enthalpy) the heat conductivity] the
temperature anB,®*, the volume heat source associated with resistaeatng. The

electric source term,**is defined by Joule’s law:

otiom)= R ®

Rlelec = aelec_lJ E]] (6)
The specific enthalpk is defined as:
h= jTT c,(r)dr + f,L @)

with T an arbitrary reference temperatugthe specific heaf; the mass fraction of
liquid and L the specific latent heat of fusion. However, ie thresent study, the



material will be considered in the solid state pgiglding simply oh/dT =c, .
Three types of thermal boundary conditions are icened:

-AUTIn=q (8a)
b
-A0T M =h(T =T, + ———— Poics
hc( contact) b +bcomact interface (8b)
_ADT [n= h[h_eff (T _Tenv) (8C)

where
b = (Apcp)l/2 and Rﬁ:sr(;face: helec(¢_ qﬂcontact)2

Equation (8a) means a prescribed heat flux. Sucbndition is applied to the
inner and outer side surfaces of grig3y s and 6Qq s, and to the end surface of
specimenoQs s With gimp=0 expressing assumed adiabatic boundary conditions
Equation (8b) represents the non-perfect thermataod condition at the interface
0Qsq The Joule heat power is distributed between the domains in contact
according to their thermal effusivity. Due to the complex heat transfer conditions
between the specimen, the transparent quartz tulge the environment, an
equivalent heat transfer model (8c) between theismn and the environment is
assumed by defining an effective heat transferfiooeft hy,_er, Which is determined
by an inverse numerical calculation based on theemmental temperature
measurements. It should be noted that when themucomputing domain is one of
the grips, the heat transfer model of (8c) is alsplied at the surfac@Qgn or 0Qq)
in contact with the framework.

Like for the electrical solution, a standard Gailerfinite element formulation is
used to discretize the weak form of equation (5)h woundary conditions specified
in equation (8). This leads to a set of non-lineguations to be solved for the nodal
values of specific enthalpy. This set is linearibydmneans of an implicit formulation
and a Newton-Raphson method, for which the tanggfihess matrix involves the
nodal values obT/oh. A Multi-domain iterative resolution strategy ised to solve
the temperature field in specimen and grips.

3.4 Mechanical Momentum Equation Resolution

The steel is modeled by a thermo-elastic-viscoplasinstitutive law. The total
strain rate tensor can be additively decomposeadetastic, viscoplastic and thermal
contributions, which are described by the followaguations:

= +EW 4" (92)
¢ =15 V(o) (9b)
EC E
£ = %Es (9c)
__1dp
th _ga (9d)

In equation (9d), the change of the material dgns#xpresses the thermal expansion
terms.|l denotes the identity tensar.is the deviatoric stress tensor as deduced from
the Cauchy stress tensmr

s=e¢ —%tr(o)l (10)



Denoting £and & the von Mises equivalent strain rate and equitaséress,
respectively defined by:

=2 __ /3
£ :1/§‘9ijp‘9uyp ' g =555 (11)

Different constitutive equations can be introduced describe the relationship
between them. The one dimensional constitutive Bmuased in this study is adapted
from the constitutive equation proposed by Harl.ét%

£= Aex;{ﬁj(sin!-(qﬁj] ' (12)
RT g"

in which £ denotes the cumulated viscoplastic str&ins the perfect gas constant.
The apparent activation ener@y and the coefficientd, n, @ andm are five material
parameters.

The local mechanical equilibrium is governed by thementum conservation
equation, in which, regarding the low velocitiessirch Gleeble tests, inertia, as well
as gravity effects are ignored:

Ole=0 (13)

Regarding mechanical boundary conditions, the grgge assumed non
deformable. One grip is fixed while the mobile ghas a prescribed time-dependent
velocity Vimp(t). Denotingv andvy the velocity fields in the specimen and in thesgri
respectively, the bilateral sticking condition d@expressed by:

v-v,=0 (14)
T=on=-x,(v-V,) (15)
The fulfillment of equation (14) is obtained by meaof a penalty method, which
consists in applying a stress veclofequation (15)) to the surface of the specimen,
with y, denoting the penalty coefficient (a large positienber).

