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Failure in a

retionary wedgeswith the maximum strength theorem:numeri
al algorithm and 2D validation.P. Souloumia
Laboratoire MSS-Mat, CNRS,E
ole Centrale Paris, Chatenay Malabry, Fran
e,K. KrabbenhøftCentre for Geote
hni
al and Materials Modelling,University of New
astle, NSW 2308, Australia,Y.M. LeroyLaboratoire de Géologie, CNRS,É
ole Normale Supérieure, Paris, Fran
e,andB. MaillotDépartement Géos
ien
es et Environnement,Université de Cergy-Pontoise, Fran
e.Abstra
tThe obje
tive is to 
apture the 3D spatial variation in the failure mode o

uring in a

retionary wedges,and their analogue experiments in the laboratory, from the sole knowledge of the material strength and thestru
ture geometry. The proposed methodology relies on the maximum strength theorem whi
h is inheritedfrom the kinemati
s approa
h of the 
lassi
al limit analysis. It sele
ts the optimum virtual velo
ity �eldwhi
h minimizes the te
toni
 for
e. These �elds are 
onstru
ted by interpolation thanks to the spatialdis
retization 
ondu
ted with ten-noded tetrahedra in 3D, and six-noded triangles in 2D. The resulting,dis
rete optimization problem is �rst presented emphasizing the dual formalism found most appropriatein the presen
e of non-linear strength 
riteria, su
h as the Dru
ker-Prager 
riterion used in all reportedexamples.The numeri
al s
heme is �rst applied to a perfe
tly-triangular 2D wedge. It is known that failure o

urs tothe ba
k, for topographi
 slope smaller than, and to the front for slope larger than, a 
riti
al slope, de�ningsub-
riti
al and super-
riti
al slope stability 
onditions, respe
tively. The failure mode is 
hara
terized bythe a
tivation of a ramp, its 
onjugate ba
k thrust and the partial or 
omplete a
tivation of the dé
ollement.It is shown that the 
riti
al slope is 
aptured pre
isely by the proposed numeri
al s
heme, the ramp andthe ba
k thrust 
orresponding to regions of lo
alized virtual strain. The in�uen
e of the ba
k-wall fri
tionon this 
riti
al slope is explored. It is found that the failure me
hanism is 
hara
terized by a thrust rootingat the base of the ba
k wall and the absen
e of ba
k thrust, for small enough values of the fri
tion angle.This in�uen
e is well explained by the Mohr 
onstru
tion and further validated with experimental resultswith sand, 
onsidered as an analogue material. 3D appli
ations of the same methodology are presented in a
ompanion paper.
O
tober 26, 2009Submitted for publi
ation. 1



1 Introdu
tionThe obje
tive is to determine the 3D failure mode whi
h 
hara
terizes the onset of thrustingor folding in fold-and-thrust belts and in a

retionary wedges. The numeri
al method whi
h isproposed has its root in the kinemati
s approa
h of limit analysis although only the knowledge ofthe material strength is required. The numeri
al algorithm and its 2D validation are presentedin this 
ontribution, the 3D appli
ations in a 
ompanion paper (Souloumia
 et al., 2009).The kinemati
s of 2D folds and thrusts has been studied at length and is now well 
apturedby geometri
al 
onstru
tions inspired by the seminal work of Suppe (1983). The absen
e of any
on
ept of me
hani
s, su
h as material strength and me
hani
al equilibrium render howeverimpossible the 
omparison between two geometri
al 
onstru
tions ne
essary to sele
t the mostrelevant. The merit of these 
onstru
tions is however 
lear in view of their simpli
ity and theirpotential appli
ation in the oil industry, on
e 
ompleted by the 
omputation of the temperatureevolution (Zoetemeijer and Sassi, 1992, S
iamanna et al., 2004).The line of work whi
h has been followed by the authors tries to take the most advantage ofthe 2D geometri
al 
onstru
tion while a

ounting for material strength and me
hani
al equilib-rium. The prin
iple of minimum dissipation was applied by Maillot and Leroy (2003) in theirstudy of a simple fault-bend fold, with either brittle or du
tile material response, to �nd theoptimum orientation of the ba
k thrust. A more rigorous framework is now adopted, based onthe maximum strength theorem for fri
tional and 
ohesive materials (Salençon, 1974, 2002). Itwas applied to the evolution of a kink-fold by Maillot and Leroy (2006) proposing that, at anystage of the stru
ture development, its main geometri
al attributes, su
h as the kink dip andwidth, 
ould be found by minimizing the upper bound to the applied te
toni
 for
e. Cubas andal. (2008) extended this argument to study sequen
es of thrusts within an a

retionary wedge.Souloumia
 et al. (2008) proved that the optimum stress state 
ould be 
al
ulated at any stepof the thrusting sequen
e development, based on the stati
 approa
h of the limit analysis.There is a de�nite desire to propose 3D 
onstru
tions of folding and thrusting whi
h is ofteninhibited by the la
k of intuition for parameterizing simply the failure me
hanism (e.g. rampand ba
k thrust system) at the onset and during the development of the fold. It is thus ne
essaryto develop a systemati
 pro
edure to study the failure mode of 3D geologi
al stru
tures. Forthe onset, the kinemati
s approa
h of limit analysis 
ould provide a �rst insight on the failuremode. It is the subje
t of the present 
ontribution and it is hoped that the results 
ould helpin 
onstru
ting the 3D kinemati
s of the evolving stru
tures.The proposed method, referred to as the maximum strength theorem, is based on the kine-mati
s approa
h of 
lassi
al limit analysis. It is emphasized that a 
omplete plasti
ity theoryis not required and the provision for the 
ohesive and fri
tional ro
ks of interest of a strengthdomain, 
onvex in the stress spa
e, su�
es to obtain an upper bound to the applied te
toni
for
e. Over the years, a number of di�erent numeri
al formulations of the maximum strength (orupper bound) theorem have been proposed. Early formulations, fo
using on two-dimensionalproblems (Anderheggen and Knöpfel, 1972; Pastor, 1978; Bottero et al., 1980; Sloan, 1989),typi
ally involved a linearization of the strength domain and made use of the simplex method orone of its derivatives to solve the resulting linear programs. Inspired by the progress in general
onvex programming, these linear programming formulations have re
ently been repla
ed bymore general non-linear formulations avoiding the need to linearize (Lyamin and Sloan, 2002;Krabbenhøft and Damkilde, 2003). The most re
ent development on this front has been the ap-pli
ations of the so-
alled 
oni
 programming algorithms to solve typi
al limit analysis problemssu
h as the ones 
onsidered here as well as a range of other plasti
ity problems (Krabbenhøft etal., 2007; Krabbenhøft et al., 2008). These algorithms are parti
ularly suited for dealing withnon-smooth strength domains su
h as those typi
ally 
hara
terizing the strength of 
ohesive,2



fri
tional materials (Dru
ker-Prager, Mohr-Coulomb, et
...).In its primal form the maximum strength theorem is formulated in terms of kinemati
 vari-ables, the virtual velo
ities. Their distribution is 
onstru
ted by interpolation thanks to a spa
edis
retization. This primal form with dis
retization leads to a 
onvex minimization problem.Alternatively, it is possible to work dire
tly with the dual form of the theorem whi
h leadsto a maximization problem reminis
ent of the stati
 approa
h leading to lower bounds to thete
toni
 for
e. The dual variables of the velo
ities (of its symmetri
 gradient to be more pre-
ise) in the sense of power are regarded as stresses after appropriate s
aling, although theydo not 
onstitute stati
ally admissible �elds (these dual variables do not satisfy equilibrium).From a numeri
al point of view, this alternative, dual approa
h has a number of advantages.For example, it is possible to impose 
ompletely general strength 
riteria in a straightforwardmanner whereas a primal upper bound formulation would require the spe
i�
ation of the 
orre-sponding support fun
tion. This fun
tion de�nes the maxium power whi
h 
ould be providedfor a given velo
ity and strength domain. Its analyti
al expression is 
ertainly non-trivial toderive and the resulting 
onstraints di�
ult to a

ount for in a 
lassi
al optimization 
ode.Furthermore, following the approa
h proposed by (Krabbenhøft et al., 2005), the in
orporationof kinemati
ally admissible velo
ity dis
ontinuities is straightforward and will be proposed inthis paper for the general three-dimensional 
ase for the �rst time.The paper 
ontents are as follows. The next se
tion is devoted to the presentation of thenumeri
al algorithm. The 2D setting is most suited for su
h presentation for sake of simpli
ityand the extension to 3D is postponed to Appendix B. The 
onstru
tion of the dual problemis highlighted with the help of the primal-dual algorithm of linear programming summarizedin Appendix A. Appendix C presents the link between these strength domains, typi
al of soilme
hani
s, and the 
oni
 programming algorithms adopted in Mosek (2008), whi
h is used forall examples reported here. Se
tion 3 is 
on
erned with 2D appli
ations to a

