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Summary

The increase of observations and computational capabilities
favoured the numerical simulation of microstructure to derive
the effective properties of materials. Indeed, the multiscale
approaches, that use homogenization techniques, enable us
to estimate or to give bounds of the overall properties of
heterogeneous media. In this work, the objective is to develop
a three-dimensional mathematical model of the morphology
of the microstructure of rubber composite containing carbon
black nano-fillers. This multiscale model consists of a
combination of some primary models that correspond to
the physical scales of the microstructure. It is identified
according to an original method that uses statistical moments
from experimental transmission electronic microscope (TEM)
image data and from numerical TEM simulations. This
method leads to three-dimensional representative simulations
of microstructures that take the complex clustering effect of
particles in aggregates, into account. Finally, the identified
model of the morphology satisfies the experimental percolation
rate of the carbon black aggregates in the material.

Introduction

The extensive possibilities of three-dimensional observations
of microstructure provide much information about their
morphology, including the nature and the fraction of the
phases in the microstructure and their spatial distribution.
The tremendous increase of computational capabilities
enables us to compute large three-dimensional simulated
microstructures to derive the effective physical properties
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from the knowledge of the microstructure morphology.
This is the multiscale mechanical approach that resorts to
homogenization techniques. Two procedures are considered
to obtain the three-dimensional microstructures. In the first
procedure, three-dimensional information on the morphology
is accurate enough to create a finite element model (Madi
et al., 2007) from the reconstruction of the isosurface from
Marching Cubes technique (Lorensen & Cline, 1987). In some
cases, the high cost of three-dimensional observations or the
lack of information on the three-dimensional morphology
lead to generate simulated microstructures. In this paper, the
microstructure of a rubber with carbon black fillers is modelled
using the statistical information about the morphology from
TEM observations.

To model a microstructure, two ways can be investigated.
The first way consists in modelling the microstructure by a
simple morphological model that uses an elementary cell for
periodical computations. This method is widely used in two
dimensions (Zeman & Sejnoha, 2001) and can be extended
in three dimensions. Indeed, an inclusion located at the
centre of a tetrakaidecaedron cell is used to determine the
effective behaviour of centred cubic symmetry of fillers in
a rubber matrix (Jean, 2009). The second way consists in
simulating more realistic three-dimensional microstructures.
This approach is motivated by the large information data
on the three-dimensional morphology and by the increase
of capabilities of computations.

The first three-dimensional models come from the
tesselation of space into cells. Indeed, the Voronoi tesselation
is widely known and used in the case of polycrystals (Barbe
et al., 2001; Osipov et al., 2008; Gérard et al., 2009) and
granular media (Sab & Boumediene, 2005). The tesselation
of space into a combination of a tetrakaidecaedron with a
dodecaedron cell can model a foam (Weaire, 2008). The
second class of models considers inclusions and/or pores in
a matrix. For instance in Hain & Wriggers (2008), a hard core
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spheres model is performed to describe the aggregates in a
concrete.

In the case of rubber with fillers, in Bergstrom & Boyce
(1998) the carbon black particles are not described but
the aggregates are modelled as squares or dodecaedra in
an elastomeric volume, to derive the large deformation
behaviour from finite element computations. In Jha et al.
(2007), a cuberbille model is considered to describe the
aggregates in the rubber matrix with a third phase that
represents the bound rubber around the aggregates. In Naito
et al. (2007), the aggregates are defined as the union of
carbon black spherical-shaped particles. In Laiarinandrasana
et al. (2009), an ideal microstructure is also obtained by
placing a spherical carbon black particle at the centre of a
tetrakaidecaedron cell to compute the visco-elastic behaviour
of a centre cubic symmetry composite from periodical finite
element computations. In general, all these works favour the
use of a three-dimensional microstructural model to take the
interaction between phases into account.

The objective of the work is to establish a mathematical
model of the morphology of the microstructure to compute
virtual microstructures. Many works deal with the multi-scale
modelling (Jeulin, 1991) and in the particular case of carbon
black composites (Jeulin & Le Coënt, 1995; Savary et al., 1999;
Delarue, 2001; Moreaud & Jeulin, 2005; Jean et al., 2007). The
model is identified according to an original method that uses
statistical moments from TEM image data (Jean et al., 2007).
To underline the efficiency of the method, two materials with
the same volume fraction are studied in this paper. These
materials differ by their time of mixing and therefore by their
carbon black distribution.

In what follows, the materials used in this study are first
introduced (Section ‘Introduction’). Then, the segmentation
of TEM images and morphological measurements are detailed
in Section ‘Segmentation of the TEM images’. In the two next
sections ‘Multiscale model of microstructure’ and ‘Parameter
identification method’, the carbon black distribution is
described by a multiscale model with a specific identification
procedure. Finally, the identified model of the distribution of
carbon black is validated using the percolation criteria.