The mechanical problem is solved using a mixed dation with velocity and
pressure as primitive variables. The problem tesdleed is then composed of two
equations. The first one is the weak form of thearmaotum equation, also known as
the principle of virtual power. Sincp is kept as a primitive variable, only the
deviatoric part of constitutive equations is taketo account and has to be solved
locally in order to determine the deviatoric strésssors. Therefore the second
equation consists of the weak form of the volunsgtiart of the constitutive equations.
It expresses the incompressibility of the plas@todmation. This leads to:

v’ js £d0 - jpD@dQ jm/dr 0

Op’ Iptr( Vp)dQ 0

wherev” andp’ are respectlvely a vector and a scalar test fonstwhich can be seen
as virtual velocity and pressure fields. The forirth@ term integrated in the second
equation is:

wlem)= re)-ore)-wler) = v+ =2 pr2 a7

(16)

After spatial discretization with the triangularmaelement (P1+/P1), for which
details can be found in literatufd', equation (16) can be cast into a set of non-inea
equations, the unknowns of which are the nodaloreds and pressure. This system

7



is solved by a Newton-Raphson metht3t

4 Inverse Optimization Method

To determine the unknown set of paramet&rss (m, n, Q, a, A) in the
constitutive equation (12), a numerical inverse imjation method is used.
Considering a set of Gleeble tension tests perfdrmeder specific conditions
(temperature, imposed grip velocity), the calcuatensile forces, which depend on
the unknown parametess, can be obtained by the direct simulation of thesgs,
and can be compared to the measured results thriggfollowing and so-called
"cost function™:

1 el 1 W(FEAA)-FoPY
lP:L Z M Z( - (F.)e_xp " J (18)
]

exp J=1 j =l
where F' and F3® are the calculated and measured tensile forcehati“t

sampling point on th@" test curveleyp is the total number of test curve; is for

each test (j=1, Lexp) the number of sampling points used for comparidtre aim of
automatic identification is to find the values @rameter®\ resulting in a minimum
of the cost function? .

The commercial software package 108®with public-licence has been used in
the present study to identifyA. IOSO (Indirect Optimization based on
Self-Organization) technology is based on the ree?slmrface methodology, which is
very efficient for large-scale optimization tasks '\ As is shown in Figure 4, the
house-code R2SOL-CA, responsible for the direct ntiodeof the Gleeble tension
test, is linked with IOSO module by an interfacettis used to transfer the
successively updated sets of parameteir®m IOSO to R2SOL-CAand to calculate
the values of the cost function and transfer themthe IOSO module. At the
beginning of the inverse calculation, paramet&ygrovided by I0SO module, are
used to initialize the model parameters in R2SOL4@Ameans of the Interface
Module. The direct modelling of tension tests iwnmy the coupled
electrical-thermal-mechanical resolution can becatexdd to obtain the predicted
curves of tensile forces elongation, which then are used in the Interfacaide to
calculate the value of the cost function accordiogequation (18). The inverse
calculation is then processed, yielding newly updgbarameter#é, which will be
used in the next iteration in the direct simulati®his iterative process runs until the
convergence conditions are achieved. In IOSO Modh&convergence criterion that
stops the optimization process is taken as thecpbesl accuracy value.on, Of the
solution. When the actual search region become®swar thane.,, at least for one
of the parameters, the optimization process stiopthe present workgeony is set as
1x10®. This is expressed in the following equation:

CXOA =(AQa,MN), (e = Xmin ) Xoure| < Eca (19)
where Xmax Xmin @and Xeur denote respectively the upper and lower limit ofrent
searching range, the current valuex.of

5 Resultsand Discussion
5.1 Temperature Distribution



The thermal properties of the studied steel, which ased in the present
simulation, are listed in Table A-1 in appendix A.

The strong heat transfer between copper grips anerweaoled steel framework
is taken into account by setting the heat transbefficientshi, e as 2000 W/(MK)
along surfacéQgn andoQgr. When equation (8c) is applied to the specimefasar
0Qs, the heat transfer coefficieiy, o« iS inversely determined by the measured
temperature difference3 (- Ty (shown in Figure 5). The coefficieht in equation
(8b) is also inversely determined according to mheasured surface temperatures
along specimen axis (Figure 6a). It can be seem tha expected, the radial
temperature gradient increases significantly witle tsurface temperature of the
specimen. For temperature as high as 1360 °C (Ti@8)core temperature will be
about 1415 °C, which is slightly lower than the timg) point 1437 °C. This means
that tests that have been conducted at temper&ime 1200 to 1360 °C (TCO)
actually cover the range from 1200 °C up to th&ssltemperature of the UHS steel.

