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Failure in aretionary wedgeswith the maximum strength theorem:numerial algorithm and 2D validation.P. SouloumiaLaboratoire MSS-Mat, CNRS,Eole Centrale Paris, Chatenay Malabry, Frane,K. KrabbenhøftCentre for Geotehnial and Materials Modelling,University of Newastle, NSW 2308, Australia,Y.M. LeroyLaboratoire de Géologie, CNRS,Éole Normale Supérieure, Paris, Frane,andB. MaillotDépartement Géosienes et Environnement,Université de Cergy-Pontoise, Frane.AbstratThe objetive is to apture the 3D spatial variation in the failure mode ouring in aretionary wedges,and their analogue experiments in the laboratory, from the sole knowledge of the material strength and thestruture geometry. The proposed methodology relies on the maximum strength theorem whih is inheritedfrom the kinematis approah of the lassial limit analysis. It selets the optimum virtual veloity �eldwhih minimizes the tetoni fore. These �elds are onstruted by interpolation thanks to the spatialdisretization onduted with ten-noded tetrahedra in 3D, and six-noded triangles in 2D. The resulting,disrete optimization problem is �rst presented emphasizing the dual formalism found most appropriatein the presene of non-linear strength riteria, suh as the Druker-Prager riterion used in all reportedexamples.The numerial sheme is �rst applied to a perfetly-triangular 2D wedge. It is known that failure ours tothe bak, for topographi slope smaller than, and to the front for slope larger than, a ritial slope, de�ningsub-ritial and super-ritial slope stability onditions, respetively. The failure mode is haraterized bythe ativation of a ramp, its onjugate bak thrust and the partial or omplete ativation of the déollement.It is shown that the ritial slope is aptured preisely by the proposed numerial sheme, the ramp andthe bak thrust orresponding to regions of loalized virtual strain. The in�uene of the bak-wall fritionon this ritial slope is explored. It is found that the failure mehanism is haraterized by a thrust rootingat the base of the bak wall and the absene of bak thrust, for small enough values of the frition angle.This in�uene is well explained by the Mohr onstrution and further validated with experimental resultswith sand, onsidered as an analogue material. 3D appliations of the same methodology are presented in aompanion paper.
Otober 26, 2009Submitted for publiation. 1



1 IntrodutionThe objetive is to determine the 3D failure mode whih haraterizes the onset of thrustingor folding in fold-and-thrust belts and in aretionary wedges. The numerial method whih isproposed has its root in the kinematis approah of limit analysis although only the knowledge ofthe material strength is required. The numerial algorithm and its 2D validation are presentedin this ontribution, the 3D appliations in a ompanion paper (Souloumia et al., 2009).The kinematis of 2D folds and thrusts has been studied at length and is now well apturedby geometrial onstrutions inspired by the seminal work of Suppe (1983). The absene of anyonept of mehanis, suh as material strength and mehanial equilibrium render howeverimpossible the omparison between two geometrial onstrutions neessary to selet the mostrelevant. The merit of these onstrutions is however lear in view of their simpliity and theirpotential appliation in the oil industry, one ompleted by the omputation of the temperatureevolution (Zoetemeijer and Sassi, 1992, Siamanna et al., 2004).The line of work whih has been followed by the authors tries to take the most advantage ofthe 2D geometrial onstrution while aounting for material strength and mehanial equilib-rium. The priniple of minimum dissipation was applied by Maillot and Leroy (2003) in theirstudy of a simple fault-bend fold, with either brittle or dutile material response, to �nd theoptimum orientation of the bak thrust. A more rigorous framework is now adopted, based onthe maximum strength theorem for fritional and ohesive materials (Salençon, 1974, 2002). Itwas applied to the evolution of a kink-fold by Maillot and Leroy (2006) proposing that, at anystage of the struture development, its main geometrial attributes, suh as the kink dip andwidth, ould be found by minimizing the upper bound to the applied tetoni fore. Cubas andal. (2008) extended this argument to study sequenes of thrusts within an aretionary wedge.Souloumia et al. (2008) proved that the optimum stress state ould be alulated at any stepof the thrusting sequene development, based on the stati approah of the limit analysis.There is a de�nite desire to propose 3D onstrutions of folding and thrusting whih is ofteninhibited by the lak of intuition for parameterizing simply the failure mehanism (e.g. rampand bak thrust system) at the onset and during the development of the fold. It is thus neessaryto develop a systemati proedure to study the failure mode of 3D geologial strutures. Forthe onset, the kinematis approah of limit analysis ould provide a �rst insight on the failuremode. It is the subjet of the present ontribution and it is hoped that the results ould helpin onstruting the 3D kinematis of the evolving strutures.The proposed method, referred to as the maximum strength theorem, is based on the kine-matis approah of lassial limit analysis. It is emphasized that a omplete plastiity theoryis not required and the provision for the ohesive and fritional roks of interest of a strengthdomain, onvex in the stress spae, su�es to obtain an upper bound to the applied tetonifore. Over the years, a number of di�erent numerial formulations of the maximum strength (orupper bound) theorem have been proposed. Early formulations, fousing on two-dimensionalproblems (Anderheggen and Knöpfel, 1972; Pastor, 1978; Bottero et al., 1980; Sloan, 1989),typially involved a linearization of the strength domain and made use of the simplex method orone of its derivatives to solve the resulting linear programs. Inspired by the progress in generalonvex programming, these linear programming formulations have reently been replaed bymore general non-linear formulations avoiding the need to linearize (Lyamin and Sloan, 2002;Krabbenhøft and Damkilde, 2003). The most reent development on this front has been the ap-pliations of the so-alled oni programming algorithms to solve typial limit analysis problemssuh as the ones onsidered here as well as a range of other plastiity problems (Krabbenhøft etal., 2007; Krabbenhøft et al., 2008). These algorithms are partiularly suited for dealing withnon-smooth strength domains suh as those typially haraterizing the strength of ohesive,2