Materials and methods

Material

Rubber is used in a wide range of technical products. To
improve the physical properties of a rubber, the stiffness
for instance, it must be reinforced by nanoscopic fillers.
Mostly, these nanoscopic fillers come from silica or carbon
black material. This study focuses on rubber with carbon
black fillers. The nature of fillers, their volume fraction and
the mixing time and velocity have a strong influence on
the microstructure of the material. Indeed, the distribution
of fillers tends to be more homogeneous with the time

of mixing. Furthermore, using a high-volume fraction of
fillers tends to create percolating paths of carbon black
in the matrix. These continuous networks appear in the
microstructure for increasing volume fractions when the time
of mixing increases. The phenomena of percolating network
and distribution of fillers, and in general the morphology of
the microstructure, lead to a specific macroscopic physical
behaviour. Indeed, the stiffness and the nonlinearity (Payne,
1962) increase with the volume fraction of fillers whereas they
decrease with time.

Microstructure

Two elastomeric materials, filled with 14% in volume of carbon
black, are considered, called M1 and M2 corresponding to
a low and a high mixing time, respectively. The materials
and the TEM images acquisition were made by Michelin
(Ladoux Technology Center, France). Figures 1 and 2 show
micrographs of these materials obtained by TEM. These images
contain 512 pixels on the length with a resolution of 3.2 nm
per pixel. The slices, cut by a microtome under cryogenic
conditions, dedicated to the TEM observations have a thickness
that is equal to 40 nm (± 10 nm). There are up to two particles
in the thickness and therefore in the final TEM micrographs.
A set of about 40 images per material is needed to reach a
representative sample, as it will be shown in Section ‘Statistical
moments and morphological data’.

Qualitatively, for both materials, three scales are observed in
the microstructure on TEM images. These scales are the scale
of carbon black particles, the scale of aggregates and the scale
of the matrix. The spherical particles have a mean radius of

Fig. 1. Observation of filled rubber’s microstructure, M1 (source:
Michelin).
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Fig. 2. Observation of filled rubber’s microstructure, M2 (source:
Michelin).

20 nm. The union of these particles creates aggregates which
mean size is around 200 nm. The rubber matrix is located
between the aggregates. Compared to material M1, the second
microstructure seems to be more homogeneous. Indeed,
for material M2, the mean distance between aggregates is
smaller than in the case of material M1. To model with
precision the morphology of the microstructure, an accurate
quantitative description is needed. The next section deals
with characterizing the distribution of fillers using a statistical
morphological approach.

Segmentation of the TEM images

This section aims at describing the spatial distribution of
particles and aggregates measuring the mean statistical
quantities over binary TEM images. The first section is
devoted to the presentation of the segmentation algorithm for
binarizing TEM images. In the second section, the statistical
quantities, retained for the characterization, are introduced.
Finally, the obtained mean results are reported, in the case of
both materials considered in this paper.

Segmentation algorithm. The segmentation algorithm includes
all the operations that are required to transform a grey level
image (8 bits) into binary one (1 bit). The threshold which
is the main operation of this transformation, is chosen to
extract a specific part of the initial grey level image. This part
corresponds to the white label.

In the case of the TEM images, the set which has to be
extracted is the carbon black phase. The white dapples in the
grey TEM images are the prints of aggregates which have been

taken off by the blade of the microtome. These prints are also
introduced in the set to be extracted. The retained algorithm
must satisfy several criteria. All the aggregates have to be
included in the final binary images. Furthermore, the initial
external shape of carbon black aggregates has to be described
with precision in the black and white images. The algorithm
has to be also robust, to lead to a semi-automatic procedure
because of the large number of images to be processed. Indeed,
the gradient of the illumination and the difference of contrast
at some parts of each individual image, make the segmentation
procedure difficult. Similarly, a difference of contrast and
illumination between images can be noticed.

Figure 3 illustrates the algorithm developed for the
segmentation. A micrograph of material M1 is chosen to
illustrate each step of the procedure. All these operations
are performed using the software Micromorph C© (CMM/
ARMINES/MinesParisTech/TRANSVALOR, 2002). First, a
median filter is applied to filter noise in the image (Fig. 4b).
Then, two main processes are considered.

The first step aims to extracting the visible black aggregates.
A black top hat, by closing with a disc of a radius of 12 pixels,
is applied to detect the dark zones in the image (Fig. 4c). Then,
two thresholds are applied, independently on the image, with
a level around 30 and 50 that detects the darkest and lightest
zones, respectively (Figs 4d and e). The union of these two
images enables us to define the markers that are required for
the watershed segmentation (Fig. 4e) to extract the boundary
of the visible aggregates (Fig. 4f). A dilatation by an hexagon
of one pixel leads to the final binary image that characterizes
the visible aggregates (Fig. 5b).