retionary wedgesof perfe
t triangular shape. Failure in the bulk o

urs either to the ba
k or to the front, withthe 
omplete a
tivation of the weak dé
ollement at the base, depending on the topographi
slope. The transition from sub-
riti
al (failure to the ba
k) to super-
riti
al (failure to thefront) is 
aptured exa
tly, validating the numeri
al pro
edure. It is shown that the fri
tionangle on the ba
k wall in�uen
es the failure mode for sub-
riti
al 
onditions. For small valuesof the fri
tion angle, a single ramp roots to the base of the ba
k wall whereas a ramp andba
k thrust o

urs for larger values. The transition in failure mode o

urs for a fri
tion angledete
ted numeri
ally whi
h is exa
tly the one predi
ted by the Mohr's 
onstru
tion. It is alsoshown that these two modes of failure are reprodu
ed in the laboratory experiments with sandby sele
ting the appropriate fri
tion 
onditions at the ba
k wall 
onta
t.2 The maximum strength theorem with spatial dis
retizationThe obje
tive of this se
tion is to present in three steps the theory applied in the next se
tion for2D wedges and for 3D examples in the 
ompanion paper. The �rst step is the presentation of theupper bound theorem of 
lassi
al limit analysis, as it is found in Salençon (2002) and Maillotand Leroy (2006). It is proposed here to approximate the strength domain externally by aseries of hyper-plane, in the appropriate stress spa
e, to fa
ilitate the set up of the optimizationproblem. The se
ond step is the dis
retization of the spa
e and the 
onstru
tion of interpolationsfor the virtual velo
ities as well as for the virtual s
alars asso
iated to these hyper-planes.The third step 
onsists in the dualization of the upper bound problem after dis
retization,resulting in a maximization problem where the basi
 unknowns are s
aled to have dimension ofstress. This dual formulation is used in all examples but should not be 
onfused with the lower3



bound approa
h (
onstru
ted with stati
ally admissible stress �elds) for reasons whi
h are alsodis
ussed.2.1 Summary of the upper bound theorem of limit analysisThe upper bound theorem of limit analysis is 
alled here the maximum strength theorem toemphasize that only the 
on
ept of strength is required. This theorem is now presented indetails.The starting point is the theorem of virtual power whi
h states the equality between theinternal and the external powers for any kinemati
ally admissible (KA) velo
ity �eld. The set
Su of KA �elds 
omprises any �eld Û whi
h is zero over part of the boundary ∂Ωu where thedispla
ements are pres
ribed. Elements of Su are identi�ed by a superposed hat. The externalpower, de�ned by

Pext(Û) =

∫

Ω

ρg · ÛdV + α

∫

∂ΩT

To · ÛdS , (1)is due to the power of the velo
ity over the body for
e g, ρ is the material density, and ofthe for
e applied on part of the boundary ∂ΩT . This applied for
e is assumed to be known indistribution To but not in its intensity de�ned by the s
alar α whi
h is the unknown of theproblem and for whi
h we seek the best upper bound. Note that in (1) and in what follows,ve
tors and subsequently tensors, are identi�ed with bold 
hara
ters. The internal power isgiven by
Pint(Û) =

∫

Ω

σ : d(Û) dV , (2)where σ and d(Û) are the Cau
hy stress tensor and the virtual rate of deformation tensor(also denoted d̂) based on Û, respe
tively. The double dot produ
t in (2) between these twotensors results in σij d̂ji in terms of their 
omponents in an orthonormal basis. The expression(2) for the internal power does not a

ount for potential dis
ontinuities in the velo
ity �elds andbulk deformation is the only sour
e of dissipation. Expli
it a

ount of dis
ontinuities, whi
horientations are part of the unknowns of the problem, is typi
al of analyti
al developments butis not ne
essary in the numeri
al formulation 
onsidered in this paper. However, pre-de�ned,physi
al dis
ontinuities thus of known geometry are approa
hed as zones of bulk material havinga zero thi
kness. Their a
tivation is marked by a lo
alized deformation within these narrowzones. The 
onventional �nite-element formulations 
annot 
ope with the limit of zero lengthin one dire
tion for an element be
ause of the resulting ill-
onditioning of the sti�ness array(see e.g. Day and Potts, 1994). To the 
ontrary, the formulation adopted in the following doesnot involve su
h 
ompli
ation. Indeed, as it will be dis
ussed in the last part of this se
tion,it is entirely possible to in
lude pat
hes of elements with a thi
kness identi
ally set to zero.This approa
h was �rst suggested by Krabbenhøft et al. (2005) in the 
ontext of linear velo
ityelements and is extended here to quadrati
 velo
ity elements in 2D and further generalized to3D.Coming ba
k to the internal power (2), note that the stress �eld is unknown and its elim-ination is desired. For that purpose, we take advantage of the material maximum strength.The stress is required to remain within the strength domain denoted G(σ). The strength of
ohesive, fri
tional faults is usually des
ribed in terms of the Coulomb 
riterion and for pristine,bulk materials the strength domain is
G(σ) = {σ |σI − σIII + (σI + σIII) sin φ − C cos φ ≤ 0} , (3)4



where σI and σIII are the minor and major prin
ipal stresses (
ontinuum me
hani
s 
onvention:tensile stresses are positive, σI ≥ σIII) and C and φ are the 
ohesion and the fri
tion anglerespe
tively. Failure is des
ribed in the 2D plane whi
h is orthogonal to the intermediate stressdire
tion. The prin
ipal stresses 
ould be eliminated in favor of the stress 
omponents su
hthat (3) reads in a 2D setting
G(σ) = {σ |σe + 2P sin φB − 2C cos φ ≤ 0}

with σe =
√

(σxx − σyy)2 + 4σ2
xy , P = (σxx + σyy)/2 , (4)in whi
h σe and P are referred to as the equivalent shear stress and the in-plane mean stress,respe
tively. The determination of the intermediate stress dire
tion be
omes a burden in 3Dappli
ations and it is more 
onvenient to 
onsider the strength domain bounded by the Dru
ker-Prager 
riterion:

GDP (σ) = {σ |αDP I1 +
√

J2 − CDP ≤ 0} , (5)
with I1 = tr(σ) , J2 =

1

2
tr(σ′ · σ′) , σ

′ = σ − 1

3
tr(σ)δ ,in whi
h I1 and J2 are the �rst invariant of the stress and the se
ond invariant of the deviatorystress, respe
tively. Note that σ′ is the deviatory stress and δ the se
ond-order identity tensorin (5). The two material parameters in (5) are the fri
tion 
oe�
ient and the 
ohesion for theDru
ker-Prager 
riterion and they are 
onviniently de�ned as

αDP =
tan φ

√

9 + 12 tan2 φ
, CDP =

3C
√

9 + 12 tan2 φ
, (6)so that the domain boundaries des
ribed by (3) and (5) 
oin
ide for 2D plane-strain problems(see e.g. Davis and Selvadurai, 2002, for further details).Most if not all strength domains 
onsidered in the literature are 
onvex. Consequently, themaximum power σ : d̂ is bounded and given for a given velo
ity Û by the support fun
tion

π(d̂). It depends on the geometry of the strength domain boundary and of 
ourse on thevelo
ity �eld. A graphi
al method to 
onstru
t this fun
tion is presented in Figure 1 wherestress tensors are represented as ve
tors. The strength domain has an arbitrary, albeit 
onvex,boundary in the stress spa
e. Superpose in this stress spa
e the virtual rate of deformation d̂despite the di�eren
e in dimension. This virtual rate of deformation is normal to the hyper-plane represented with a dashed line. Translate this plane towards the strength domain, asillustrated by the dotted 
urve, and the point of 
onta
t, denoted σ∗, is the stress providingthe maximum power a

ording to 
lassi
al 
onvex analysis. Consequently: π(d̂) = σ∗ : d̂ andthe sele
tion of σ∗ is indeed a fun
tion of the orientation of d̂ and of the shape of the strengthdomain boundary.The analysis of the 2D results in se
tion 3 will be fa
ilitated with the expli
it expression ofthe support fun
tion. It reads
case 1 : tr(d̂) > (|d̂1| + |d̂2|) sin φ , π(d̂) =