fritional materials (Druker-Prager, Mohr-Coulomb, et...).In its primal form the maximum strength theorem is formulated in terms of kinemati vari-ables, the virtual veloities. Their distribution is onstruted by interpolation thanks to a spaedisretization. This primal form with disretization leads to a onvex minimization problem.Alternatively, it is possible to work diretly with the dual form of the theorem whih leadsto a maximization problem reminisent of the stati approah leading to lower bounds to thetetoni fore. The dual variables of the veloities (of its symmetri gradient to be more pre-ise) in the sense of power are regarded as stresses after appropriate saling, although theydo not onstitute statially admissible �elds (these dual variables do not satisfy equilibrium).From a numerial point of view, this alternative, dual approah has a number of advantages.For example, it is possible to impose ompletely general strength riteria in a straightforwardmanner whereas a primal upper bound formulation would require the spei�ation of the orre-sponding support funtion. This funtion de�nes the maxium power whih ould be providedfor a given veloity and strength domain. Its analytial expression is ertainly non-trivial toderive and the resulting onstraints di�ult to aount for in a lassial optimization ode.Furthermore, following the approah proposed by (Krabbenhøft et al., 2005), the inorporationof kinematially admissible veloity disontinuities is straightforward and will be proposed inthis paper for the general three-dimensional ase for the �rst time.The paper ontents are as follows. The next setion is devoted to the presentation of thenumerial algorithm. The 2D setting is most suited for suh presentation for sake of simpliityand the extension to 3D is postponed to Appendix B. The onstrution of the dual problemis highlighted with the help of the primal-dual algorithm of linear programming summarizedin Appendix A. Appendix C presents the link between these strength domains, typial of soilmehanis, and the oni programming algorithms adopted in Mosek (2008), whih is used forall examples reported here. Setion 3 is onerned with 2D appliations to aretionary wedgesof perfet triangular shape. Failure in the bulk ours either to the bak or to the front, withthe omplete ativation of the weak déollement at the base, depending on the topographislope. The transition from sub-ritial (failure to the bak) to super-ritial (failure to thefront) is aptured exatly, validating the numerial proedure. It is shown that the fritionangle on the bak wall in�uenes the failure mode for sub-ritial onditions. For small valuesof the frition angle, a single ramp roots to the base of the bak wall whereas a ramp andbak thrust ours for larger values. The transition in failure mode ours for a frition angledeteted numerially whih is exatly the one predited by the Mohr's onstrution. It is alsoshown that these two modes of failure are reprodued in the laboratory experiments with sandby seleting the appropriate frition onditions at the bak wall ontat.2 The maximum strength theorem with spatial disretizationThe objetive of this setion is to present in three steps the theory applied in the next setion for2D wedges and for 3D examples in the ompanion paper. The �rst step is the presentation of theupper bound theorem of lassial limit analysis, as it is found in Salençon (2002) and Maillotand Leroy (2006). It is proposed here to approximate the strength domain externally by aseries of hyper-plane, in the appropriate stress spae, to failitate the set up of the optimizationproblem. The seond step is the disretization of the spae and the onstrution of interpolationsfor the virtual veloities as well as for the virtual salars assoiated to these hyper-planes.The third step onsists in the dualization of the upper bound problem after disretization,resulting in a maximization problem where the basi unknowns are saled to have dimension ofstress. This dual formulation is used in all examples but should not be onfused with the lower3



bound approah (onstruted with statially admissible stress �elds) for reasons whih are alsodisussed.2.1 Summary of the upper bound theorem of limit analysisThe upper bound theorem of limit analysis is alled here the maximum strength theorem toemphasize that only the onept of strength is required. This theorem is now presented indetails.The starting point is the theorem of virtual power whih states the equality between theinternal and the external powers for any kinematially admissible (KA) veloity �eld. The set
Su of KA �elds omprises any �eld Û whih is zero over part of the boundary ∂Ωu where thedisplaements are presribed. Elements of Su are identi�ed by a superposed hat. The externalpower, de�ned by

Pext(Û) =

∫

Ω

ρg · ÛdV + α

∫

∂ΩT

To · ÛdS , (1)is due to the power of the veloity over the body fore g, ρ is the material density, and ofthe fore applied on part of the boundary ∂ΩT . This applied fore is assumed to be known indistribution To but not in its intensity de�ned by the salar α whih is the unknown of theproblem and for whih we seek the best upper bound. Note that in (1) and in what follows,vetors and subsequently tensors, are identi�ed with bold haraters. The internal power isgiven by
Pint(Û) =

∫

Ω

σ : d(Û) dV , (2)where σ and d(Û) are the Cauhy stress tensor and the virtual rate of deformation tensor(also denoted d̂) based on Û, respetively. The double dot produt in (2) between these twotensors results in σij d̂ji in terms of their omponents in an orthonormal basis. The expression(2) for the internal power does not aount for potential disontinuities in the veloity �elds andbulk deformation is the only soure of dissipation. Expliit aount of disontinuities, whihorientations are part of the unknowns of the problem, is typial of analytial developments butis not neessary in the numerial formulation onsidered in this paper. However, pre-de�ned,physial disontinuities thus of known geometry are approahed as zones of bulk material havinga zero thikness. Their ativation is marked by a loalized deformation within these narrowzones. The onventional �nite-element formulations annot ope with the limit of zero lengthin one diretion for an element beause of the resulting ill-onditioning of the sti�ness array(see e.g. Day and Potts, 1994). To the ontrary, the formulation adopted in the following doesnot involve suh ompliation. Indeed, as it will be disussed in the last part of this setion,it is entirely possible to inlude pathes of elements with a thikness identially set to zero.This approah was �rst suggested by Krabbenhøft et al. (2005) in the ontext of linear veloityelements and is extended here to quadrati veloity elements in 2D and further generalized to3D.Coming bak to the internal power (2), note that the stress �eld is unknown and its elim-ination is desired. For that purpose, we take advantage of the material maximum strength.The stress is required to remain within the strength domain denoted G(σ). The strength ofohesive, fritional faults is usually desribed in terms of the Coulomb riterion and for pristine,bulk materials the strength domain is
G(σ) = {σ |σI − σIII + (σI + σIII) sin φ − C cos φ ≤ 0} , (3)4



where σI and σIII are the minor and major prinipal stresses (ontinuum mehanis onvention:tensile stresses are positive, σI ≥ σIII) and C and φ are the ohesion and the frition anglerespetively. Failure is desribed in the 2D plane whih is orthogonal to the intermediate stressdiretion. The prinipal stresses ould be eliminated in favor of the stress omponents suhthat (3) reads in a 2D setting
G(σ) = {σ |σe + 2P sin φB − 2C cos φ ≤ 0}

with σe =
√

(σxx − σyy)2 + 4σ2
xy , P = (σxx + σyy)/2 , (4)in whih σe and P are referred to as the equivalent shear stress and the in-plane mean stress,respetively. The determination of the intermediate stress diretion beomes a burden in 3Dappliations and it is more onvenient to onsider the strength domain bounded by the Druker-Prager riterion:

GDP (σ) = {σ |αDP I1 +
√

J2 − CDP ≤ 0} , (5)
with I1 = tr(σ) , J2 =

1

2
tr(σ′ · σ′) , σ

′ = σ − 1

3
tr(σ)δ ,in whih I1 and J2 are the �rst invariant of the stress and the seond invariant of the deviatorystress, respetively. Note that σ′ is the deviatory stress and δ the seond-order identity tensorin (5). The two material parameters in (5) are the frition oe�ient and the ohesion for theDruker-Prager riterion and they are onviniently de�ned as

αDP =
tan φ

√

9 + 12 tan2 φ
, CDP =

3C
√

9 + 12 tan2 φ
, (6)so that the domain boundaries desribed by (3) and (5) oinide for 2D plane-strain problems(see e.g. Davis and Selvadurai, 2002, for further details).Most if not all strength domains onsidered in the literature are onvex. Consequently, themaximum power σ : d̂ is bounded and given for a given veloity Û by the support funtion

π(d̂). It depends on the geometry of the strength domain boundary and of ourse on theveloity �eld. A graphial method to onstrut this funtion is presented in Figure 1 wherestress tensors are represented as vetors. The strength domain has an arbitrary, albeit onvex,boundary in the stress spae. Superpose in this stress spae the virtual rate of deformation d̂despite the di�erene in dimension. This virtual rate of deformation is normal to the hyper-plane represented with a dashed line. Translate this plane towards the strength domain, asillustrated by the dotted urve, and the point of ontat, denoted σ∗, is the stress providingthe maximum power aording to lassial onvex analysis. Consequently: π(d̂) = σ∗ : d̂ andthe seletion of σ∗ is indeed a funtion of the orientation of d̂ and of the shape of the strengthdomain boundary.The analysis of the 2D results in setion 3 will be failitated with the expliit expression ofthe support funtion. It reads
case 1 : tr(d̂) > (|d̂1| + |d̂2|) sin φ , π(d̂) =