The second step consists in extracting the white prints of
aggregates by thresholding the filtered image (Fig. 4a) with a
level higher than 185 (Fig. 5c). The union of this image with
the last resulting image of visible aggregates leads to the final
set of carbon black fillers in the TEM image (Fig. 5d). The values
of the threshold level need sometimes to be slightly changed,
to take the difference of light and contrast between samples of
images into account.

Results. Figures 6 and 7 show examples of TEM micrographs
and their corresponding binary images for materials M1 and
M2, respectively. The apparent area fraction of white phase in
the present TEM binary image is equal to 28.2% and 27.6%
for materials M1 and M2, respectively. This fraction is higher
than the initial volume fraction of the material (14%) because
the TEM technique leads to observations of thick sections,
enlarging the carbon black particles by projection over the
thickness.

The shape of aggregates is well described in the binary
micrographs but it is still difficult to describe with precision
the shape of each individual particle in the aggregate.
Nevertheless, this segmentation algorithm enables us to
characterize accurately the distribution of carbon black fillers
in the polymer matrix.

C© 2010 The Authors
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Fig. 3. Algorithm of the segmentation procedure.

In the next section, the distribution of the carbon black
aggregates of the binary TEM images is characterized using a
statistical approach.

Statistical moments and morphological data

This section introduces the basic elements retained in this
work to characterize the statistical distribution of aggregates.
Let A be a set whose distribution is studied and let consider a
test set which allows to analyse the statistical distribution of
A. Here the test set is a two-point set, a three-point set or a disc
for the covariance, the third-order moment and the closing
curve, respectively.

Covariance. The covariance or two-points probability,
(Matheron, 1967) C (x, x + h) of the random set A is defined
by the probability for the two points x and x + h to belong to A

C (x, x + h) = P{x ∈ A, x + h ∈ A}. (1)

When considering a stationary random set A, the
covariance does not depend on x, and is noted C(h).

The covariance depends on the orientation and on the
modulus of vector h. For a vanishing distance ‖h‖ separating
the two points, the covariance is equal to the one-point

probability to belong to the set A. This probability is the volume
fraction of the random set A in the binary image. In the case
of a stationary random set, for an infinite distance ‖h‖, the
two events become independent and thus the covariance is
the product of each one-point probability P{x ∈ A} × P{x +
h ∈ A}. This asymptotic expression corresponds to the square
of the volume fraction of the random set A in the binary image.
The value of the distance ‖h‖ when this sill is reached is the
range, or characteristic length of the microstructure. For an
isotropic microstructure, the covariance does not depend on
the orientation of h.

Third-order moment. The third-order moment or three-point
probability, T (x, x + h1, x + h2) of the random set A is defined
by the probability for the three points x, x + h1 and x + h2 to
belong to A. For the stationary case, it does not depend on x,
and is defined by

T (h1, h2) = P{x, x + h1, x + h2 ∈ A}. (2)

In this case, the three points are the vertices of an equilateral
triangle, and therefore the moduli of h1 and h2 are equal to‖h‖.
Such as in the case of the covariance, for a null distance‖h‖, the
third-order moment corresponds to the one-point probability.
For an infinite distance ‖h‖, the third-order moment reach

C© 2010 The Authors
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Fig. 4. Segmentation of a TEM micrograph. (a) Initial grey-level image, (b) median filter using a square of three pixels of length, (c) black top hat by a disc
with a radius that is equal to 12 pixels, (d) thresholding, (e) thresholding, and (f) union of binary images (d) and (e).

an asymptotic value which is the cube of the volume fraction
of the set A. The value of the distance ‖h‖ when the sill is
reached, is also a characteristic length of the set. The mean
value of this characteristic length over a sample of images,
must be equal to the one obtained for the covariance, when
using a representative sample of the microstructure in the case
of isotropy.

Closing curve. The closing operation of the set A by the set
D consists in dilating the set A by D and then in eroding the
resulting set by D (Serra, 1982). This operation adds to A some
points of the complementary set Ac of A, according to a size
criterion. The closing curve is defined by the probability for
a point to belong to the set A closed by a disc D(d) with an
increasing diameter d. For a stationary random set, it does not

C© 2010 The Authors
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Fig. 5. Segmentation of a micrograph. (a) Watershed on the gradient of the image 4(f), (b) binary image of the visible carbon black particles, (c)
thresholding, S = 185, to extract the prints of erased carbon black particles and (d) final binary image of carbon black.

depend on the location of point x. We have

C l(d ) = P{x ∈ (A ⊕ D (d )) � D (d )}. (3)