C

tan φ
tr(d̂) , (7)

case 2 : tr(d̂) = (|d̂1| + |d̂2|) sin φ , π(d̂) = C cos φ(|d̂1| + |d̂2|) ,

case 3 : tr(d̂) < (|d̂1| + |d̂2|) sin φ , π(d̂) = +∞ ,for bulk materials having the strength limit de�ned by the Coulomb 
riterion (3) in 2D(Salençon, 2002). In (7), d̂1 and d̂2 are the 2D prin
ipal values of the virtual rate of deformation5



tensor. This example reveals that the support fun
tion 
ould be in�nite for some orientationsof the rate of deformation. More spe
i�
ally, the tra
e of the virtual rate of deformation hasto be positive, for the bound to be �nite, implying a virtual dilation whi
h we will not try tointerpret physi
ally. This is due to the in�nite resistan
e in pure 
ompression assumed for theCoulomb 
riterion.
*L

ij

σij*

σ

d

ijσ
ij

Αijb

Αij c

c

kb

kc

b

Figure 1: The graphi
al method to 
onstru
t the support fun
tion for a 
onvex strength domain. The linearizedstrength domain bounds the support fun
tion externally and is represented by four hyper-planes (two dashedand two solid lines).It is found 
onvenient for what follows to approximate externally the strength domain bound-ary with a series of n hyper-planes in the stress spa
e. Ea
h plane bounds a half-spa
e de�nedby
Aa : σ − ka ≤ 0 , a = 1, ..., n , (8)in whi
h Aa and ka are the normal (symmetri
 se
ond-order tensor) to the hyper-plane andthe referen
e stress (
ohesion-like) for the ath plane, respe
tively. Su
h an approximation ispresented in Figure 1 with four hyper-planes, two dashed and two solid lines, the latter twolabeled b and c. It is also 
onvenient in what follows to introdu
e the new variables sa (�sla
k�variable) whi
h de�ne the distan
e between the stress point and the boundary of the linearizedstrength domain:

Aa : σ − ka + sa = 0 with sa ≥ 0 . (9)The same graphi
al method proposed above is used to 
onstru
t the support fun
tion of thelinearized strength domain, referred to as GL. The translation of the hyper plane of normal d̂towards GL leads to the 
onta
t at the 
orner denoted σL∗. It 
orresponds to the interse
tionof two hyper-planes of normal Ab and Ac in our spe
i�
 illustration. The virtual rate of defor-mation tensor has to be oriented within the 
one de�ned by these two normals. Consequentlyand more generally, the virtual rate of deformation is linearly related to the normals of thevarious hyper-planes de�ning the 
onta
t point
d(Û) =

n
∑

a=1

Aaλ̂a with λ̂a ≥ 0 , (10)6



where λ̂a are the non-negative virtual deformation 
omponents. In the example of Figure 1,the λ̂a asso
iated to the dashed lines are zero and the only stri
tly positive s
alars are relatedto the planes b and c. Furthermore, the support fun
tion of the linearized 
riterion has thefollowing properties
πL(d̂) =

n
∑

a=1

Aaλ̂a : σ
L∗ =

n
∑

a=1

λ̂aka ≥ π(d̂) , (11)the se
ond equality being a 
onsequen
e of σL∗ belonging to ea
h a
tivated hyper-plane (nonzero λ̂a) and on a

ount of (8), whi
h is then an equality.The 
on
ept of support fun
tion is now used to derive the upper bound to the loadings
alar α. The internal work de�ned in (2) is bounded by above with
Pint(Û) ≤

∫

Ω

πL(d̂)dV , (12)so that the theorem of virtual power provides
α

∫

∂ΩT

To · ÛdS ≤
∫

Ω

πL(d̂)dV −
∫

Ω

ρg · ÛdV , ∀ Û KA . (13)The right-hand side provides the upper bound αU , after proper normalization in the left-handside. The upper bound theorem, referred here as the maximum strength theorem, is thussummarized as the minimization problem with respe
t to the velo
ity �eldsminimize αU =

∫

Ω

{

n
∑

a=1

λ̂aka − ρg · Û
}

dVsubje
t to d(Û) =
n

∑

a=1

Aaλ̂a ∀x ∈ Ω ,

∫

∂ΩT

To · ÛdS = 1 ,

λ̂a ≥ 0 ∀x ∈ Ω ,

Û ∈ Su = {Û|Û = 0 ∀x ∈ ∂Ωu} .

(14)
2.2 Spatial dis
retization and interpolation of the velo
ity �eldThe spatial dis
retization and the interpolation of the velo
ity �eld as well as of the virtualdeformation 
omponents λ̂a are now introdu
ed.The domain of interest Ω is approximated by the domain Ωh where the boundary 
orrespondsto a series of straight segments or planar surfa
es, as illustrated for the 2D 
ase in Figure 2a.The rest of this se
tion presents the 2D element, the generalization to 3D is postponed toAppendix B. The interior of Ωh is partitioned in q six-noded triangles (q = 11 in Figure 2b).Note that the mid-side nodes are at the same distan
e from the two nodes at the adja
entverti
es. The virtual velo
ities within a six-noded triangle are interpolated in terms of thenodal virtual velo
ities.The velo
ity interpolation over a 2D element is

Ûh =
3

∑

i=1

ζi(2ζi − 1)Ûi + 4[ζ1ζ2Û4 + ζ3ζ2Û5 + ζ1ζ3Û6] , (15)7
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Figure 2: Dis
retization of the domain Ω by six-noded triangles, a). The six-noded triangle lo
al node numberingand the de�nition of the area-
oordinates, b)in terms of the area-
oordinate ζi de�ned in Figure 2b and the six nodal velo
ities Ûi. Theinterpolated �elds, denoted with the letter h in upper-s
ript, de�ne a set of kinemati
allyadmissible �elds
Sh

u =
{

Ûh|Ûi = 0 if node i on ∂Ωh
u

}

⊂ Su , (16)whi
h is a subset of Su. Consider that there are m degrees of freedom set to zero by the aboveboundary 
ondition and de�ne the equivalent, global linear system
[H]{Û} = {0}m , (17)in whi
h [H] is the m × p matrix with 
omponents set either to zero or one. The 
olumnve
tor {Û} in (17) is the global ve
tor of nodal velo
ities whi
h has, say, p 
omponents (twi
ethe total number of nodes in 2D). The notation in the left-hand side of (17) implies a matrixmultipli
ation resulting in a 
olumn ve
tor of length m. Note also in the right hand-side of (17)that the subs
ript m de�nes the ve
tor length, again for sake of 
larity.The element velo
ity interpolation is 
onveniently written in matrix notation as

{Ûh} = [Nu]
e{Û}e , (18)in whi
h {Û}e is the 
olumn ve
tor 
ontaining the lo
al nodal velo
ities (length of 12) and [Nu]

eis the 2× 12 matrix of shape fun
tions based on (15). The notation in (18) and in what followsfor lo
al array in
ludes the letter e in supers
ript to avoid any 
onfusion with the global arrays.To 
ompute the virtual rate of deformation, we �rst 
onsider the gradient of the area-
oordinatewhi
h are the 
onstant ve
tors ∇ζi = −nili/A and are oriented opposite to the unit, externalnormal to the side opposite to node i, Figure 2b. Their norms are set by the length li of theside i divided by the area A of the element. The gradient to the interpolated velo
ity (15) isthus
∇Ûh = −