C

tan φ
tr(d̂) , (7)

case 2 : tr(d̂) = (|d̂1| + |d̂2|) sin φ , π(d̂) = C cos φ(|d̂1| + |d̂2|) ,

case 3 : tr(d̂) < (|d̂1| + |d̂2|) sin φ , π(d̂) = +∞ ,for bulk materials having the strength limit de�ned by the Coulomb riterion (3) in 2D(Salençon, 2002). In (7), d̂1 and d̂2 are the 2D prinipal values of the virtual rate of deformation5



tensor. This example reveals that the support funtion ould be in�nite for some orientationsof the rate of deformation. More spei�ally, the trae of the virtual rate of deformation hasto be positive, for the bound to be �nite, implying a virtual dilation whih we will not try tointerpret physially. This is due to the in�nite resistane in pure ompression assumed for theCoulomb riterion.
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Figure 1: The graphial method to onstrut the support funtion for a onvex strength domain. The linearizedstrength domain bounds the support funtion externally and is represented by four hyper-planes (two dashedand two solid lines).It is found onvenient for what follows to approximate externally the strength domain bound-ary with a series of n hyper-planes in the stress spae. Eah plane bounds a half-spae de�nedby
Aa : σ − ka ≤ 0 , a = 1, ..., n , (8)in whih Aa and ka are the normal (symmetri seond-order tensor) to the hyper-plane andthe referene stress (ohesion-like) for the ath plane, respetively. Suh an approximation ispresented in Figure 1 with four hyper-planes, two dashed and two solid lines, the latter twolabeled b and c. It is also onvenient in what follows to introdue the new variables sa (�slak�variable) whih de�ne the distane between the stress point and the boundary of the linearizedstrength domain:

Aa : σ − ka + sa = 0 with sa ≥ 0 . (9)The same graphial method proposed above is used to onstrut the support funtion of thelinearized strength domain, referred to as GL. The translation of the hyper plane of normal d̂towards GL leads to the ontat at the orner denoted σL∗. It orresponds to the intersetionof two hyper-planes of normal Ab and Ac in our spei� illustration. The virtual rate of defor-mation tensor has to be oriented within the one de�ned by these two normals. Consequentlyand more generally, the virtual rate of deformation is linearly related to the normals of thevarious hyper-planes de�ning the ontat point
d(Û) =

n
∑

a=1

Aaλ̂a with λ̂a ≥ 0 , (10)6



where λ̂a are the non-negative virtual deformation omponents. In the example of Figure 1,the λ̂a assoiated to the dashed lines are zero and the only stritly positive salars are relatedto the planes b and c. Furthermore, the support funtion of the linearized riterion has thefollowing properties
πL(d̂) =

n
∑

a=1

Aaλ̂a : σ
L∗ =

n
∑

a=1

λ̂aka ≥ π(d̂) , (11)the seond equality being a onsequene of σL∗ belonging to eah ativated hyper-plane (nonzero λ̂a) and on aount of (8), whih is then an equality.The onept of support funtion is now used to derive the upper bound to the loadingsalar α. The internal work de�ned in (2) is bounded by above with
Pint(Û) ≤

∫

Ω

πL(d̂)dV , (12)so that the theorem of virtual power provides
α

∫

∂ΩT

To · ÛdS ≤
∫

Ω

πL(d̂)dV −
∫

Ω

ρg · ÛdV , ∀ Û KA . (13)The right-hand side provides the upper bound αU , after proper normalization in the left-handside. The upper bound theorem, referred here as the maximum strength theorem, is thussummarized as the minimization problem with respet to the veloity �eldsminimize αU =

∫

Ω

{

n
∑

a=1

λ̂aka − ρg · Û
}

dVsubjet to d(Û) =
n

∑

a=1

Aaλ̂a ∀x ∈ Ω ,

∫

∂ΩT

To · ÛdS = 1 ,

λ̂a ≥ 0 ∀x ∈ Ω ,

Û ∈ Su = {Û|Û = 0 ∀x ∈ ∂Ωu} .

(14)
2.2 Spatial disretization and interpolation of the veloity �eldThe spatial disretization and the interpolation of the veloity �eld as well as of the virtualdeformation omponents λ̂a are now introdued.The domain of interest Ω is approximated by the domain Ωh where the boundary orrespondsto a series of straight segments or planar surfaes, as illustrated for the 2D ase in Figure 2a.The rest of this setion presents the 2D element, the generalization to 3D is postponed toAppendix B. The interior of Ωh is partitioned in q six-noded triangles (q = 11 in Figure 2b).Note that the mid-side nodes are at the same distane from the two nodes at the adjaentverties. The virtual veloities within a six-noded triangle are interpolated in terms of thenodal virtual veloities.The veloity interpolation over a 2D element is

Ûh =
3

∑

i=1

ζi(2ζi − 1)Ûi + 4[ζ1ζ2Û4 + ζ3ζ2Û5 + ζ1ζ3Û6] , (15)7
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Figure 2: Disretization of the domain Ω by six-noded triangles, a). The six-noded triangle loal node numberingand the de�nition of the area-oordinates, b)in terms of the area-oordinate ζi de�ned in Figure 2b and the six nodal veloities Ûi. Theinterpolated �elds, denoted with the letter h in upper-sript, de�ne a set of kinematiallyadmissible �elds
Sh

u =
{

Ûh|Ûi = 0 if node i on ∂Ωh
u

}

⊂ Su , (16)whih is a subset of Su. Consider that there are m degrees of freedom set to zero by the aboveboundary ondition and de�ne the equivalent, global linear system
[H]{Û} = {0}m , (17)in whih [H] is the m × p matrix with omponents set either to zero or one. The olumnvetor {Û} in (17) is the global vetor of nodal veloities whih has, say, p omponents (twiethe total number of nodes in 2D). The notation in the left-hand side of (17) implies a matrixmultipliation resulting in a olumn vetor of length m. Note also in the right hand-side of (17)that the subsript m de�nes the vetor length, again for sake of larity.The element veloity interpolation is onveniently written in matrix notation as

{Ûh} = [Nu]
e{Û}e , (18)in whih {Û}e is the olumn vetor ontaining the loal nodal veloities (length of 12) and [Nu]

eis the 2× 12 matrix of shape funtions based on (15). The notation in (18) and in what followsfor loal array inludes the letter e in supersript to avoid any onfusion with the global arrays.To ompute the virtual rate of deformation, we �rst onsider the gradient of the area-oordinatewhih are the onstant vetors ∇ζi = −nili/A and are oriented opposite to the unit, externalnormal to the side opposite to node i, Figure 2b. Their norms are set by the length li of theside i divided by the area A of the element. The gradient to the interpolated veloity (15) isthus
∇Ûh = −