Results. Figures 8 and 9 show the covariances and the third-
order moments measured on images of a representative sample
of the material M1. Each image is made on a separate slice
generated at random in the material. Therefore, a wide range
of orientations is sampled in the material. No significant
difference appears in the various curves of Figs 8, 9, 11
and 12, meaning that the microstructure is isotropic at the
scale of observation. Additional measurements of covariance
were made on two orthogonal directions (the horizontal and
vertical orientations in images like in Figs 6 and 7), showing
no significant difference either. We can conclude that the
distribution of carbon black aggregates is isotropic, which
was expected according to the mixing process. Figure 10
shows the corresponding mean covariance and mean third-
order moment. For both moments, the characteristic length is
around 40 pixels hence 128 nm. The value for the null distance

h corresponds to the apparent area fraction of carbon black
fillers on binary TEM micrographs, around 28%. This value
is equal to the double of volume fraction of fillers in material,
because of the effect of the thickness of the slice. The area
fraction on a real section (with zero thickness) would provide
the effective volume fraction of the material (14%). Figures 11
and 12 show the covariances and the third-order moments of
a representative sample of the material M2. Figure 13 shows
the corresponding mean covariance and mean third-order
moment. For both, the characteristic length is around 30 pixels
hence 96 nm.

The curves in Figs 8–12 show the fluctuations, that
result from the heterogeneity of the microstructure. The
variance of the area fraction enables us to provide error bars
corresponding to the 95% interval of confidence. The area
fraction range is 24–33% for material M1 and 27–30% for
material M2. Figure 14 shows the closing curve for both
materials as a function of the diameter d of the disc for the
closing operation. The closing curve enables us to describe
the matrix morphology. Here, in the case of material M1, the
proportion of the white phase tends to 100% for larger sizes,

C© 2010 The Authors
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Fig. 6. TEM micrograph of material M1 (a) and its binary image (b).

as compared to the material M2. Indeed, the material M1 is
less homogeneous, thus the areas of matrix located between
aggregates are larger.

Multi-scale model of microstructure

This section aims at modelling the morphology of carbon
black network in the rubber matrix. The first part introduces
the basic primary model which is the Boolean model of
spheres. In the second part, this primary model is used to
generate the multiscale model that takes the three scales of
the microstructure into account.

The Boolean model of spheres. The Boolean model of spheres
(Matheron, 1967; Serra, 1982) is obtained by implantation of

Fig. 7. TEM micrograph of material M2 (a) and its binary image (b).

primary spheres A∗
i on Poisson points xi, with possible overlaps

(A = ∪ A∗
i ). The covariance Q(h) of the complementary set Ac,

can be expressed as follows:

Q (h) = (1 − VvA)2exp(θ K (h)), (4)

= (1 − VvA)2−r (h), (5)

with

r (h) = K (h)
K (0)

, (6)

K (h) = V (A∗ ∩ A∗
−h), (7)

where VvA is the volume fraction of the set A, θ is the Poisson
point process intensity, V is the volume and K(h) and r(h)

C© 2010 The Authors
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Fig. 8. The covariances of the images of material M1.

Fig. 9. The third-order moments of the images of material M1.

Fig. 10. The mean covariance and the mean third-order moment of
material M1.

Fig. 11. The covariances of the images of material M2.

Fig. 12. The third-order moments of the images of the material M2.

Fig. 13. The mean covariance and the mean third-order moment of
material M2.

C© 2010 The Authors
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Fig. 14. The mean closing curves of materials M1 and M2.

the geometrical covariogram of the grains and the normalized
one, respectively. The covariance of a Boolean model of spheres
depends on the volume fraction, VvA and on the radius of the
spheres, RA, which can be constant or can follow a statistical
distribution.

A combination of three Boolean Models. To model the
multiscale microstructure of rubber with carbon black fillers,
a combination of three basic Boolean models is needed (Jeulin,
1991) as in the case of carbon black in a polymeric matrix
(Jeulin & Le Coënt, 1995; Savary et al., 1999; Delarue, 2001;
Moreaud & Jeulin, 2005; Jean et al., 2007). Each Boolean
model defines a physical scale of the microstructure identified
on TEM images: the particles, the aggregates and the matrix.

For the carbon black particles, a Boolean model of spheres
with a radius following a Gaussian distribution is considered
(Fig. 23a). The corresponding set is called Ap. According to
the nature of the carbon black, the Gaussian law is troncated
at 10 and 30 nm and has a mean value equal to 20 nm.
According to the Boolean model, the particles can overlap
in the final aggregates. This feature is retrieved physically.
Indeed, carbon black particles exhibit a turbostratic structure
of graphite planes (Fig. 15a) as illustrated in Fig. 15(b) with the
model presented in (Donnet, 2003). The turbostratic structure
is the key feature that enables the particles to merge and to
create aggregates.

For the aggregates, some measures of the shape factor
were performed on TEM observations for about thousands
aggregates by the partner, Michelin. From the TEM
observations, the following morphological measurements
were done on projection on a plane of the initial three-
dimensional aggregates. Figure 16 shows the proportion of
aggregates as a function of the shape factor measured on
the convex hull of the projections. The values of shape factor
are in a range 0.5–1.2 and the mean value is equal to 0.8.
Thus, most of aggregates do not correspond to spheres but
more to ellipsoids, with an elliptic projection. Here, due to

Fig. 15. Structure of carbon black particle : (a) a TEM observation of the
turbostratic structure of a particle and (b) a model of the structure, after
(Donnet, 2003).