3
∑

i=1

li
A

(4ζi − 1)Ûi ⊗ ni (19)
− 4

A
[Û4 ⊗ (ζ1l2n2 + ζ2l1n1) + Û5 ⊗ (ζ2l3n3 + ζ3l2n2) + Û6 ⊗ (ζ1l3n3 + ζ3l1n1)] ,8



whi
h is proportional to the area-
oordinates (note that ∑3

i ζi = 1). This gradient is nowused to 
onstru
t the virtual rate of deformation tensor d̂h whi
h is represented by the 
olumnve
tor {d̂h}e = t(d̂h
11, d̂

h
22, 2̂d

h
12)

e (note that a line ve
tor is limited by parentheses and that thetranspose of a 
olumn ve
tor, denoted by a uppers
ript t to the left, is a line ve
tor). Thevirtual rate of deformation ve
tor is then expressed lo
ally in terms of the nodal velo
ities
{d̂h} = [B]e3×12{Û}e , (20)in whi
h the lo
al [B]e operator is the 3 × 12 matrix for ea
h element 
onstru
ted from (19).Attention is now turned to the lo
al interpolation of the virtual deformation 
omponents λ̂ade�ned in (10). It is proposed that these n s
alars be interpolated linearly
{λ̂h}e

n = [Nλ]
e{λ̂}e

3n , (21)in terms of the ve
tor of nodal values 
ontaining the λ̂a's at the three verti
es. The shapefun
tion Nλ of node i is thus simply the area 
oordinate ζi. This 
hoi
e of interpolation impliesthat there is no 
ontinuity a
ross the elements and the ve
tor {λ̂}e (3n 
omponents) is indeedspe
i�
 to ea
h element. The lo
al interpolation of the λ̂a's is linear in the area-
oordinates, asthe interpolation of the virtual rate of deformation in (19) and (20). Consequently, the equalitybetween the virtual rate of deformation and the linear 
ombination of the stress normals in(10) is satis�ed point-wise over ea
h element by enfor
ing it at three spe
i�
 points. The nodesat the verti
es of ea
h element are 
hosen for that purpose. The resulting system of equationsreads
[B]e{Û}e = [A]e9×3n{λ̂}e , (22)in whi
h the 9 × 12 [B]e and the 9 × 3n [A] matri
es are de�ned by

[B]e =





Be(ζi = δi1)
Be(ζi = δi2)
Be(ζi = δi3)



 , [A]e =





[A]e [0] [0]
[0] [A]e [0]
[0] [0] [A]e



 with [A]e3×n =





A111 ... A11n

A221 ... A22n

2A121 ... 2A12n



 ,(23)in whi
h δij is the Krone
ker delta and the Aija are the ij-
omponent of the normal Aa to the
ath hyper-plane.To prepare the grounds for the dis
retization of the pre-de�ned dis
ontinuities, it is 
onve-nient to multiply both sides of (22) by 1

3
A, a third of the element area. In addition, the news
aled variables {λ̄}e ≡ {1

3
Aλ̂}e are introdu
ed so that (22) is repla
ed by

[B̄]e{Û}e = [A]e{λ̄}e . (24)The matrix [B̄]e = 1
3
A[B]e is represented in 
losed form as

[B̄]e9×12 = −1

6





3P1 −P2 −P3 4P2 0 4P3

−P1 3P2 −P3 4P1 4P3 0
−P1 −P2 3P3 0 4P2 4P1



 , (25)in terms of the 3 × 2 matrix
[Pi] = li







ni
1 0

0 ni
2

ni
2 ni

1






, (26)with (ni

1, n
i
2) being the two 
omponents of the unit outward normal to side i (opposite node i).Equations (25) and (26) are derived from (19). It is noted that [B̄]e is well de�ned regardless9



Symbol de�nition
q number of elements
p total number of velo
ity degrees of freedom
m total number of velo
ity degrees of freedom set to zero (bound. 
ond.)
n number of hyper-planes in stress spa
e to bound the strength domainTable 1: Various de�nitions related to the dis
retization, the di�erent interpolations and the linearization ofthe strength domains.of the element area. This feature is of key importan
e in the in
orporation of kinemati
allyadmissible velo
ity dis
ontinuities as dis
ussed at the end of this se
tion.In summary, the minimization problem (14), after dis
retization and interpolation, is writtenas minimize αU = t{k}q3n{λ̄} − t{G}p{Û}subje
t to [B̄]9q×p{Û} = [A]9q×q3n{λ̄} ,

[H]m×p{Û} = {0}m ,

t{T0}{Û} = 1 ,

{λ̄} ≥ {0} ,

(27)
in whi
h the size of the global ve
tors and matri
es 
ould be estimated with the de�nitionssummarized in Table 1. Note that a ve
torial inequality should be interpreted as a series ofinequalities for the 
orresponding 
omponents on the two sides. The n su

essive 
omponents ofthe global {k} ve
tors, for a given node in a given element, are the referen
e stresses ka de�nedin (9), assumed to be 
onstant over ea
h element for sake of simpli
ity. The ve
tor {G} requiresa global assembly (several elements 
ontributes to the same degree of freedom), the 
ontributionof a single element being t{G}e = ρA(0; 0; 0; 0; 0; 0; gx/3; gy/3; gx/3; gy/3; gx/3; gy/3), assuminga 
onstant mass density and body for
e per element. The ve
tor {T0} requires also a globalassembly and its expression depends on the distribution of the applied for
e T0 on the boundary
∂ΩT .2.3 The dual problemThe obje
tive is now to 
onstru
t the dual problem to (27) following the 
lassi
al argumentknown in Linear Programming and presented for sake of 
ompleteness in Appendix A. To
omply with the stru
ture of the primal problem presented there, de
ompose the ve
tor ofnodal velo
ities {Û} into two ve
tors of unknowns {Û+} and {Û−} with the 
onditions:

{Û} = {Û+} − {Û−} with {Û+} ≥ {0} and {Û−} ≥ {0} . (28)
10



The primal problem (27) then be
omesminimize αU =
(

t{k} ;−t{G} ; t{G}
)











{λ̄}
{Û+}
{Û−}











,subje
t to 





[A] −[B̄] [B̄]

[0] [H] −[H]

(0) t{T0} −t{T0}

















{λ̄}
{Û+}
{Û−}











=











{0}9q

{0}m

1











,

(

t{λ̄}; t{Û+}; t{Û−}
)

≥ (0)3qn+2p .

(29)
The dual problem, following the results presented in Appendix A readsmaximize αU =

(

(0)9q ; (0)m ; 1
)











{σ̃}
{R̃}
αU











,

subje
t to 





t[A] [0] {0}
−t[B̄] t[H] {T0}

t[B̄] −t[H] −{T0}

















{σ̃}
{R̃}
αU











+











{s̃λ}
{s̃+}
{s̃−}











=











{k}
−{G}
{G}











,

(

t{s̃λ}; t{s̃+}; t{s̃−}
)

≥ (0)3nq+2p ,

(30)
in whi
h 3nq + 2p sla
k variables have been introdu
ed. Those variables are eliminated toprovide the equivalent optimization problemmaximize αUsubje
t to t[B̄]{σ̃} = t[H]{R̃} + αU{T0} + {G} ,

t[A]{σ̃} ≤ {k} .

(31)A physi
al interpretation of the dual variables is now tentatively proposed. The σ̃ (3 
omponentsat ea
h vertex) 
an be seen as stress-like quantities from the dimension point of view. The R̃(1 
omponent for ea
h 
onstrained velo
ity degree of freedom) are like rea
tion for
es. The setof equalities in (31) is then seen as an expression of the balan
e of the internal and externalfor
es for the dual problem. It is for that reason that the matrix [B̄] is often referred to as thepseudo-equilibrium matrix. This interpretation is however limited in the sense that none of theabove stress-like quantities are derived from a stati
ally admissible stress �eld. We 
an onlystate that the dualization has provided a max-problem whi
h is 
onvenient to sear
h for theupper bound to the te
toni
 for
e, as it is shown next.The set of inequalities in (31) is due to the linearized strength domains introdu
ed in (8).The linearization of the strength domain tends to the original non-linear domain in the limitof an in�nite number of hyper-planes. In this limit, the linearized strength domain 
an be11



repla
ed by the original non-linear domain so that (31) be
omesmaximize αUsubje
t to t[B̄]{σ̃} = t[H]{R̃} + αU{T0} + {G} ,

G(σ̃i) ≤ 0 for i = 1 to 3, for ea
h element in Ωh .