3
∑

i=1

li
A

(4ζi − 1)Ûi ⊗ ni (19)
− 4

A
[Û4 ⊗ (ζ1l2n2 + ζ2l1n1) + Û5 ⊗ (ζ2l3n3 + ζ3l2n2) + Û6 ⊗ (ζ1l3n3 + ζ3l1n1)] ,8



whih is proportional to the area-oordinates (note that ∑3

i ζi = 1). This gradient is nowused to onstrut the virtual rate of deformation tensor d̂h whih is represented by the olumnvetor {d̂h}e = t(d̂h
11, d̂

h
22, 2̂d

h
12)

e (note that a line vetor is limited by parentheses and that thetranspose of a olumn vetor, denoted by a uppersript t to the left, is a line vetor). Thevirtual rate of deformation vetor is then expressed loally in terms of the nodal veloities
{d̂h} = [B]e3×12{Û}e , (20)in whih the loal [B]e operator is the 3 × 12 matrix for eah element onstruted from (19).Attention is now turned to the loal interpolation of the virtual deformation omponents λ̂ade�ned in (10). It is proposed that these n salars be interpolated linearly
{λ̂h}e

n = [Nλ]
e{λ̂}e

3n , (21)in terms of the vetor of nodal values ontaining the λ̂a's at the three verties. The shapefuntion Nλ of node i is thus simply the area oordinate ζi. This hoie of interpolation impliesthat there is no ontinuity aross the elements and the vetor {λ̂}e (3n omponents) is indeedspei� to eah element. The loal interpolation of the λ̂a's is linear in the area-oordinates, asthe interpolation of the virtual rate of deformation in (19) and (20). Consequently, the equalitybetween the virtual rate of deformation and the linear ombination of the stress normals in(10) is satis�ed point-wise over eah element by enforing it at three spei� points. The nodesat the verties of eah element are hosen for that purpose. The resulting system of equationsreads
[B]e{Û}e = [A]e9×3n{λ̂}e , (22)in whih the 9 × 12 [B]e and the 9 × 3n [A] matries are de�ned by

[B]e =





Be(ζi = δi1)
Be(ζi = δi2)
Be(ζi = δi3)



 , [A]e =





[A]e [0] [0]
[0] [A]e [0]
[0] [0] [A]e



 with [A]e3×n =





A111 ... A11n

A221 ... A22n

2A121 ... 2A12n



 ,(23)in whih δij is the Kroneker delta and the Aija are the ij-omponent of the normal Aa to the
ath hyper-plane.To prepare the grounds for the disretization of the pre-de�ned disontinuities, it is onve-nient to multiply both sides of (22) by 1

3
A, a third of the element area. In addition, the newsaled variables {λ̄}e ≡ {1

3
Aλ̂}e are introdued so that (22) is replaed by

[B̄]e{Û}e = [A]e{λ̄}e . (24)The matrix [B̄]e = 1
3
A[B]e is represented in losed form as

[B̄]e9×12 = −1

6





3P1 −P2 −P3 4P2 0 4P3

−P1 3P2 −P3 4P1 4P3 0
−P1 −P2 3P3 0 4P2 4P1



 , (25)in terms of the 3 × 2 matrix
[Pi] = li







ni
1 0

0 ni
2

ni
2 ni

1






, (26)with (ni

1, n
i
2) being the two omponents of the unit outward normal to side i (opposite node i).Equations (25) and (26) are derived from (19). It is noted that [B̄]e is well de�ned regardless9



Symbol de�nition
q number of elements
p total number of veloity degrees of freedom
m total number of veloity degrees of freedom set to zero (bound. ond.)
n number of hyper-planes in stress spae to bound the strength domainTable 1: Various de�nitions related to the disretization, the di�erent interpolations and the linearization ofthe strength domains.of the element area. This feature is of key importane in the inorporation of kinematiallyadmissible veloity disontinuities as disussed at the end of this setion.In summary, the minimization problem (14), after disretization and interpolation, is writtenas minimize αU = t{k}q3n{λ̄} − t{G}p{Û}subjet to [B̄]9q×p{Û} = [A]9q×q3n{λ̄} ,

[H]m×p{Û} = {0}m ,

t{T0}{Û} = 1 ,

{λ̄} ≥ {0} ,

(27)
in whih the size of the global vetors and matries ould be estimated with the de�nitionssummarized in Table 1. Note that a vetorial inequality should be interpreted as a series ofinequalities for the orresponding omponents on the two sides. The n suessive omponents ofthe global {k} vetors, for a given node in a given element, are the referene stresses ka de�nedin (9), assumed to be onstant over eah element for sake of simpliity. The vetor {G} requiresa global assembly (several elements ontributes to the same degree of freedom), the ontributionof a single element being t{G}e = ρA(0; 0; 0; 0; 0; 0; gx/3; gy/3; gx/3; gy/3; gx/3; gy/3), assuminga onstant mass density and body fore per element. The vetor {T0} requires also a globalassembly and its expression depends on the distribution of the applied fore T0 on the boundary
∂ΩT .2.3 The dual problemThe objetive is now to onstrut the dual problem to (27) following the lassial argumentknown in Linear Programming and presented for sake of ompleteness in Appendix A. Toomply with the struture of the primal problem presented there, deompose the vetor ofnodal veloities {Û} into two vetors of unknowns {Û+} and {Û−} with the onditions:

{Û} = {Û+} − {Û−} with {Û+} ≥ {0} and {Û−} ≥ {0} . (28)
10



The primal problem (27) then beomesminimize αU =
(

t{k} ;−t{G} ; t{G}
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≥ (0)3qn+2p .

(29)
The dual problem, following the results presented in Appendix A readsmaximize αU =

(

(0)9q ; (0)m ; 1
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(

t{s̃λ}; t{s̃+}; t{s̃−}
)

≥ (0)3nq+2p ,

(30)
in whih 3nq + 2p slak variables have been introdued. Those variables are eliminated toprovide the equivalent optimization problemmaximize αUsubjet to t[B̄]{σ̃} = t[H]{R̃} + αU{T0} + {G} ,

t[A]{σ̃} ≤ {k} .

(31)A physial interpretation of the dual variables is now tentatively proposed. The σ̃ (3 omponentsat eah vertex) an be seen as stress-like quantities from the dimension point of view. The R̃(1 omponent for eah onstrained veloity degree of freedom) are like reation fores. The setof equalities in (31) is then seen as an expression of the balane of the internal and externalfores for the dual problem. It is for that reason that the matrix [B̄] is often referred to as thepseudo-equilibrium matrix. This interpretation is however limited in the sense that none of theabove stress-like quantities are derived from a statially admissible stress �eld. We an onlystate that the dualization has provided a max-problem whih is onvenient to searh for theupper bound to the tetoni fore, as it is shown next.The set of inequalities in (31) is due to the linearized strength domains introdued in (8).The linearization of the strength domain tends to the original non-linear domain in the limitof an in�nite number of hyper-planes. In this limit, the linearized strength domain an be11



replaed by the original non-linear domain so that (31) beomesmaximize αUsubjet to t[B̄]{σ̃} = t[H]{R̃} + αU{T0} + {G} ,

G(σ̃i) ≤ 0 for i = 1 to 3, for eah element in Ωh .