Fig. 16. Distribution of shape factor measured on the convex hull of the
projection of about 1000 aggregates (Michelin).

C© 2010 The Authors
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Fig. 17. Ellipse with its two characteristic lengths R1 and R2.

Fig. 18. Distribution of the projected area measured on about 1000
aggregates (Michelin).

the two-dimensional analysis, the assumption of spheroidal
aggregates, with two characteristic lengths, named R1 and
R2, is retained (Fig. 17).

The shape factor FF is given as a function of perimeter P and
area A by

F F = 4π × A
P 2

. (8)

Figures 18 and 19 show the distribution of area and
perimeter of projections for the thousands aggregates,
respectively. In the case of ellipses, the area and the perimeter
are expressed as follows, as functions of the two characteristic
lengths R1 and R2{

A = π R1 R2,

P 
 2π

√
1
2 (R2

1 + R2
2 ).

(9)

Fig. 19. Distribution of the perimeter of projections measured about
thousands aggregates (Michelin).

Fig. 20. Obtained couples (R1, R2).

R1 is written as function of R2

R2
1 = 1

2

(
P
π

)2

− R2
2 . (10)

From the square of the Eq. (9)

R4
2 − 1

2

(
P
π

)2

× R2
2 +

(
A
π

)2

= 0. (11)

Finally, the couple of lengths, R1 and R2 is obtained as follows:⎧⎪⎨
⎪⎩

R2
1 = 1

4

(
P
π

)2 + 1
2

√
1
4

(
P
π

)4 − 4
(

A
π

)2
,

R2
2 = 1

4

(
P
π

)2 − 1
2

√
1
4

(
P
π

)4 − 4
(

A
π

)2
.

(12)

Figure 20 illustrates the couples (R1, R2) obtained from the
measurement on TEM observations of perimeter and area on
the thousands projected aggregates. A linear dependence is
found between R1 and R2, R2 = 2.5535R1 + 12.0916 from a
linear regression. Figures 21 and 22 give the distribution of R1
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Fig. 21. Log-normal distribution of R1.

Fig. 22. Log-normal distribution of R2.

and R2, respectively. These distributions follow a log-normal
distribution.

According to these results, the aggregates are modelled by
a Boolean model of spheroids with axis length following a
log-normal distribution with a mean value equal to 200 nm
(Fig. 23b) and with a uniform orientation. We first generate a
realization R1. Then R2 is estimated from the linear regression.
A prolate spheroid is generated with two equal axis R1 (<
R2). In the following, these spheroids are called the inclusions
because they generate the final aggregates. The resulting set
is Ai. For the matrix, a Boolean model of spheres with constant
radius is considered (Fig. 23c). These spheres are called the
exclusions because there are not aggregates into these Boolean
model. The resulting set is Ae.

The final multiscale model, defined by the set ACB of
carbon black aggregates, is described by the particles whose
centres belong to the intersection set of the inclusion Ai

Fig. 23. Multiscale model of microstructure: (a) Boolean model of
spherical particles (Ap); (b) Boolean model of spheroidal inclusions (Ai)
and (c) Boolean model of spherical exclusions (Ae).

C© 2010 The Authors
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Fig. 24. (a) Final multiscale model of microstructure and (b) an example
of carbon black aggregate in the simulated microstructure.

with the complementary set of exclusions Ac
e (Fig. 24a).

Figure 24(b) illustrates the structure of an aggregate in
the simulated microstructure. This model is a Boolean Cox
model where the usual Poisson point process of the centres
of the standard Boolean model is replaced by a Poisson point
process limited to Ai ∩ Ac

e . In this model, four parameters are
unknown, the volume fraction of each scale, Vvp, Vvi and
Vve and the radius of the exclusion spheres Re. To model the
microstructure of the material, these four parameters must be
estimated from statistical moments and morphological data
measured on TEM images. Because no closed-form analytical
expression is available for the corresponding statistical data,
the identification will be made in the next section from
microstructure simulations.

Parameter identification method

This subsection describes the original method proposed in
this work to identify the multi-scale microstructure of rubber
with carbon black aggregates. This method can be easily
extended to the case of any kind of microstructure. First, the
two steps of the algorithm are introduced. Then, the results
obtained in the case of the two materials M1 and M2 are
presented.