Figure 6a shows a comparison between calculatednaasured longitudinal
temperature profiles along the surface of the spewiin its central region (up to 12
mm from the mid-length transverse section). This ganson is given for three
controlled temperatures for the central thermoo®UpL0: 1200, 1300 and 1460.
Because of the numerical PID monitoring of the wlated temperature in the
numerical simulation, there is a perfect agreerbeiween simulation and experiment
for this position.

Although the vacuum chamber and quartz tube ard us¢he tests, there exist
surface heat losses from the free surface of tleeisgn between grips. The radial
thermal gradients are increased with the increasimtace temperature, which can be
clearly seen on the simulation results in Figure Bbcan also be seen that the
identification of coefficienty, ¢ yields core temperature in excellent agreement with
the measurements already reported in Figure 5.

5.2 Identification of Rheological Parameters
5.2.1 Numerical Identification Method (NIM)

Inverse identification consists in finding the sa&ft material parameters\,
minimizing the difference (the cost function in atjon (18)) between measured and
calculated force-elongation curves for a set ofitentests performed in different
conditions. Regarding the elongation of the workaznge, it is directly obtained in the
simulation by the following integration of time-dampdant imposed velocity:

t

AI(t) = [Vipy (r)d7 (20)
tms

whereVim, is the velocity that is imposed on the movabl@.ghis for the tensile force,

its calculation is more delicate. In this finiteelent approach, it is calculated by

summing all contact nodal forces associated with gbnalty treatment of sticking

contact:

F)= > T.()e,2m,), (21)

contact noden

where the nodal stress vector (surface force) lsutzied by equation (15)g,

denotes the unit vector along the axial directigrandl, are respectively the radial
coordinate and the control length associated withteoundary node. In the second

9



method, the force is deduced from the distributbbraxial stress components along
the central transverse section of the specimen:

F(t)=> o, (eermar, 22)

where the summation is applied to the triangulemeintse crossed by the central
transverse sectiorg,,(€) is the axial stress component calculated at #mec of
elemente, re is the radial coordinate of the center of elementind Are is the
dimension of elemerg along the radial direction. It has been checked the two
methods lead to very close valueg-of

The parameterd = (m, n, Q, a, A) in equation (12) are automatically identified
by the method introduced in section 4. To concyeNaluate the discrepancy
between predictions and measurements, the followiegn error is used:

Erean = 7 (23)

To make provision against possible non-uniquendsth@ solution, practical
measures have been taken. First, the weightingriadiVi; are introduced in Eq. (18)
to ensure that the number of selected samplingp&on each curve doesn't affect the
solutions. Second, the experimental data base sovettiple testing conditions: 15
tensile tests at five temperatures (1200 to 1360 at TCO) and three constant
velocities (10°, 102and 10" mm s, with about 10 sampling points per curve, are
taken into account to calculate the minimum costfion.

In order to calculate the predicted forces in eigua{l8), the direct modelling of
Gleeble tension tests can be carried out, incluboilp the heating and tension parts
(Figure 2) in each direct simulation. However, rder to reduce the computation time
of the automatic identification process, the direxdelling of tension tests can be
divided into two successive steps: Direct Heatingd®lling (before time,s) and
Direct Tension Modelling (after timigs). Nodal information, such as temperature and
coordinates, is stored in the end of the first steg is used as the initialization of the
second step, which is iteratively executed in th®matic identification process as
indicated in Figure 4.

A classical issue in numerical inverse modellinthis estimation of the influence
of the accuracy of the direct model (here the diretlement code R2SOL-CA) on
parameters identification. In the framework of @resent study, the effect of mesh
size and time steps have been studied in orderotobime good accuracy and
computational efficiency. As shown in Figure 3, thesh is refined in the deformed
region (mesh size: about 0.25 mm). In addition, Istae steps are used to get
incremental deformations of about™th the same zone (& 0.1 s for velocity 0.1
mm s', dt = 1 s for 0.01 mm$and d = 10 s for 0.001 mm’s which means that 50
time increments are prescribed for each test, lthregation being 0.5 mm). It has been
checked that further refinement of both mesh sizé #me step does not change
significantly the results of the direct model foredevant set of material parameters.
As a consequence, it can be thought that the infeef those numerical parameters
on the accuracy of the parameters identificatiaoedsiced to a minimum.