(32)It is this problem whih is set up with SARPP (2008) and solved with MOSEK (2008) in 2Dand 3D. The details of the 3D formulation are presented in Appendix B. Appendix C establishesthe link with the oni programming algorithms adopted in MOSEK (2008). It is emphasizedthat although the �nal problem is reminisent of a lassial lower bound onstrution, it doesin fat result in a rigorous upper bound. The proedure of (i) linearizing the strength domain,
(ii) setting up a disrete upper bound problem, (iii) onstruting the dual problem, and �nally
(iv) replaing the linearized strength domain by the original non-linear domain provides aompletely general approah to numerial upper bound limit analysis. In ontrast, numerialformulations based on the primal form of the upper bound theorem are highly dependent onthe partiular expression of the support funtion.2.4 Veloity disontinuitiesThe ability to inorporate kinematially admissible veloity disontinuities aross surfaes ofknown geometry is often desired as for example in the 2D and 3D wedge problems onsiderednext and in the ompanion paper. The internal work for the ontinuum problem in (2) shouldthen be amended to aount for the virtual power T · [[Û]] in whih T is the stress vetor dualto the jump in the virtual veloities. These surfaes have spei� material properties re�etedby a strength domain whih would be represented in a stress spae of redued dimension.Typially this dimension is two, orresponding to the resolved shear stress and the normalstress. The linearization of these strength domain, if neessary, would lead to additional non-negative virtual deformation omponents λ̂J introdued to deompose the veloity jump, inthe same way the rate of deformation was presented in (10). These extra variables would beinluded into the upper bound problem (14). The dualization of Setion 2.3 would have beendone along the same line of thoughts with additional dual variables orresponding to stress-likevetors. Alternatively, we onsider that a material disontinuity is simply an in�nitely thinlayer of material, likely of spei� properties, but whih is disretized similarly to the bulkregion. The feasibility of this approah � and indeed, its equivalene to traditional kinematiformulation suh as that of Sloan and Kleeman (1995) � was �rst demonstrated by Krabbenhoftet al. (2005) in the ontext of elements with a linear variation in the veloities.In the present paper, elements with a quadrati variation of the veloities are used. Theonstrution of the disontinuity with a zero-thikness path of elements is possible thanks tothe appropriate saling with the element area, leading to the introdution of the matrix [B̄]e in(25). This matrix is well de�ned even for an element area identially set to zero. Therefore,as a diret extension of the linear veloity element, we propose to onstrut disontinuities ofknown position and geometry as pathes of two zero-thikness quadrati elements, as illustratedin Figure 3. The resulting veloity jumps are quadrati and should have relatively moderatein�uene on the auray of the limit load. It is of interest to redue the number of variablesassoiated with a given disontinuity. For this purpose, the internal disontinuity veloities(whih are not attahed to either of the jointed regions) are expressed in terms of the others(the nodes attahed to either side) in the following way:12
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8 l = 0Figure 3: Kinematially admissible veloity disontinuity omprised of two quadrati elements of thikness l setto zero.
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2
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2
(Û2 + Û5) . (33)Other hoies are of ourse possible, but numerial tests suggest that the above proposition ise�ient, with only a marginal derease in auray as ompared to the ase of a full quadratidisontinuity with three independent internal nodes Pastor (2006). It should be emphasizedthat this ondensation restrits the veloities to vary linearly aross a disontinuity. Along thedisontinuity, the veloity jump is still quadrati in the tangential diretion, in ontrast to moretraditional kinemati formulations (e.g. Pastor et al., 2008).3 Appliation to the 2D stability of aretionary wedgesThe objetive of this setion is to validate the numerial development with the example of the2D stability of aretionary wedges, and in partiular of ohesionless triangular wedges. Thereis an analytial solution (Dahlen, 1984) for that partiular ase whih an also be obtainedwith the Mohr onstrution (Lehner, 1986).The 3D wedge studied in the ompanion paper is presented in Figure 4a where the observeris seen exerting the fore Q on the bak wall. His horizon is set on the déollement, the lowersurfae on whih the wedge is resting, so that gravity is ating at the angle β from the vertialdiretion. Of interest to this ontribution is the wedge in the 2D entral ross setion ABCwhih angle is α +β, Figure 4b. Geometrial and material parameters are provided in Table 2.3.1 The ritial wedge theorySymbol de�nition value unit

α topographi slope angle variable deg
β déollement angle 3 deg
D total length of the déollement 50 km
δ thihness of déollement and bak wall 10−6D km
φBW frition angle of the bak wall variable deg
CBW ohesion of the bak wall 0. Pa
φD frition angle of the déollement 15 deg
CD ohesion of the déollement 0. Pa
φb frition angle of the bulk material 30 deg
Cb ohesion of the bulk material 0. Pa
ρ material density 2200. kg/m3

g gravity aeleration 9.81 m/s2Table 2: Geometrial and material parameters for the 2D appliations unless they vary from one simulation tothe other. The ritial slope αc is 3.38◦ for this data set.
13
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Figure 4: The 3D geometry of the aretionary wedge a) and the entral ross-setion onsidered for the 2Danalysis, b).The theory of the ritial, ohesionless wedge is summarized as follows onsidering the slopeof the déollement β onstant. For topographi angles α less than αc, the deformation ours atthe bak of the struture whih is said to be sub-ritial. The failure mode is typially omposedof a ramp and a bak thrust, as illustrated in Figure 4b for 2D problems by the segments GEand GF, respetively. They orrespond ideally to veloity disontinuities (Cubas et al., 2008).Material in the bak stop is displaed parallel to the déollement before taking a trajetoryparallel to the ramp at the rossing of the bak thrust. The material in the hanging wall isover thrusting the material in the foot wall whih is at rest. For sub-ritial slope onditions(α < αc), the ommon root of the two disontinuities on the déollement is as muh as possibleto the bak, so that point F is superposed on point C. Only part of the déollement is ativated,segment AG. For slope angles larger than αc, the deformation is to the front and the struture issaid to be super-ritial. In that instane, the failure mehanism (ramp, bak thrust) ollapsesto a single point at the toe of the wedge, point B, and the whole déollement is ativated.The transition ours exatly for α = αc and is marked by the potential ativation of faultingeverywhere within the wedge. The distane of the root of the failure mehanism, denoted d, isthen undetermined. The analytial expression (Dahlen, 1984) for the ritial slope angle is
αc + arcsin(