(32)It is this problem whi
h is set up with SARPP (2008) and solved with MOSEK (2008) in 2Dand 3D. The details of the 3D formulation are presented in Appendix B. Appendix C establishesthe link with the 
oni
 programming algorithms adopted in MOSEK (2008). It is emphasizedthat although the �nal problem is reminis
ent of a 
lassi
al lower bound 
onstru
tion, it doesin fa
t result in a rigorous upper bound. The pro
edure of (i) linearizing the strength domain,
(ii) setting up a dis
rete upper bound problem, (iii) 
onstru
ting the dual problem, and �nally
(iv) repla
ing the linearized strength domain by the original non-linear domain provides a
ompletely general approa
h to numeri
al upper bound limit analysis. In 
ontrast, numeri
alformulations based on the primal form of the upper bound theorem are highly dependent onthe parti
ular expression of the support fun
tion.2.4 Velo
ity dis
ontinuitiesThe ability to in
orporate kinemati
ally admissible velo
ity dis
ontinuities a
ross surfa
es ofknown geometry is often desired as for example in the 2D and 3D wedge problems 
onsiderednext and in the 
ompanion paper. The internal work for the 
ontinuum problem in (2) shouldthen be amended to a

ount for the virtual power T · [[Û]] in whi
h T is the stress ve
tor dualto the jump in the virtual velo
ities. These surfa
es have spe
i�
 material properties re�e
tedby a strength domain whi
h would be represented in a stress spa
e of redu
ed dimension.Typi
ally this dimension is two, 
orresponding to the resolved shear stress and the normalstress. The linearization of these strength domain, if ne
essary, would lead to additional non-negative virtual deformation 
omponents λ̂J introdu
ed to de
ompose the velo
ity jump, inthe same way the rate of deformation was presented in (10). These extra variables would bein
luded into the upper bound problem (14). The dualization of Se
tion 2.3 would have beendone along the same line of thoughts with additional dual variables 
orresponding to stress-likeve
tors. Alternatively, we 
onsider that a material dis
ontinuity is simply an in�nitely thinlayer of material, likely of spe
i�
 properties, but whi
h is dis
retized similarly to the bulkregion. The feasibility of this approa
h � and indeed, its equivalen
e to traditional kinemati
formulation su
h as that of Sloan and Kleeman (1995) � was �rst demonstrated by Krabbenhoftet al. (2005) in the 
ontext of elements with a linear variation in the velo
ities.In the present paper, elements with a quadrati
 variation of the velo
ities are used. The
onstru
tion of the dis
ontinuity with a zero-thi
kness pat
h of elements is possible thanks tothe appropriate s
aling with the element area, leading to the introdu
tion of the matrix [B̄]e in(25). This matrix is well de�ned even for an element area identi
ally set to zero. Therefore,as a dire
t extension of the linear velo
ity element, we propose to 
onstru
t dis
ontinuities ofknown position and geometry as pat
hes of two zero-thi
kness quadrati
 elements, as illustratedin Figure 3. The resulting velo
ity jumps are quadrati
 and should have relatively moderatein�uen
e on the a

ura
y of the limit load. It is of interest to redu
e the number of variablesasso
iated with a given dis
ontinuity. For this purpose, the internal dis
ontinuity velo
ities(whi
h are not atta
hed to either of the jointed regions) are expressed in terms of the others(the nodes atta
hed to either side) in the following way:12



1 2 3

4 5 6

7 9
8 l = 0Figure 3: Kinemati
ally admissible velo
ity dis
ontinuity 
omprised of two quadrati
 elements of thi
kness l setto zero.

Û7 = 1
2
(Û1 + Û4), Û8 = 1

2
(Û3 + Û6), Û9 = 1

2
(Û2 + Û5) . (33)Other 
hoi
es are of 
ourse possible, but numeri
al tests suggest that the above proposition ise�
ient, with only a marginal de
rease in a

ura
y as 
ompared to the 
ase of a full quadrati
dis
ontinuity with three independent internal nodes Pastor (2006). It should be emphasizedthat this 
ondensation restri
ts the velo
ities to vary linearly a
ross a dis
ontinuity. Along thedis
ontinuity, the velo
ity jump is still quadrati
 in the tangential dire
tion, in 
ontrast to moretraditional kinemati
 formulations (e.g. Pastor et al., 2008).3 Appli
ation to the 2D stability of a

retionary wedgesThe obje
tive of this se
tion is to validate the numeri
al development with the example of the2D stability of a

retionary wedges, and in parti
ular of 
ohesionless triangular wedges. Thereis an analyti
al solution (Dahlen, 1984) for that parti
ular 
ase whi
h 
an also be obtainedwith the Mohr 
onstru
tion (Lehner, 1986).The 3D wedge studied in the 
ompanion paper is presented in Figure 4a where the observeris seen exerting the for
e Q on the ba
k wall. His horizon is set on the dé
ollement, the lowersurfa
e on whi
h the wedge is resting, so that gravity is a
ting at the angle β from the verti
aldire
tion. Of interest to this 
ontribution is the wedge in the 2D 
entral 
ross se
tion ABCwhi
h angle is α +β, Figure 4b. Geometri
al and material parameters are provided in Table 2.3.1 The 
riti
al wedge theorySymbol de�nition value unit

α topographi
 slope angle variable deg
β dé
ollement angle 3 deg
D total length of the dé
ollement 50 km
δ thi
hness of dé
ollement and ba
k wall 10−6D km
φBW fri
tion angle of the ba
k wall variable deg
CBW 
ohesion of the ba
k wall 0. Pa
φD fri
tion angle of the dé
ollement 15 deg
CD 
ohesion of the dé
ollement 0. Pa
φb fri
tion angle of the bulk material 30 deg
Cb 
ohesion of the bulk material 0. Pa
ρ material density 2200. kg/m3

g gravity a

eleration 9.81 m/s2Table 2: Geometri
al and material parameters for the 2D appli
ations unless they vary from one simulation tothe other. The 
riti
al slope αc is 3.38◦ for this data set.
13



a)

b) hanging wall

β

A

C

B

C

B

back stop
E ramp

F

back thrust

foot wall
α+β

g

Q

G
A

ba
ck

 w
al

l

d décollement
D

e

e

1

2

e3

Figure 4: The 3D geometry of the a

retionary wedge a) and the 
entral 
ross-se
tion 
onsidered for the 2Danalysis, b).The theory of the 
riti
al, 
ohesionless wedge is summarized as follows 
onsidering the slopeof the dé
ollement β 
onstant. For topographi
 angles α less than αc, the deformation o

urs atthe ba
k of the stru
ture whi
h is said to be sub-
riti
al. The failure mode is typi
ally 
omposedof a ramp and a ba
k thrust, as illustrated in Figure 4b for 2D problems by the segments GEand GF, respe
tively. They 
orrespond ideally to velo
ity dis
ontinuities (Cubas et al., 2008).Material in the ba
k stop is displa
ed parallel to the dé
ollement before taking a traje
toryparallel to the ramp at the 
rossing of the ba
k thrust. The material in the hanging wall isover thrusting the material in the foot wall whi
h is at rest. For sub-
riti
al slope 
onditions(α < αc), the 
ommon root of the two dis
ontinuities on the dé
ollement is as mu
h as possibleto the ba
k, so that point F is superposed on point C. Only part of the dé
ollement is a
tivated,segment AG. For slope angles larger than αc, the deformation is to the front and the stru
ture issaid to be super-
riti
al. In that instan
e, the failure me
hanism (ramp, ba
k thrust) 
ollapsesto a single point at the toe of the wedge, point B, and the whole dé
ollement is a
tivated.The transition o

urs exa
tly for α = αc and is marked by the potential a
tivation of faultingeverywhere within the wedge. The distan
e of the root of the failure me
hanism, denoted d, isthen undetermined. The analyti
al expression (Dahlen, 1984) for the 
riti
al slope angle is
αc + arcsin(

sin αc

sin φR

) = −2β + arcsin(
sin φD

sin φR

) − φD . (34)This interpretation of Dahlen's solution is in line with the results of Cubas and al. (2008)who applied the maximum strength theorem for the failure me
hanism 
omposed of a rampand ba
k thrust. Their minimization is in terms of three variables, the dips of the two velo
itydis
ontinuities and the position d of their 
ommon root on the dé
ollement. These analyti
alresults pinpoint exa
tly the transition. The obje
tive is now to repeat this analysis with theproposed numeri
al s
heme without postulating the shape nor the position of the failure modes.14



l = 10-6D

l = 10-6D

a)

 

 

−100

−50

0
σ

e
[MPa]b)

 

 