The algorithm follows two steps. The first step consists in
finding a primary set of parameters adjusting the analytic
expression of the covariance on the experimental data. This
analytic expression comes from a model of microstructure
close to the described Boolean Cox model, but slightly different,
for which a closed form of the covariance is available. This
model is the intersection of three Boolean models of spheres
with a constant radius for each one. The resulting set is written
as follows:

AC B = Ap ∩ Ai ∩ Ac
e . (13)

Thus, the covariance of the carbon black aggregates of the
model reads

C C B(h) = C p (h) × C i (h) × Q e (h) with

×

⎧⎪⎨
⎪⎩

C p (h) = Q p (h) + 1 − 2(1 − Vvp ),

C i (h) = Q i (h) + 1 − 2(1 − Vvi ),

Q e (h) = (1 − Vve )2−re (h). (14)

The thickness t of the TEM slice (t 
 40 nm) is similar to
the size of a particle (Rp 
 20 nm). Thus, up to two particles
can be seen on the TEM images, in the thickness. To take this
thickness into account, the analytic expression of the resulting
covariance has to be corrected by modifying the covariance
that corresponds to the particle set (Savary et al., 1999):

C C B⊕t(h) 
 C p⊕t(h) × C i (h) × Q e (h). (15)

In the expression (5), the spheres of carbon black nano-
particles become sphero-cylinders, as a result of the projection
through the thickness. These sphero-cylinders are obtained by
dilating the spheres by a vector whose norm corresponds to the
thickness of sections. Here, the effect of the dilatation on the
larger spheres of the model corresponding to aggregates and
to zones of exclusions is neglected. Thus, the apparent volume
fraction is written as follows, using the theoretical expression
given for the Boolean model:

(1 − Vvapp
p ) 
 P{x ∈ Ac ⊕ t} = (1 − Vvp )

V (A∗⊕t)
V (A∗ ) (16)

and the geometrical covariogram for a vector h parallel to the
projection plane reads

K A∗
p⊕t

(h) = K S(h) + tK D (h), (17)

where, KS(h) is the geometrical covariogram of a sphere and
KD(h) the one of a disc with a constant radius. Indeed, a
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sphero-cylinder can be described as the union of a cylinder with
two hemispheres located at the ends. For this first part of the
algorithm, the spheroidal shapes to generate the aggregates
are considered as spheres associated with a constant radius.
Similarly, the radius of spherical-shaped particles is constant.
Finally, six parameters are fitted from the analytic covariance:
the three volume fractions and the radius of each Boolean
model. In the obtained set of parameters, only the four initial
unknowns are then introduced as an initialized set in the
optimization part of the algorithm.

In the second step of the algorithm, the four parameters,
Vvp, Vvi, Vve and Re are estimated by minimizing the
error on the covariance, on the third-order moment
and on the closing curve. This optimization consists in
computing virtual TEM images from three-dimensional
simulated microstructures and in computing a least square
error between the corresponding statistical moments and
morphological data to the experimental one. To create a
numerical TEM image, a slice with the same thickness as the
TEM slice is extracted (Fig. 25b) from a three-dimensional
simulation of microstructure of 1500 nm length (Fig. 25a).
This numerical slice is composed by two-dimensional images of
1-pixel thickness. These two-dimensional images are projected
on a plane to create the equivalent TEM thick section
(40 nm) (Fig. 25c). For a set of parameters, around 40–50
numerical TEM images are generated. The mean statistical
moments and closing curve are then measured over the
sample.

The optimization procedure resorts to a Levenberg–
Marquardt algorithm implemented in the Z-Opt module of
Zset (or ZeBuLoN in French) (Mines ParisTech, 2003). To
obtain relevant values, the parameters are bounded. First of
all, all the volume fractions are obviously smaller than 100%.
The volume fractions of particles and zones of exclusions are
higher than the percolating volume fraction for a Boolean
model of spheres that is close to 30%. Indeed, the particles
percolate in an aggregate and the matrix percolates in the
material. The volume fraction of inclusion has a range 0–
100%. The radius of the spheres describing the zones of
exclusions has a range 20–200 nm which corresponds to
the mean radius of a particle and to the mean size of an
aggregate for the lower and upper bounds, respectively. Using
this range, the higher zones of exclusions can be described
as the union of smaller spheres. During the optimization,
the parameters are incremented according to the Levenberg–
Marquardt algorithm. The increment is initialized as 10%
of the initial value for all the parameters. This method
of identification is original in the sense of optimizing on
simulation of microstructures and can be used for any
kind of geometry of microstructures and for any sort of
observations.

In the next section, the model of microstructure of the two
materials of the study is identified based on this calibration
method.

Fig. 25. Simulation of a numerical TEM image from a three-dimensional
simulations of the microstructure: (a) three-dimensional simulation of
microstructure, (b) perspective view of a thick numerical slice and (c)
projected numerical TEM thick slice.

Results

The identified statistical morphological data are presented in
the case of the material M2 to illustrate the method. All the final
parameters obtained for both materials are given in Tables 1
and 2.
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Table 1. Set of parameters fitted on the analytic covariance for both
materials, M1 and M2.

Particles Inclusions Exclusions
Rp(nm) Vv

app
p /Vvp Ri(nm) Vvi Re(nm) Vve

M1 15 0.72/0.35 90 0.52 62 0.22
M2 13 0.93/0.44 52 0.66 60 0.55

Table 2. Set of parameters identified on
simulated microstructure for both materials,
M1 and M2.