The calculation time for Direct Tension Modellingexch tension test is about 40
seconds on a computation platform 1fit&.4 GHz/2Gb. During optimization, the
value of functiony decreases with iterations, as shown in Figurelia. searching
domain for each parameter is reduced with iterationtil the convergence criterion
has been reached at least for one parameter, akoisn by an example ah

10



optimization history plotted in Figure 7b. The paedersA are then automatically
identified, with results listed in Table 1.

The predicted curves of foross elongation by the direct modelling of Gleeble
tension tests are shown in Figure 8. A good agraeebwiween predictions (solid lines)
and measurements is observed, with a mean exgt = 2.2 %. However, the
calculated forces at high temperature and low vidsc (in Figure 8c) are
overestimated compared with the measured resutssthow apparently a material
softening phenomenon. This failure in the predicobthe softening phenomena will
be discussed in secti@n3.

Table 1: Identified parameters by Numerical Idecaifion Method (NIM)
AshH  QkkJImol) a(MPah) m n
10381 515.132 0.06096 0.2337  0.0792

5.2.2 Simpleldentification Method (SIM)

Instead of using the numerical identification metmoentioned above, a simpler
identification method based on the calculation emmal stress, nominal strain and
nominal strain rate may also be used to identify #et of parameterd. The
evaluation of those nominal stresses relies on dassumption of a uniform
deformation of a certain effective working zonewuard the center of the specimen,
and on the assumption that elastic deformatiorbeameglected. Based on the thermal
analysis of the tests (Figure 6), the lenftlof this effective working zone can be
roughly and arbitrarily estimated to 10 mm. In thiene, the strain rate and

accordingly the stress state are supposed uniaialz, =¢ and 0 =0, =0. The
nominal straing,omand the nominal strain raté, . are then defined as follows:

Al _ Vit . _Vim
= —_mp gnom = l_p (24)

1
IO IO 0

nom

Al is the elongation of the effective working zondiate t, which is supposed to be
equal to the displacement of the moving grip. Thiewtated nominal stress is then
directly obtained by inverting equation (12):

cal _ (‘E‘nom)n inhL ﬁ ) rnQ
Opom = po sinh K Aj ex;{ RTnom]:| (25)

In this expression, three methods have been uséeéteymine the value of the
nominal temperaturd,,n attached to each test. By reference to the thevope
measurements at positions TCO (surface temperatyr@nd TC3 (core temperature
Tc), they correspond to:

Tnom,l = Ts’ Tnom,2 = 05(Ts +Tc)’ Tnom,3 = Tc (26)

In this alternative method — SIM (Simple Identificen Method), the minimum
cost function is calculated by the following exwies:

po L g[aﬁz;j,i(A)—aszaj,iJz

exp
Lexp =1 Mj i=1 Unomj,i

(27)
in which the calculated and measured nominal steeagse used. Regarding now the
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measured nominal stress in equation (27), it isutated as:

exp
o = F

nom S)

whereF®® is the measured tensile force é®ds the original cross-section area of the
specimen.

(28)

The set of parametes can then be identified by minimizing functio# (in
equation (27)), using the 10SO module. Without ode&stion of direct numerical
modelling, the simple identification method is alwsly much faster than the
numerical identification technique. The identifiedr@ameters based on the simple
identification method are listed in Table 2. Thdcatted and deduced nominal
stress-strain curves are shown in Figure 9. A mesidle agreement can be observed
between the predicted and the directly deduced marsiress-strain curves. However,
as listed in Table 2, the assumed nominal tempesitattached to each test greatly
affect the identified values oA and Q, with little influence on the other three
parameters. The simply identified parameters cadigireghe nominal stress-strain
relations, but the prediction ability for real esthould be checked by the accurate
direct modelling of Gleeble tension tests throudecteical-thermal-mechanical
models aforementioned. The results will be discussdide next section.