0

50

100
P [MPa]c)

Figure 5: The type of mesh over the wedge, in
luding the 
ollapsed elements for the interfa
es, a). The twoinvariants of the stress-like results, the in-plane mean stress P b), and the equivalent stress σe for α = 3◦, 
),
orresponding to sub-
riti
al slope 
onditions. Units: MPa.The mesh 
onsidered for that problem 
onsists of 60×30 
ells, ea
h 
omposed of four 
rossedtriangles, ex
ept for the 
ells at the toe 
omposed of a single triangular element. A 
oarse meshis presented in Figure 5a for sake of illustration. The 
ollapsed 
ells for fri
tion on the ba
k walland the dé
ollement are also presented. The thi
kness of these two layers is set to l = 10−6D
orresponding to the physi
al thi
kness of 5 cm. There is a total of 7470 elements and 15123nodes. The boundary 
onditions are as follows. The velo
ities on the lowest plane parallelto the dé
ollement are pres
ribed to be zero (see equation 17). The horizontal 
omponent ofthe velo
ity at the rear of the ba
k wall layer are set to one, leading to an algorithm slightlydi�erent from the general 
ase presented in se
tion 2 and dis
ussed in Souloumia
 (2008). Theonly material property not set in Table 2 is the ba
k wall fri
tion angle: φBW = 30◦.The fundamental problem unknowns are the three stress 
omponents (σ11, σ22 and σ12)de�ned at the three verti
es of ea
h triangle, in the basis atta
hed to the observer, Figure4a. Results of the dual problem are presented in Figure 5b and 
 in terms of the equivalentshear stress and the in-plane mean stress de�ned in (4). These results are obtained for α = 3◦,
orresponding to sub-
riti
al 
onditions (αc = 3.38◦). It is tentatively proposed to interpretphysi
ally those stress �elds although they are not stati
ally admissible. The motivation forthis proposition 
omes from the stress distribution whi
h is mostly parallel to the topography.There is thus an invarian
e of the stress �eld with respe
t to the position along the free surfa
e,the 
lassi
al assumption in the 
riti
al wedge theory. This spatial dependen
e is altered 
lose tothe ba
k wall for reasons whi
h will be dis
ussed in the next subse
tion. This variation o

ursin a region of 
hara
teristi
 size less than the wedge height H de�ned as D tan(α + β).The primal variables are the nodal velo
ities and they are also 
omputed by the optimization
ode MOSEK (2008). They are used in Figure 6a to 
onstru
t the boundary of the deformedmesh 
onsidering the virtual velo
ity as the a
tual velo
ity and taking a time step of arbitrarymagnitude. The original domain boundaries 
orrespond to the dashed lines. There is a forwardmotion of two triangular regions with boundaries delineated by dotted segments, whi
h we15
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)Figure 6: Sub-
riti
al slope 
onditions: α = 3◦ < αc. The deformed boundary of the mesh based on the nodalvelo
ities at the six nodes of ea
h triangle, superposed to the original mesh in dashed lines, a). The dottedsegments mark the 
ore of the zone of lo
alized virtual deformation and 
ould be interpreted as the ba
k thrustand the ramp. Iso-
ontours of the virtual volumetri
 θ̂ and the virtual equivalent shear strain γ̂ are presentedin b) and 
), respe
tively.propose to mark the ramp and the ba
k thrust. The region most to the rear is the ba
k stopand the other the hanging wall. Their boundaries are strips of lo
alized deformation. Themotion along the dé
ollement 
eases at the point where the ramp and the ba
k are rooting.This interpretation of the failure me
hanisms and more generally the analysis of the spatialgradient in the virtual rate of deformation tensor are fa
ilitated with the introdu
tion of thetwo invariants
θ̂ = tr(d(Û)) , γ̂ =

√

d̂′ : d̂′ with d̂′ = d̂ − θ̂

3
δ , (35)in whi
h d̂′ is the deviatory, virtual rate of deformation tensor. The �rst invariant is the virtualvolumetri
 strain and the se
ond, the virtual equivalent shear strain. They are plotted in 6band 
 over the original domain. One observes a strong virtual strain lo
alization along the twodire
tions at 23.5◦ and 40.5◦ 
orresponding to the expe
ted dips of the ramp and ba
k thrust.The virtual dilation θ̂ is of 
ourse more di�
ult to interpret physi
ally, in the absen
e of anyplasti
ity 
onstitutive response. In parti
ular, the verti
al displa
ement along the dé
ollementwhi
h marks its a
tivation extent, and seen in Figure 6a, will not be interpreted beyond the
onstraint due to the stru
ture of the support fun
tion in equation 7. We know from Cubasand al. (2008) that the dé
ollement is in 
ondition (2) and the virtual velo
ity ve
tor is atthe angle φD from this surfa
e, explaining the virtual opening ne
essary for the virtual sliding.This opening or dilation is ne
essary a

ording to the de�nition of the support fun
tion. Itis interesting to note that the dual problem leads to the same 
on
lusion although the exa
texpression for the support fon
tion is not required.Results for the topographi
 slope at 
riti
ality (α = αc) are presented in Figure 7 and 
onsistof the deformed mesh and the distribution of the virtual equivalent shear strain γ̂. Most of the16
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b)Figure 7: Criti
al slope 
onditions: α = αc. The boundary of the deformed mesh superposed to the originalmesh, dashed lines, a) and the iso-
ontours of equivalent-shear virtual-strain γ̂ in b). The whole dé
ollement isa
tivated and the deformation is rather di�use.dé
ollement appears to be a
tivated and the virtual deformation in the bulk is mostly di�usewith a large ramp region whi
h marks more the �exure of the domain than the tenden
y for thevirtual strain to lo
alize. Results for super-
riti
al slope 
onditions are presented in Figure 8.The whole dé
ollement is a
tivated ex
ept at the toe where there are some mesh e�e
ts. Thevirtual deformation is zero in most of the wedge ex
ept in that spe
i�
 region.
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b)Figure 8: Super-
riti
al slope 
onditions: α = 3.5 > αc. The boundary of the deformed mesh superposed to theoriginal mesh, dashed lines, a) and the iso-
ontours of equivalent-shear virtual-strain γ̂ in b).The results presented in Figures 6 to 8 illustrate that our numeri
al implementation does
apture the stability of the perfe
tly-triangular wedge. The mode of failure is indeed with aramp and ba
k thrust system de�ned numeri
ally as lo
alized zone of virtual shear and dilation.Su
h strips are well des
ribed by sharp velo
ity dis
ontinuities in analyti
al work (Cubas andal. 2008). The dips of the numeri
al failure system 
oin
ide with the analyti
al predi
tions.This quantitative validation is 
ontinued by plotting in Figure 9 the distan
e d, positioningthe root of the failure me
hanism on the dé
ollement, as a fun
tion of the topographi
 slope
α (ba
k wall fri
tion φBW = 30◦). The dashed verti
al line 
orresponds to Dahlen's 
riti
alslope of αc = 3.38◦. The numeri
al results are presented as open 
ir
les linked by the seriesof solid segments. For α less than αc, d is as small as possible to let the ba
k thrust out
ropon the top surfa
e. It is equal to the whole dé
ollement length, D, for values larger then αc.17
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Figure 9: The position of the root of the ramp and ba
k thrust on the dé
ollement as a fun
tion of thetopographi
 slope. The dashed line marks the analyti
al solution of Dahlen (1984). The ba
k-wall fri
tion angleis set to φBW = 30◦.The numeri
al transition o

urs exa
tly for the analyti
al value of the 
riti
al slope, furthervalidating the numeri
al development.3.2 In�uen
e of the fri
tion on the ba
k wallThe series of 2D results are 
ompleted with a regard on the in�uen
e of the ba
k wall fri
-tion. This analysis is 
ertainly of most interest to the pra
titioners of numeri
al modeling andphysi
ists reprodu
ing with analogue materials in the laboratory the work of nature, where the
on
ept of boundary 
onditions remains di�
ult to grasp (S
hreurs et al., 2006). The topo-graphi
 slope is set to α = 3◦, 
orresponding to sub-
riti
al 
onditions so that failure shouldo

ur 
lose to the ba
k wall.The upper bound in the te
toni
 for
e ne
essary to initiate failure is presented as a fun
tionof the ba
k wall fri
tion angle in Figure 10. The 
urve is approximately de�ned by two straightsegments interse
ting for the spe
i�
 value φ∗

BW = 5.8◦. This 
riti
al value of the ba
k wallfri
tion angle marks also a 
hange in the failure modes whi
h are illustrated in Figure 11 withiso
ontours of virtual equivalent shear strain. For the smallest value φBW = 3◦, the failuremode is 
omposed of a single ramp taking root on the dé
ollement at the ba
k wall 
onta
t.A triangular region is virtually moving up the ramp requiring shear along the ba
k wall. Forvalues of the fri
tion angle 
lose to φ∗

BW , a fra
tion of the dé
ollement is a
tivated and the ba
kthrust is interse
ting the ba
k wall at depth. The failure system favors the a
tivation of thedé
ollement to redu
e sliding on the ba
k wall. The transition to the straight ramp and ba
kthrust takes pla
e for φBW larger than φ∗