sin αc

sin φR

) = −2β + arcsin(
sin φD

sin φR

) − φD . (34)This interpretation of Dahlen's solution is in line with the results of Cubas and al. (2008)who applied the maximum strength theorem for the failure mehanism omposed of a rampand bak thrust. Their minimization is in terms of three variables, the dips of the two veloitydisontinuities and the position d of their ommon root on the déollement. These analytialresults pinpoint exatly the transition. The objetive is now to repeat this analysis with theproposed numerial sheme without postulating the shape nor the position of the failure modes.14
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Figure 5: The type of mesh over the wedge, inluding the ollapsed elements for the interfaes, a). The twoinvariants of the stress-like results, the in-plane mean stress P b), and the equivalent stress σe for α = 3◦, ),orresponding to sub-ritial slope onditions. Units: MPa.The mesh onsidered for that problem onsists of 60×30 ells, eah omposed of four rossedtriangles, exept for the ells at the toe omposed of a single triangular element. A oarse meshis presented in Figure 5a for sake of illustration. The ollapsed ells for frition on the bak walland the déollement are also presented. The thikness of these two layers is set to l = 10−6Dorresponding to the physial thikness of 5 cm. There is a total of 7470 elements and 15123nodes. The boundary onditions are as follows. The veloities on the lowest plane parallelto the déollement are presribed to be zero (see equation 17). The horizontal omponent ofthe veloity at the rear of the bak wall layer are set to one, leading to an algorithm slightlydi�erent from the general ase presented in setion 2 and disussed in Souloumia (2008). Theonly material property not set in Table 2 is the bak wall frition angle: φBW = 30◦.The fundamental problem unknowns are the three stress omponents (σ11, σ22 and σ12)de�ned at the three verties of eah triangle, in the basis attahed to the observer, Figure4a. Results of the dual problem are presented in Figure 5b and  in terms of the equivalentshear stress and the in-plane mean stress de�ned in (4). These results are obtained for α = 3◦,orresponding to sub-ritial onditions (αc = 3.38◦). It is tentatively proposed to interpretphysially those stress �elds although they are not statially admissible. The motivation forthis proposition omes from the stress distribution whih is mostly parallel to the topography.There is thus an invariane of the stress �eld with respet to the position along the free surfae,the lassial assumption in the ritial wedge theory. This spatial dependene is altered lose tothe bak wall for reasons whih will be disussed in the next subsetion. This variation oursin a region of harateristi size less than the wedge height H de�ned as D tan(α + β).The primal variables are the nodal veloities and they are also omputed by the optimizationode MOSEK (2008). They are used in Figure 6a to onstrut the boundary of the deformedmesh onsidering the virtual veloity as the atual veloity and taking a time step of arbitrarymagnitude. The original domain boundaries orrespond to the dashed lines. There is a forwardmotion of two triangular regions with boundaries delineated by dotted segments, whih we15
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)Figure 6: Sub-ritial slope onditions: α = 3◦ < αc. The deformed boundary of the mesh based on the nodalveloities at the six nodes of eah triangle, superposed to the original mesh in dashed lines, a). The dottedsegments mark the ore of the zone of loalized virtual deformation and ould be interpreted as the bak thrustand the ramp. Iso-ontours of the virtual volumetri θ̂ and the virtual equivalent shear strain γ̂ are presentedin b) and ), respetively.propose to mark the ramp and the bak thrust. The region most to the rear is the bak stopand the other the hanging wall. Their boundaries are strips of loalized deformation. Themotion along the déollement eases at the point where the ramp and the bak are rooting.This interpretation of the failure mehanisms and more generally the analysis of the spatialgradient in the virtual rate of deformation tensor are failitated with the introdution of thetwo invariants
θ̂ = tr(d(Û)) , γ̂ =

√

d̂′ : d̂′ with d̂′ = d̂ − θ̂

3
δ , (35)in whih d̂′ is the deviatory, virtual rate of deformation tensor. The �rst invariant is the virtualvolumetri strain and the seond, the virtual equivalent shear strain. They are plotted in 6band  over the original domain. One observes a strong virtual strain loalization along the twodiretions at 23.5◦ and 40.5◦ orresponding to the expeted dips of the ramp and bak thrust.The virtual dilation θ̂ is of ourse more di�ult to interpret physially, in the absene of anyplastiity onstitutive response. In partiular, the vertial displaement along the déollementwhih marks its ativation extent, and seen in Figure 6a, will not be interpreted beyond theonstraint due to the struture of the support funtion in equation 7. We know from Cubasand al. (2008) that the déollement is in ondition (2) and the virtual veloity vetor is atthe angle φD from this surfae, explaining the virtual opening neessary for the virtual sliding.This opening or dilation is neessary aording to the de�nition of the support funtion. Itis interesting to note that the dual problem leads to the same onlusion although the exatexpression for the support fontion is not required.Results for the topographi slope at ritiality (α = αc) are presented in Figure 7 and onsistof the deformed mesh and the distribution of the virtual equivalent shear strain γ̂. Most of the16
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b)Figure 7: Critial slope onditions: α = αc. The boundary of the deformed mesh superposed to the originalmesh, dashed lines, a) and the iso-ontours of equivalent-shear virtual-strain γ̂ in b). The whole déollement isativated and the deformation is rather di�use.déollement appears to be ativated and the virtual deformation in the bulk is mostly di�usewith a large ramp region whih marks more the �exure of the domain than the tendeny for thevirtual strain to loalize. Results for super-ritial slope onditions are presented in Figure 8.The whole déollement is ativated exept at the toe where there are some mesh e�ets. Thevirtual deformation is zero in most of the wedge exept in that spei� region.
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b)Figure 8: Super-ritial slope onditions: α = 3.5 > αc. The boundary of the deformed mesh superposed to theoriginal mesh, dashed lines, a) and the iso-ontours of equivalent-shear virtual-strain γ̂ in b).The results presented in Figures 6 to 8 illustrate that our numerial implementation doesapture the stability of the perfetly-triangular wedge. The mode of failure is indeed with aramp and bak thrust system de�ned numerially as loalized zone of virtual shear and dilation.Suh strips are well desribed by sharp veloity disontinuities in analytial work (Cubas andal. 2008). The dips of the numerial failure system oinide with the analytial preditions.This quantitative validation is ontinued by plotting in Figure 9 the distane d, positioningthe root of the failure mehanism on the déollement, as a funtion of the topographi slope
α (bak wall frition φBW = 30◦). The dashed vertial line orresponds to Dahlen's ritialslope of αc = 3.38◦. The numerial results are presented as open irles linked by the seriesof solid segments. For α less than αc, d is as small as possible to let the bak thrust outropon the top surfae. It is equal to the whole déollement length, D, for values larger then αc.17
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Figure 9: The position of the root of the ramp and bak thrust on the déollement as a funtion of thetopographi slope. The dashed line marks the analytial solution of Dahlen (1984). The bak-wall frition angleis set to φBW = 30◦.The numerial transition ours exatly for the analytial value of the ritial slope, furthervalidating the numerial development.3.2 In�uene of the frition on the bak wallThe series of 2D results are ompleted with a regard on the in�uene of the bak wall fri-tion. This analysis is ertainly of most interest to the pratitioners of numerial modeling andphysiists reproduing with analogue materials in the laboratory the work of nature, where theonept of boundary onditions remains di�ult to grasp (Shreurs et al., 2006). The topo-graphi slope is set to α = 3◦, orresponding to sub-ritial onditions so that failure shouldour lose to the bak wall.The upper bound in the tetoni fore neessary to initiate failure is presented as a funtionof the bak wall frition angle in Figure 10. The urve is approximately de�ned by two straightsegments interseting for the spei� value φ∗

BW = 5.8◦. This ritial value of the bak wallfrition angle marks also a hange in the failure modes whih are illustrated in Figure 11 withisoontours of virtual equivalent shear strain. For the smallest value φBW = 3◦, the failuremode is omposed of a single ramp taking root on the déollement at the bak wall ontat.A triangular region is virtually moving up the ramp requiring shear along the bak wall. Forvalues of the frition angle lose to φ∗