Particles Inclusions Exclusions
Vvp Vvi Re(nm) Vve

M1 0.5 0.5 56 0.46
M2 0.5 0.47 72 0.41

Fig. 26. The analytic covariance calibrated on the experimental data of
the material M2.

Analytic fitting from the covariance (step 1)

Figure 26 shows the analytic covariance fitted on the
experimental data for material M2. Table 1 gives the two sets of
parameters identified for both materials, M1 and M2. Special
attention is focused on the value obtained for the apparent
volume fraction of the particles in the thickness (Vv

app
p ) and

the corrected volume fraction for a zero thickness slice (Vvp).
The resulting volume fraction of carbon black is 0.1434
and 0.1442 for the materials M1 and M2, respectively. The
radius of spherical particles is approximatively the same for
both materials. In the following, only the radius of spherical
inclusions and the volume fractions of the three scales are
retained for the final identification of the set of parameters on
the simulated TEM observations (step 2).

Fig. 27. The covariance on simulated microstructures optimized on the
experimental data of the material M2.

Fig. 28. The third-order moment on simulated microstructures optimized
on the experimental data of the material M2.

Identification on simulations of microstructure (step 2)

Figures 27–29 illustrate the identified covariance, third-order
moment and closing curve respectively for the material M2.
Figure 30 shows the evolution of the error as a function of
the number of iterations of the optimization computation. The
error is the sum of the three least square norms, for both
statistical moments and closing curve. For each criterion, the
least square norm is expressed as follows:

1
2

( f (x) − y(x))TW( f (x) − y(x)), (18)

where f (x) is the (N × 1) matrix of the simulated data. y(x)
is the (N × 1) matrix of the experimental data. Finally, W
is the positive diagonal (N × N) weight matrix, N being the
number of points which are compared in the calculation of
the least square norm. Here the number of points is the same
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Fig. 29. The closing curve on simulated microstructures optimized on the
experimental data of the material M2.

Fig. 30. The error as a function of the number of iteration in the
optimization computation for the material M2.

for the three criteria, and the weight is equal to 30 000 in
the case of the statistical moments and 20 000 for the closing
curve. Indeed, the statistical moments gives a more accurate
information on the morphology than the closing curve.

The Table 2 gives the final set of four parameters optimized
for both materials. Figures 31 and 32 show a simulated TEM
image of materials M2 and M1, respectively. For each material,
the aggregates and the matrix zones between aggregates
are definitely well represented, as compared to binary TEM
images. Regarding the mixing time, the distribution of
carbon black fillers of material M1 is less homogeneous
than the one of material M2. Hence, the simulations of
microstructure of material M1 show continuous paths of the
carbon black fillers from one side of the simulation to another
contrary to the material M2. This continuous path is called a
percolated path of the fillers in the simulation. Figure 33(a)
illustrates a percolated three-dimensional simulation of the

Fig. 31. A numerical TEM image of the material M2.

Fig. 32. A numerical TEM image of the material M1.

microstructure of the material M2, where each aggregate is
labelled by a colour. Figure 33(b) shows the large percolating
network in the simulation. The percolation of the fillers can be
a useful criterion to validate the identification of the model
for a material. The next section deals with the validation
of this identification for both materials regarding the global
percolation criterion.
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Fig. 33. A three-dimensional simulation of the material M1 with the
different aggregates (a) and the percolating network (b).

Discussion: validation of the model according to a
percolation criterion

Percolation behaviours

For heterogeneous media the observation of the percolation
behaviour of fillers in the matrix enables one to better
understand the relation between the material physical
behaviour and the microstructure. In Kanit et al. (2006),

two families of percolation behaviour are introduced, the
geometrical percolation and the mechanical one. For a
two phase material, a phase is considered percolating
geometrically when a continuous path of this phase can
be drawn throughout a specimen. A heterogeneous loaded
material is mechanically percolating when a continuous
path of the same mechanical behaviour can be found
throughout a specimen. In practice, regions with the same
material behaviour are defined according to a threshold on a
mechanical property. As a matter of fact, every geometrically
percolating specimen is also mechanically percolating. In
the case of a geometrically nonpercolating specimen, the
elements belonging to the phase can be close enough so
that the mechanical local behaviour of the second phase in
between has the same behaviour as the first phase. In this
work, the geometrically percolation behaviour is studied for
the simulated microstructures. The mechanically percolation
behaviour is discussed in (Jean et al., accepted) along with the
well- known stress amplification of this rubber composite.

Geometrical percolation

Several experimental and numerical techniques can be used to
measure geometrical percolation behaviour in materials. Two
kinds of geometrical percolation behaviour can be defined: the
global percolation and the local one. The global percolation
concept is widely used. A simulation is said to be percolating
when a continuous path of its fillers connects one face to
the opposite one. The local percolation can be defined in
globally percolating or non-percolating simulation. The local
percolation concept is related to the length of percolating paths
in the material for small scales. In practice, each path length of
one phase through the complementary one is measured. This
local measurement gives relevant pieces of information on the
local phase arrangement and therefore the local mechanical
behaviour.