BW , as illustrated in Figure 11d and e, for 7◦ and 15◦.The dual stress �eld for the 
ase of φBW = 5.7◦ is presented in Figure 12 in terms of thetwo invariants σe and P , de�ned in (4). The main di�eren
e with the results obtained for
φBW = 30◦ in Figure 5 is the absen
e of stress 
on
entration at the bottom left 
orner of thewedge. The stress state seems to be only fun
tion of the distan
e to the topographi
 surfa
e,18
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Figure 10: The normalized upper bound to the te
toni
 for
e as a fun
tion to the fri
tion angles on the ba
kwall.a 
lassi
al stress state in soil me
hani
s and used by Dahlen (1984) and Lehner (1986). Thisstati
ally admissible stress state is used next to explain further the in�uen
e of the ba
k wallfri
tion on the failure mode.The stress state is assumed to be independent of the position along the topography (x-
oordinate in Figure 13a) and thus reads σxz = ρgz sin β and σzz = −ρgz cos β. The stressve
tor σ · n a
ting on the fa
ette no 1 in Figure 13a has the 
omponent (τ = − sin β, σn =
− cos β), on
e normalized by ρgz, in the dire
t basis (n, t) shown in the same Figure. This stressve
tor 
orresponds to point T in the Mohr 
onstru
tion of Figure 13b where the normalized
oordinates σn/ρgz and −τ/ρgz are used to render 
onsistent the stress sign 
onvention and theuse of the pole de�ned in what follows. The normalization in the absen
e of any 
ohesion forthe Coulomb 
riterion renders the following 
onstru
tion appli
able at any position within thewedge. The two Mohr 
ir
les whi
h are presented are tangent to the Coulomb strength 
riterion.They represent the a
tive and the passive stress state, respe
tively. We are interested by thepassive 
ir
le de�ning the failure mode under 
ompression at the ba
k of the wedge. The poleP of this 
ir
le is de�ned by the remarkable property that any line oriented with the physi
aldip of the fa
ette of interest (not its normal) and passing through P also interse
ts the Mohr
ir
le at the point de�ning the relevant stress ve
tor (see Mandl, 2005). This is 
learly the 
aseof fa
ette 1 whi
h was used to 
onstru
t the pole. It is also true of the dé
ollement dippingat β whi
h has the stress ve
tor at point R'. The zoom in the region of points R' and T inFigure 13
 shows that this point R' di�ers from point R whi
h is the stress ve
tor ne
essary toa
tivate the dé
ollement with fri
tion angle φD. The point R′ is below R and signals that thedé
ollement fri
tion is too large for this surfa
e to be a
tivated. Our 
hoi
e of parameters does
orrespond to sub-
riti
al 
onditions. The pole is further used to 
onstru
t the stress ve
tor offa
ette no 2, parallel to the ba
k wall, whi
h is at point S in the Mohr's 
onstru
tion. The valueof the fri
tion angle whi
h would mark the a
tivation of slip along the ba
k wall is φ∗

BW ≃ 6◦,19



within the a

ura
y of the measure with a protra
tor. This is 
ertainly a su�
iently a

urateapproximation of the 5.7◦ found numeri
ally above.If φBW is larger than φ∗

BW , slip is prevented to o

ur on the ba
k wall and the ba
k stop
an only glide on the dé
ollement. For φBW smaller then φ∗

BW , slip 
an o

ur on the ba
kwall and the failure me
hanism make use of that property to initiate the ramp at the ba
kwall. The ba
k stop is then part of the hanging wall. For the 
riti
al value φ∗

BW , the numeri
alstress �eld 
oin
ides 
losely to the stati
ally admissible �eld used in the Mohr's 
onstru
tion,see Figure 12.
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e)Figure 11: The failure mode for sub-
riti
al topographi
 slope 
onditions (α = 3◦ < αc) for �ves values of theba
k wall fri
tion φBW set to 3◦, 5.5◦, 5.7◦, 7◦ and 15◦, in a) to e), respe
tively. Iso-
ontours of the virtualequivalent shear strain γ̂.
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Figure 13: The Mohr's 
onstru
tion for the triangular wedge in a). The stress ve
tor on fa
ette 1, parallel tothe topography, de�nes point T as well as the position of the pole on the 
ir
le, point P, b). The segment PR' isdipping at β and provides the stress a
ting on the dé
ollement, point R'. The stress ve
tor a
ting on fa
ette 2 ina), is the point S in b). The zoom in 
) on the region of points R and T in b), shows that the dé
ollement is nota
tivated sin
e R′ requires a fri
tion angle on the d¢ollement smaller than the value used for the 
onstru
tion.
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3.3 Comparison with analogue experimentsa) b)
R

am
p

B
ack thrust

Ram
p

Silicone

Figure 14: Two pi
tures of the laboratory experiments from the side showing a ramp and ba
k-thrust for failuremode a) and a ramp only in b) in the absen
e and the presen
e of a layer of sili
one along the ba
k wall,respe
tively.It is now proposed to 
ompare the failure modes predi
ted from the virtual velo
ity �eldwith the results of laboratory experiments with sand. The box is 
omposed of two parallel sideglass walls, separated by the distan
e of 7 
m, 
lamped on a �at plate de�ning the plane of thedé
ollement. The fourth plate 
orresponds to the ba
k wall whi
h exerts the for
e ne
essary to
ompress the granular, analogue material and 
an be displa
ed between the two lateral walls.The �fth plate is 
lamped on the dé
ollement, and parallel to the ba
k wall at a distan
e
D = 37cm, initially. The internal region is �lled with a well-sorted (good distribution in grainsize) Fontainebleau quartz sand (median grain size of 250 µm). Its fri
tion angle is of the orderof 30◦ (S
hreurs et al., 2006). The fri
tion over the side glass and the bottom plate is 
lose to 15◦thanks to a proper treatment with 
hemi
al produ
t. The fri
tion over the ba
k wall is mu
hlarger unless a thin layer of sili
on putty (Dow Corning SGM 36) is inserted. This materialhas a vis
osity of µ = 5 × 104Pas. The rate of 
ompression is set to 8.3 × 10−6m/s and theramp in the sand in
lined at 30◦, so that the hanging wall is moving up at 4.8× 10−6m/s. Thesili
one layer of thi
kness 2.5 mm, if assumed to sustain a simple shear deformation, is �owingat a strain rate of γ̇ = 1.9×10−31/s. The shear stress on the ba
k wall is then τ = γ̇µ = 96Pa.The 
ompressive for
e magnitude measured in the laboratory is of the order of 36 N/m (perunit width), so that the normal stress on the ba
k wall is on average 1800Pa. The equivalentfri
tion 
oe�
ient is then τ/σn = 5 × 10−2 
orresponding to the fri
tion angle of 3◦ whi
h isindeed below the 
riti
al value φ∗

BW = 6◦ found above.The initial set-up 
orresponds to a sand pa
k with α = β = 0 and a layer thi
kness of20 mm. The sand is deposited with a sand distributor, to ensure experimental reprodu
ibility,by layers of up to 5 mm and separated by �ne layers of 
olored sand a
ting as markers. The
omplete des
ription of the experimental set up and of the proto
ol is presented by Cubas andal. (2009) and Souloumia
 (2009). The results after shortening by 9 mm approximately arepresented in Figure 14a and b in the absen
e and the presen
e of sili
on putty on the ba
kwall, respe
tively. The pi
tures are taken from the right side and present, through the sidewall, the failure mode. It 
onsists of a ramp and a ba
k thrust, dashed segments, with a slightrelief, Figure 14a. The ba
k thrust is out
ropping 
lose to the ba
k wall. In the presen
e ofthe sili
one, a single dis
ontinuity in the form of a ramp o

urs rooting on the dé
ollement atthe ba
k wall 
onta
t. Although many parameters are estimated to �rst order, these resultsvalidate the observation made in the previous se
tion: the sele
tion of the failure mode with orwithout ba
k thrust is due to the fri
tion over the ba
k wall. The larger fri
tion angles promotethe presen
e of the ba
k thrust. This interpretation will 
ertainly 
ontribute to the dis
ussioninitiated during the experimental ben
hmark of S
hreurs et al. (2006).24