Table 2: Identified parameters by Simple Identiima Method (SIM)

A(sh Q (kd/mol) o (MPaY) m n
SIM-1: (Trom.) 1017 629.182 0.07493 0.2396  0.0749
SIM-2: (Thom.9) 107 603.446 0.07484 0.2394  0.0774
SIM-3: (Thom.d 10" 580.761 0.07481 0.2393  0.0773

5.2.3 ResultsAnalysis

The simple identification method (SIM) is based emesal assumptions, such as
a uniform temperature distribution and a unifornfodmation in a 10 mm long
working zone. Inversely, no such assumptions hasenbmade in the numerical
identification method (NIM). Such rough assumptionsSIM lead to the obvious
high values ofQ in Table 2 than that in Table h order to better compare those two
methods, the SIM-parameters listed in Table 2 hbgen applied in the direct
modelling of the Gleeble tension tests to calculageforce-elongation curves, which
are compared with the experimental measuremendsyéth the prediction resulting
from the NIM-identification, as shown in Figure IDhe mean errors calculated by
equation (23) are listed in Table 3 for the diffarmethods.

As already seen in Secti@n2.1, the predicted force-elongation curves cated
with the numerical identified parameters (listedTable 1) agree quite well with the
measured experimental data, with the mean erré6.2This expresses the relevance
of the selected constitutive equation (equation))(1Regarding the simple
identification method, it is quite interesting tmte that, contrary to the curves
nominal stressvs nominal strain in Sectiorb.2.2 (Figure 9), the predicted
force-elongation curves associated with the threthods SIM-1, -2 and -3 now show
significant differences. Because of temperatureligras, when the parameters listed
in Table 2 are used in the real direct modelling>tdeble tension tests, this results in
quite different forcevs elongation curves. This is clearly shown in Figtfe The
predicted forces by NIM basically are between tbecds predicted by SIM-1 and
SIM-3, and close to that predicted by SIM-2. Thisams that in the case of simple
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identification, it is preferable to choose the medamperature between core and
surface as the nominal temperature. This leadsetdothier error between predictions
and measurements among the three options regattttngstimation of the nominal

temperature: a 6.6 % error is obtained instead afenthan 11 % for the other two

options.

These results show the difficulty and unreliabildaf the simple identification
method that relies on critical estimations like tfmminal testing temperature and the
assumption of the length of an effective deformatamne. They demonstrate the
advantages and the reliability of the numericahtdieation method in presence of
thermal gradients and deformation heterogeneity.

Table 3: Obtained mean errors on fovselongation curves with the different
identification methods

NIM SIM-1 SIM-2 SIM-3
€mean 22% 11.8 % 6.6 % 11.2%

5.3 Application of the identified constitutive model

In order to test the prediction capability of thewerically identified model, more
complex tensile tests, including stepwise strate-rehanges are considered. They
consist of a succession of constant velocity ardxation stages, as indicated in
Figure 11, in which the specimen elongation andgitye velocity are indicated. The
specimen is extended in four steps with differemfotmation rates that are
sequentially stepwise increased with a 20-seconelsstrelaxation between two
loading stages and a final 60-second stress rédaxat the end of test. Two tests have
been experimentally achieved for the studied UH®Istat two temperatures, 1200
and 1360 °C.

The parameters identified by NIM and SIM methodsehdéeen used in the
modelling of the complex tests, with results shawrrigure 12. It can be seen that
the material behavior is reasonably well reprodumgdhe numerical prediction with
parameters identified by NIM (dash lines). The mecei of the force evolution during
each loading step is quite good, leading to a maminmelative error on the force
value of about 10 % at the beginning of each faiedeau. Parameters identified by
SIM have also been applied to the direct modelbhghose tests. Results show that
numerical predictions with SIM-1 parameters undarege the forces for the case at
1360°C, whereas SIM-2 and SIM-3 over-estimate the fdorethe two last loading
stages Vimp = 1x10° and 5x1d mm §).

However, the agreement between measurements atidtimes by NIM, as well
as SIM, is less satisfying regarding two aspecisst,F-numerical results generally
show an over-estimation of relaxation effects, iegdo under-estimated force values.
Second, the identified numerical model fails in nediction of material softening at
low strain rates (the two last stagesVa, = 1x10° and 5x10 mm s%). This
softening phenomenon could also be observed inr€igOc. That probably reveals a
limitation of the selected rheological model itg@fjuation (12)).