For the rubber with carbon black fillers studied in this paper
(Pécastaings, 2005) measured the percolating path in thick
slices around 200 nm using a resiscope. This experimental
technique consists in measuring the difference of electric
potential between the two sides of the slice crossed by an
electrical current. These measurements depend strongly on
the experimental conditions. For instance a local difference of
thickness of the slice due to the cutting process has a strong
influence on the difference of electric potential. Nevertheless,
they enable us to give trends when comparing materials. The
local percolation was studied by estimation of percolation
paths in simulated slices of both materials with increasing
thickness. Up to 200 nm in thickness, the observation from
resiscope and from simulations on both materials are in
agreement with the global percolation. However, the decrease
of the amount of the connected area with the thickness is
stronger on the experimental observations made with the
resiscope (Jean, 2009). Due to the lack of robustness of the
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Fig. 34. Experiment resistivity of two set of materials.

local measurement, the global percolation measurement is
chosen to validate the model.

Validation

Figure 34 illustrates the evolution of the resistivity (in
logarithm scale) as a function of the volume fraction of fillers
in material for two mixing times. The materials M1 and M2

are pointed on the graph for a volume fraction that is equal to
14%. For the low mixing time (M1), the resistivity decreases
significantly with the volume fraction of fillers increases.
This phenomenon is typically encountered for a percolating
threshold. Here, the material M1 is considered to percolate
regarding its resistivity. Contrary to the material M1, the
material M2 does not percolate because its resistivity is high.
These experimental results seem are in agreement with the
simulations obtained in the Section ‘Results’.

To validate the model capability to account for the
global percolation, a quantitative study is carried out. This
study consists in determining the proportion of percolating
realizations for a given size of simulation. Here, a simulated
material is considered percolating when more than 50% of
simulations for a given size percolate. During the simulation
of a realization of microstructure, each aggregate is labelled.
A realization is considered to percolate when a same label can
be found on two opposite sides of the realization. Figure 35
shows the evolution of percolating proportions of simulations
as a function of the simulation length for both materials,
M1 and M2. For a given size of simulation, 10 realizations
were generated. The material M2 percolates for sizes of
simulation smaller than 700 nm which corresponds to the
size of the largest aggregates in the material. For larger
sizes of simulations, the material M2 does not percolate.
On the opposite, the material M1 always percolates for
every simulation sizes. These results are in agreement with
the experimental ones. Thus, the model of microstructure
associated with the method of identification proposed in this

Fig. 35. Proportions of percolating simulations of microstructures as
function of the size of the simulation (L in nanometres) for the materials
M1 and M2.

paper enables us to account for the morphology of the fillers at
large scales and is validated from a macroscopic percolation
criterion.

Conclusion

An original method was proposed in this paper to model the
multiscale distribution of carbon black fillers in an elastomeric
matrix. A mathematical model was presented to take into
account all the scales in the microstructure, the particle, the
aggregate and the matrix. This model was identified from
the statistical moments and morphological data simulating
numerical TEM images. This method is generic enough to be
used for others materials with any geometry.

Two materials with the same volume fraction of fillers but
with a different mixing time were identified according to
the method proposed in the paper. Due to the difference of
mixing time, the TEM observations have shown clearly that
the dispersion of fillers of one material is less homogeneous.
One of the main question addressed in this paper concerns the
capability of the proposed multiscale model associated with the
original identification method to predict the strong difference
of the three-dimensional morphology between both material.
The global percolation criteria has been retained to validate
the model.

Regarding the measurements of the resistivity of both
materials, only one material percolates. The measurements
of the proportion of percolating realizations for increasing
sizes of simulations was in agreement with the experimental
results. It has thus proved the relevance and the robustness
of the strategy presented in this paper to summarize the
microstructure by a multiscale model of random set.

A further validation was made by comparison of the
elastic shear modulus of materials M1 and M2 from their
microstructure to the macroscopic measurements (Jean,
2009; Jean et al., 2010). Finally, it will be possible to use the
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morphological model to propose new materials with improved
properties.

Acknowledgements

The authors thank the Research Technology Center of
Michelin for their financial and Scientific support.

References

Barbe, F., Decker, L., Jeulin, D. & Cailletaud, G. (2001) Intergranular and
intragranular behavior of polycrystalline aggregates. Part 1: FE model.
Int. J. Plasticity 17, 513–536.

Bergstrom, J. & Boyce, M.(1998) Constitutive modelling of the large strain
time-dependent behavior of elastomers.J. Mech. Phys. Solids 46, 931–
954.

CMM/ARMINES/MinesParisTech/TRANSVALOR (2002) Micromorph,
image analysis & mathematical morphology. http://cmm.ensmp.fr/
Micromorph/.
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