BW , a fration of the déollement is ativated and the bakthrust is interseting the bak wall at depth. The failure system favors the ativation of thedéollement to redue sliding on the bak wall. The transition to the straight ramp and bakthrust takes plae for φBW larger than φ∗

BW , as illustrated in Figure 11d and e, for 7◦ and 15◦.The dual stress �eld for the ase of φBW = 5.7◦ is presented in Figure 12 in terms of thetwo invariants σe and P , de�ned in (4). The main di�erene with the results obtained for
φBW = 30◦ in Figure 5 is the absene of stress onentration at the bottom left orner of thewedge. The stress state seems to be only funtion of the distane to the topographi surfae,18
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Figure 10: The normalized upper bound to the tetoni fore as a funtion to the frition angles on the bakwall.a lassial stress state in soil mehanis and used by Dahlen (1984) and Lehner (1986). Thisstatially admissible stress state is used next to explain further the in�uene of the bak wallfrition on the failure mode.The stress state is assumed to be independent of the position along the topography (x-oordinate in Figure 13a) and thus reads σxz = ρgz sin β and σzz = −ρgz cos β. The stressvetor σ · n ating on the faette no 1 in Figure 13a has the omponent (τ = − sin β, σn =
− cos β), one normalized by ρgz, in the diret basis (n, t) shown in the same Figure. This stressvetor orresponds to point T in the Mohr onstrution of Figure 13b where the normalizedoordinates σn/ρgz and −τ/ρgz are used to render onsistent the stress sign onvention and theuse of the pole de�ned in what follows. The normalization in the absene of any ohesion forthe Coulomb riterion renders the following onstrution appliable at any position within thewedge. The two Mohr irles whih are presented are tangent to the Coulomb strength riterion.They represent the ative and the passive stress state, respetively. We are interested by thepassive irle de�ning the failure mode under ompression at the bak of the wedge. The poleP of this irle is de�ned by the remarkable property that any line oriented with the physialdip of the faette of interest (not its normal) and passing through P also intersets the Mohrirle at the point de�ning the relevant stress vetor (see Mandl, 2005). This is learly the aseof faette 1 whih was used to onstrut the pole. It is also true of the déollement dippingat β whih has the stress vetor at point R'. The zoom in the region of points R' and T inFigure 13 shows that this point R' di�ers from point R whih is the stress vetor neessary toativate the déollement with frition angle φD. The point R′ is below R and signals that thedéollement frition is too large for this surfae to be ativated. Our hoie of parameters doesorrespond to sub-ritial onditions. The pole is further used to onstrut the stress vetor offaette no 2, parallel to the bak wall, whih is at point S in the Mohr's onstrution. The valueof the frition angle whih would mark the ativation of slip along the bak wall is φ∗

BW ≃ 6◦,19



within the auray of the measure with a protrator. This is ertainly a su�iently aurateapproximation of the 5.7◦ found numerially above.If φBW is larger than φ∗

BW , slip is prevented to our on the bak wall and the bak stopan only glide on the déollement. For φBW smaller then φ∗

BW , slip an our on the bakwall and the failure mehanism make use of that property to initiate the ramp at the bakwall. The bak stop is then part of the hanging wall. For the ritial value φ∗

BW , the numerialstress �eld oinides losely to the statially admissible �eld used in the Mohr's onstrution,see Figure 12.

20



 

 

0.01

0.02

0.03 a)
 

 

2

4

6

8

x 10
−3

b)
 

 

2

4

6

8
x 10

−3

)
 

 

2

4

6

8

x 10
−3

d)
 

 

2
4
6
8
10
12

x 10
−3

e)Figure 11: The failure mode for sub-ritial topographi slope onditions (α = 3◦ < αc) for �ves values of thebak wall frition φBW set to 3◦, 5.5◦, 5.7◦, 7◦ and 15◦, in a) to e), respetively. Iso-ontours of the virtualequivalent shear strain γ̂.
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Figure 14: Two pitures of the laboratory experiments from the side showing a ramp and bak-thrust for failuremode a) and a ramp only in b) in the absene and the presene of a layer of silione along the bak wall,respetively.It is now proposed to ompare the failure modes predited from the virtual veloity �eldwith the results of laboratory experiments with sand. The box is omposed of two parallel sideglass walls, separated by the distane of 7 m, lamped on a �at plate de�ning the plane of thedéollement. The fourth plate orresponds to the bak wall whih exerts the fore neessary toompress the granular, analogue material and an be displaed between the two lateral walls.The �fth plate is lamped on the déollement, and parallel to the bak wall at a distane
D = 37cm, initially. The internal region is �lled with a well-sorted (good distribution in grainsize) Fontainebleau quartz sand (median grain size of 250 µm). Its frition angle is of the orderof 30◦ (Shreurs et al., 2006). The frition over the side glass and the bottom plate is lose to 15◦thanks to a proper treatment with hemial produt. The frition over the bak wall is muhlarger unless a thin layer of silion putty (Dow Corning SGM 36) is inserted. This materialhas a visosity of µ = 5 × 104Pas. The rate of ompression is set to 8.3 × 10−6m/s and theramp in the sand inlined at 30◦, so that the hanging wall is moving up at 4.8× 10−6m/s. Thesilione layer of thikness 2.5 mm, if assumed to sustain a simple shear deformation, is �owingat a strain rate of γ̇ = 1.9×10−31/s. The shear stress on the bak wall is then τ = γ̇µ = 96Pa.The ompressive fore magnitude measured in the laboratory is of the order of 36 N/m (perunit width), so that the normal stress on the bak wall is on average 1800Pa. The equivalentfrition oe�ient is then τ/σn = 5 × 10−2 orresponding to the frition angle of 3◦ whih isindeed below the ritial value φ∗

BW = 6◦ found above.The initial set-up orresponds to a sand pak with α = β = 0 and a layer thikness of20 mm. The sand is deposited with a sand distributor, to ensure experimental reproduibility,by layers of up to 5 mm and separated by �ne layers of olored sand ating as markers. Theomplete desription of the experimental set up and of the protool is presented by Cubas andal. (2009) and Souloumia (2009). The results after shortening by 9 mm approximately arepresented in Figure 14a and b in the absene and the presene of silion putty on the bakwall, respetively. The pitures are taken from the right side and present, through the sidewall, the failure mode. It onsists of a ramp and a bak thrust, dashed segments, with a slightrelief, Figure 14a. The bak thrust is outropping lose to the bak wall. In the presene ofthe silione, a single disontinuity in the form of a ramp ours rooting on the déollement atthe bak wall ontat. Although many parameters are estimated to �rst order, these resultsvalidate the observation made in the previous setion: the seletion of the failure mode with orwithout bak thrust is due to the frition over the bak wall. The larger frition angles promotethe presene of the bak thrust. This interpretation will ertainly ontribute to the disussioninitiated during the experimental benhmark of Shreurs et al. (2006).24