4 Con
lusionThe obje
tive was to propose a methodology whi
h 
ould ultimately permit to study system-ati
ally the 3D variations of the failure mode within a

retionary wedges.It is not the primal problem, 
onstru
ted dire
tly from the kinemati
s approa
h of the limitanalysis, but its dual version whi
h is found most 
onvenient in view of the 
omplexity of moststrength 
riteria and the di�
ulty to a

ount properly of the 
onstraints (inequalities) due totheir support fun
tions. The dual variables are stress-like quantities, on
e appropriately s
aled,although their distribution is not a-priori stati
ally admissible. It is shown nevertheless, inthe 
ase of the 2D triangular wedge, that the dual stress �eld 
orresponds to the expe
tedtheoreti
al solution whi
h satis�es equilibrium and is independent of the position along thetopography and fun
tion only of the distan
e to this �at surfa
e. The primal variables providethe virtual velo
ity �eld whi
h 
hara
terizes the failure mode of the stru
ture. The ramp andba
k thrust system de�ning the 2D failure mode is expressed as narrow strips of lo
alized virtualdeformation. This lo
alization of virtual strain as well as the a
tivation of the dé
ollement aredilatant. This fa
t is known from the primal problem sin
e dilatan
y is required for the supportfun
tion to be �nite. It is interesting to re
ognize that the solution of the dual problem 
omesto the same 
on
lusion. The ba
k stop and the hanging wall are regions sustaining virtualrigid motions. The position of the failure me
hanism to the front (super-
riti
al) or the rear(sub-
riti
al) of the wedge depends on the topographi
 slope, the dé
ollement fri
tion andthe bulk fri
tion angle. The exa
t relation (Dahlen, 1984; Lehner 1986) de�nes the 
riti
altopographi
 slope αc whi
h is 
aptured exa
tly by the numeri
al pro
edure. It is further shownthat the failure mode at the rear for sub-
riti
al 
onditions (α < αc) 
ould 
ollapse to a singleramp rooting at the interse
tion of the ba
k wall and the dé
ollement instead of a ramp andba
k thrust system. The ba
k wall fri
tion angle predi
ted by a Mohr 
onstru
tion is, withingraphi
al error, equal to the angle found numeri
ally at the transition between these two modesof failure. Laboratory experiments, with sand and with or without sili
one along the ba
k wall,validate this �nding quantitatively.Two 3D examples are presented in the 
ompanion paper (Souloumia
 et al., 2009). The�rst of the two examples has for obje
tive to shed light on the validity of the 2D stability
riterion in the presen
e of a lateral topographi
 slope variation (perpendi
ular to the dire
tionof 
ompression). It is shown that a lateral variation by ±0.5◦ from the 
riti
al αc, 
hosen inthe 
entral 
ross se
tion, 
ould prevent the deformation front to be at toe of the wedge in the2D super-
riti
al region. The 3D failure me
hanism is then 
hara
terized by a ramp in the 2Dsub-
riti
al region whi
h be
omes di�use with a de
reasing dip as one move towards the 2Dsuper-
riti
al region. The se
ond of the 3D examples is proposed to question the in�uen
e ofthe lateral wall fri
tion on the failure mode produ
ed typi
ally in the laboratory. For a lateralwall fri
tion of 15◦ and a box width to length ratio of one, 20 % of the width set up is a�e
ted bythe lateral wall. The 
riti
al slope angle αc = 3.38◦ is in
reased by as mu
h as 1.5◦. It is indeedne
essary to in
rease signi�
antly the weight of the wedge before super-
riti
al 
onditions aremet. The 2D stability are thus questioned and a 3D 
riterion based on the per
entage of thesurfa
e of dé
ollement whi
h is a
tivated is tentatively proposed and 
ompared with predi
tionsobtained with sand in the laboratory.Appendix A: Linear programming dualityThe obje
tive of this appendix is to present the dualisation argument, whi
h is 
lassi
al inlinear programming, with a notation 
onsistent with the development proposed in this paper.25



1
2

3

4

5

6

10

8

7

9

Figure 15: Quadrati
 tetrahedron element for 3D upper bound analysis.This material is 
ertainly not new and proposed here only for sake of 
ompleteness.The primal problem is the following minimization sear
hminimize t{c}{x}subje
t to [A]{x} = {b} ,

{x} ≥ {0} ,

(36)in whi
h the ve
tor {x} is the 
olle
tion of m unknowns and where there are n equalities tobe satis�ed (the matrix [A] is n × m; the variables and dimension names di�er from the onesde�ned in the main text). The dual problem is stated asMaximize t{b}{y}subje
t to t[A]{y} + {s} = {c} ,

{s} ≥ {0} ,

(37)in terms of the n unknowns in the ve
tor {y} and the additional m sla
k variables in theve
tor {s}. The optimal solutions, in terms of the obje
tive fun
tion, are the same for the twoproblems as it 
an be shown by 
omputing the duality gap
gap ≡ t{c}{x} − t{b}{y} = t{s}{x} ≥ 0 . (38)The gap is always positive or nul and only nul if the two systems of equalities in (36) and (37)are satis�ed. In that instan
e, the orthogonality 
ondition t{s}{x} = 0 applies. It is the dualproblem (37) whi
h is used for all examples in se
tion 3 whereas the primal problem (36) wasset up in se
tion 2 from the maximum strength theorem with a spatial dis
retisation for thevelo
ities and the deformation 
omponents λ̄.Appendix B: Generalisation to 3DThe 3D dis
retization is 
onstru
ted with ten-node tetrahedra, as illustrated in Figure 15. Themid-side nodes are lo
ated at equal distan
es between the vertex nodes and all sides are planarsurfa
es. The pseudo-equilibrium matrix analogous to (25) is given by26



[B̄]e = − 1
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
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




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,where
tPi = 2Ai


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ni
1 0 0 ni

2 ni
3 0

0 ni
2 0 ni

1 0 ni
3

0 0 ni
3 0 ni

1 ni
2



 , (39)with (ni
x, n

i
y, n

i
z) being the unit outward normal to fa
e i (opposite node i) and Ai the area ofthat fa
e.The pre-de�ned dis
ontinuities in 3D are 
onstru
ted by pat
hes of zero-thi
kness and 
omposedof three tetrahedra, as shown in Figure 16. Again, this pat
h of tetrahedra is treated in thesame way as the regular bulk elements and the fa
t that the element volume is equal to zerodoes not pose any di�
ulty. Also, similar to 2D dis
ontinuities, the internal dis
ontinuity nodesare eliminated by making appropriate assumptions about the variation of the velo
ities a
rossthe dis
ontinuity.

l = 0

Figure 16: Dis
ontinuity pat
h 
onsisting of three zero-thi
kness tetrahedra for 
onstru
ting a dis
ontinuity ofknown geometry and zero thi
kness in 3D.Appendix C: Se
ond-order 
one programmingThis last Appendix presents the 
onversion of the general non-linear upper bound limit analysisproblem (32) into se
ond-order 
one programming (SOCP) format. The most 
ommon of theseformats 
omes in the form of the following generalization of the primal LP problem (36):minimize t{c}{x}subje
t to [A]{x} = {b} ,

{x}i ∈ Ki , i = 1, . . . , n ,

(40)where the total solution ve
tor {x} is assumed to be partitioned into n subve
tors {x}i. For ea
hof these subve
tors a 
oni
 inequality 
onstraint, given by the last line in (40), is imposed. Themathemati
al de�nitions of what 
onstitutes a 
one are relatively stringent and 
annot easilybe 
ir
umvented (see, e.g., Ben-Tal and Nemirovski 2001, for details). However, for the present27



appli
ation it su�
es to know that the Dru
ker-Prager 
riterion, by a suitable transformationof variables, is 
ast in the following quadrati
 
one:
K =







{x} ∈ IRm+1| x1 ≥

√

√

√

√

m+1
∑

j=2

x2
j







. (41)This transformation is a
hieved by introdu
ing a new set of variables {ρ}:
{ρ} = [D]{σ} + {d} , (42)where
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. (43)
The Dru
ker-Prager 
riterion (5) 
an then be written as

KDP =







{ρ} ∈ IR7| ρ1 ≥

√

√

√

√

7
∑

j=2

ρ2
j







, (44)whi
h is a quadrati
 
one. Hen
e, in the 
ase where the yield 
riterion is of the Dru
ker-Pragertype, the SOCP standard form of the general nonlinear upper bound limit analysis problem(32) reads maximize αUsubje
t to t[B̄]{σ̃} = t[H]{R̃} + αU{T0} + {G}

{ρ} = [D]{σ̃} + {d}

{ρ}i ∈ KDP for i = 1 to 3, for ea
h element in Ωh .

(45)
This problem is solved using the general purpose SOCP solver MOSEK (2008). In some 
ases itis possible to eliminate the physi
al stress variables {σ̃} to end up with only problem unknowns
{ρ} and {αU} (see Krabbenhoft et al., 2007 for details). This is exploited for problems where
αDP is non-zero whi
h implies that t[D][D] is non-singular and the physi
al stress variables areexpressed entirely in terms of {ρ}.
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