Regarding over-relaxation, it should be noticed,tha shown in equation (25),
the strain hardening effect is combined into thastitutive relation with strain rate
sensitivity effects through a multiplication methoBuring the relaxation stage
(loading is ceased with elongation being fixedg, deformation rate decreases to zero
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dramatically, leading to a rapid decrease of thedigted strength, as has been
observed in Figure 12. The insufficiency of stredaxation prediction by the current
considered constitutive relations probably reflette shortage of this type of
constitutive relations that combines strain handgrand strain rate sensitivity effects
by multiplication and does not include any plastield. The prediction ability for
stress relaxation could be improved by consideangappropriate threshold yield
stress into the elastic-viscoplastic model, oraih de thought that an additive type
constitutive equation, providing a better decouplbetween those terms, would be
preferable. Such constitutive equations have bepplieal for steels at high
temperature by Bellet and Fachinffl and Bellet et af*”.

Let us consider now the material softening phenomehat can be observed at
low strain rate (10 s* to 10° s%) in the simple uniaxial tests (Figure 10c) andhie
complex tension tests Figure 12. The current caistd equation fails in the
prediction of these phenomena. It can be thougdit $bich testing conditions, high
temperature (higher than 1200) and low strain rate (below &%), may generate
specific plasticity phenomena that could be assediaith microstructure changes in
the material. Hence, some specific creep phenonsich as dislocation creep
(involving the movement of dislocations assistedthg diffusion of vacancies or
interstitials) or diffusion creep (involving theofll of vacancies and interstitials under
the influence of applied stresé) could account for the phenomenon. Such specific
phenomena may provide complementary contributianghe current plastic flow
equations that could result in material softeningirdy test and lead to a better
agreement with experimental results.

6 Conclusions

The rheological behavior of UHS steel at high terapee and low strain rates
has been investigated by tensile tests performe@ @leeble thermal-mechanical
simulator and their associated numerical modelliffge thermal gradient existing in
the specimen results in the heterogeneous defamati the specimen, which is a
source of difficulties in the analytical identifitan of the constitutive parameters.
This complexity is taken into account through aroeétic numerical identification
method based upon finite element inverse modellifigis method associates a
coupled electrical-thermal-mechanical direct filtement analysis (code R2SOL-CA)
of Gleeble tests with an optimization module (I0O8@mmercial software). It has
been demonstrated that numerical identificationvioles a better agreement with
experimental data than the approximate simple ifiestion method. In a second part
of the paper, the numerically identified constitatiequation has been proved to be
able to predict reasonably well the measured tenfsiice during more complex
tensile tests consisting of successive loading retekation stages. However, some
inefficiencies or limitations of the considered sbtutive model have also been
pointed out, which gives a clue to further improesits of the constitutive relations
depicting the rheological behavior of steel at vdmgh temperature and low
deformation rates.
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Appendix A: Physical Properties of the UHS Seel

The thermal electrical and thermal properties ef tHHS steel that is studied in the paper
are listed in the following table:

Table A-1: Thermal properties of the UHS grade

T(C) A (Wm'K?) ¢ (J kg™ K7) p(10°kg m’) Tetec (16° Q™ M)
100 40.5 479.0 7.7571 5.23
200 41.0 526.0 7.7225 3.92
300 41.6 582.0 7.6875 3.03
400 40.6 640.0 7.6497 2.40
500 39.5 710.0 7.6137 1.93
600 37.5 810.0 7.5799 1.61
700 33.9 1018.0 7.5560 1.30
800 35.8 1051.0 7.5618 1.03
900 24.8 610.0 7.5391 0.98
1000 27.2 625.0 7.4941 0.95
1100 20.1 641.0 7.4487 0.92
1200 29.7 656.0 7.4080 0.89
1300 30.7 672.0 7.3654 0.86
1400 32.3 688.0 7.3257 0.83
1437 33.6 710.0 7.2900 0.82
1510 40.0 814.0 7.0309 0.76

Poisson ration is arbitrarily taken 0.3. The terapgne dependant expressionpublished
by Mizukami et al®® is used. This expression is the following:

E(GPa =968- 2331 +190x107°T% - 518x107 /T3,  wthT(°C)
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Figure 2: Schematic diagram of thermal-mecharicsbry for tensile test.
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Figure 3: Schematic geometrical model and mesH irséhe modelling of Gleeble
tension test.
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