4 ConlusionThe objetive was to propose a methodology whih ould ultimately permit to study system-atially the 3D variations of the failure mode within aretionary wedges.It is not the primal problem, onstruted diretly from the kinematis approah of the limitanalysis, but its dual version whih is found most onvenient in view of the omplexity of moststrength riteria and the di�ulty to aount properly of the onstraints (inequalities) due totheir support funtions. The dual variables are stress-like quantities, one appropriately saled,although their distribution is not a-priori statially admissible. It is shown nevertheless, inthe ase of the 2D triangular wedge, that the dual stress �eld orresponds to the expetedtheoretial solution whih satis�es equilibrium and is independent of the position along thetopography and funtion only of the distane to this �at surfae. The primal variables providethe virtual veloity �eld whih haraterizes the failure mode of the struture. The ramp andbak thrust system de�ning the 2D failure mode is expressed as narrow strips of loalized virtualdeformation. This loalization of virtual strain as well as the ativation of the déollement aredilatant. This fat is known from the primal problem sine dilatany is required for the supportfuntion to be �nite. It is interesting to reognize that the solution of the dual problem omesto the same onlusion. The bak stop and the hanging wall are regions sustaining virtualrigid motions. The position of the failure mehanism to the front (super-ritial) or the rear(sub-ritial) of the wedge depends on the topographi slope, the déollement frition andthe bulk frition angle. The exat relation (Dahlen, 1984; Lehner 1986) de�nes the ritialtopographi slope αc whih is aptured exatly by the numerial proedure. It is further shownthat the failure mode at the rear for sub-ritial onditions (α < αc) ould ollapse to a singleramp rooting at the intersetion of the bak wall and the déollement instead of a ramp andbak thrust system. The bak wall frition angle predited by a Mohr onstrution is, withingraphial error, equal to the angle found numerially at the transition between these two modesof failure. Laboratory experiments, with sand and with or without silione along the bak wall,validate this �nding quantitatively.Two 3D examples are presented in the ompanion paper (Souloumia et al., 2009). The�rst of the two examples has for objetive to shed light on the validity of the 2D stabilityriterion in the presene of a lateral topographi slope variation (perpendiular to the diretionof ompression). It is shown that a lateral variation by ±0.5◦ from the ritial αc, hosen inthe entral ross setion, ould prevent the deformation front to be at toe of the wedge in the2D super-ritial region. The 3D failure mehanism is then haraterized by a ramp in the 2Dsub-ritial region whih beomes di�use with a dereasing dip as one move towards the 2Dsuper-ritial region. The seond of the 3D examples is proposed to question the in�uene ofthe lateral wall frition on the failure mode produed typially in the laboratory. For a lateralwall frition of 15◦ and a box width to length ratio of one, 20 % of the width set up is a�eted bythe lateral wall. The ritial slope angle αc = 3.38◦ is inreased by as muh as 1.5◦. It is indeedneessary to inrease signi�antly the weight of the wedge before super-ritial onditions aremet. The 2D stability are thus questioned and a 3D riterion based on the perentage of thesurfae of déollement whih is ativated is tentatively proposed and ompared with preditionsobtained with sand in the laboratory.Appendix A: Linear programming dualityThe objetive of this appendix is to present the dualisation argument, whih is lassial inlinear programming, with a notation onsistent with the development proposed in this paper.25
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Figure 15: Quadrati tetrahedron element for 3D upper bound analysis.This material is ertainly not new and proposed here only for sake of ompleteness.The primal problem is the following minimization searhminimize t{c}{x}subjet to [A]{x} = {b} ,

{x} ≥ {0} ,

(36)in whih the vetor {x} is the olletion of m unknowns and where there are n equalities tobe satis�ed (the matrix [A] is n × m; the variables and dimension names di�er from the onesde�ned in the main text). The dual problem is stated asMaximize t{b}{y}subjet to t[A]{y} + {s} = {c} ,

{s} ≥ {0} ,

(37)in terms of the n unknowns in the vetor {y} and the additional m slak variables in thevetor {s}. The optimal solutions, in terms of the objetive funtion, are the same for the twoproblems as it an be shown by omputing the duality gap
gap ≡ t{c}{x} − t{b}{y} = t{s}{x} ≥ 0 . (38)The gap is always positive or nul and only nul if the two systems of equalities in (36) and (37)are satis�ed. In that instane, the orthogonality ondition t{s}{x} = 0 applies. It is the dualproblem (37) whih is used for all examples in setion 3 whereas the primal problem (36) wasset up in setion 2 from the maximum strength theorem with a spatial disretisation for theveloities and the deformation omponents λ̄.Appendix B: Generalisation to 3DThe 3D disretization is onstruted with ten-node tetrahedra, as illustrated in Figure 15. Themid-side nodes are loated at equal distanes between the vertex nodes and all sides are planarsurfaes. The pseudo-equilibrium matrix analogous to (25) is given by26
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i
z) being the unit outward normal to fae i (opposite node i) and Ai the area ofthat fae.The pre-de�ned disontinuities in 3D are onstruted by pathes of zero-thikness and omposedof three tetrahedra, as shown in Figure 16. Again, this path of tetrahedra is treated in thesame way as the regular bulk elements and the fat that the element volume is equal to zerodoes not pose any di�ulty. Also, similar to 2D disontinuities, the internal disontinuity nodesare eliminated by making appropriate assumptions about the variation of the veloities arossthe disontinuity.

l = 0

Figure 16: Disontinuity path onsisting of three zero-thikness tetrahedra for onstruting a disontinuity ofknown geometry and zero thikness in 3D.Appendix C: Seond-order one programmingThis last Appendix presents the onversion of the general non-linear upper bound limit analysisproblem (32) into seond-order one programming (SOCP) format. The most ommon of theseformats omes in the form of the following generalization of the primal LP problem (36):minimize t{c}{x}subjet to [A]{x} = {b} ,

{x}i ∈ Ki , i = 1, . . . , n ,

(40)where the total solution vetor {x} is assumed to be partitioned into n subvetors {x}i. For eahof these subvetors a oni inequality onstraint, given by the last line in (40), is imposed. Themathematial de�nitions of what onstitutes a one are relatively stringent and annot easilybe irumvented (see, e.g., Ben-Tal and Nemirovski 2001, for details). However, for the present27



appliation it su�es to know that the Druker-Prager riterion, by a suitable transformationof variables, is ast in the following quadrati one:
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. (41)This transformation is ahieved by introduing a new set of variables {ρ}:
{ρ} = [D]{σ} + {d} , (42)where
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The Druker-Prager riterion (5) an then be written as

KDP =







{ρ} ∈ IR7| ρ1 ≥
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, (44)whih is a quadrati one. Hene, in the ase where the yield riterion is of the Druker-Pragertype, the SOCP standard form of the general nonlinear upper bound limit analysis problem(32) reads maximize αUsubjet to t[B̄]{σ̃} = t[H]{R̃} + αU{T0} + {G}

{ρ} = [D]{σ̃} + {d}

{ρ}i ∈ KDP for i = 1 to 3, for eah element in Ωh .

(45)
This problem is solved using the general purpose SOCP solver MOSEK (2008). In some ases itis possible to eliminate the physial stress variables {σ̃} to end up with only problem unknowns
{ρ} and {αU} (see Krabbenhoft et al., 2007 for details). This is exploited for problems where
αDP is non-zero whih implies that t[D][D] is non-singular and the physial stress variables areexpressed entirely in terms of {ρ}.
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