
Predicting stress distributions in fold-and-thrust belts

and accretionary wedges by optimization

P. Souloumiac,1 Y. M. Leroy,2 B. Maillot,3 and K. Krabbenhøft4

Received 5 August 2008; revised 20 April 2009; accepted 19 May 2009; published 15 September 2009.

[1] The objective is to demonstrate that the equilibrium element method (EEM) provides
the stress distribution in geometrical models of folds, relevant to fold-and-thrust belts
as well as accretionary wedges. The core of the method, inherited from limit analysis, is
the search for an optimum stress field that (1) is in equilibrium, (2) remains everywhere
below or equal to the maximum strength of the rock, and (3) balances the largest
possible applied tectonic force. This force and the associated stress field are interpreted as
those at the onset of rupture. The method makes no appeal to the rock rheology nor to
its elasticity, except for its maximum strength described here with the Coulomb criterion.
The stress fields are discretized by elements covering the whole domain and allowing
for discontinuities. The example chosen to illustrate the potential of the EEM and to
validate our implementation is the thrusting of a rectangular sheet over a flat and weak
décollement. The EEM reproduces the solution proposed by Hafner (1951) on the basis of
linear elasticity, as long as the strength limit is not reached in the bulk of the domain.
The EEM shows in addition that failure in the bulk prevents the activation of the
décollement. The EEM is then applied to two fault-bend folds, with known ramp and flat
décollement, with and without relief buildup. It is shown that the transition from the flat to
the ramp hanging walls occurs through a narrow fan defining the back thrust. The
predicted dip of this back thrust decreases with increase in the ramp friction angle, the
relief buildup, as well as the ramp curvature. A sharp increase and then a sharp decrease in
the magnitudes of the equivalent shear stress and of the mean stress are observed as one
moves from the lower flat, through the back thrust up the ramp. If the ramp friction angle
is too large, or the relief too important, the EEM predicts the initiation of a new thrust
rooting at the back wall, instead of activating the proposed ramp. The application to detect
the incipient thrust system within the toe of Nankai’s accretionary wedge, southeast
coast of Japan, is proposed in the auxiliary material.
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1. Introduction

[2] There are two drastically different approaches to
capture the development of fault-bend folds in fold-and-
thrust belts and accretionary prisms. The first line of study
relies on numerical techniques, such as the finite element
method (FEM), enforcing mechanical equilibrium in a weak
sense and accounting for complex rock rheologies [Erickson
and Jamison, 1995; Erickson et al., 2001]. This line of work
is an active area of research, requiring benchmarking among
experts [Buiter et al., 2006], because it meets several

technical difficulties regarding the onset of discontinuities
[Ortiz et al., 1987] and their development into ramps.
Also, the details of the elastic-plastic constitutive relations
control the strain localization conditions [Rudnicki and
Rice, 1975] but are difficult to interpret on the basis of
field observations [Leroy and Triantafyllidis, 2000]. The
second approach to capture fault-bend folds is purely
geometrical and relies on simple rules to construct the fold
development, based essentially on the experience of the
field geologist or the seismic interpretor (see, e.g., Suppe
[1983] for the fault-bend fold rules). The simplicity of the
geometrical rules renders possible the systematic construc-
tion of complex structures which, completed by temperature
predictions, have practical applications in the oil industry
[Zoetemeijer and Sassi, 1992; Sciamanna et al., 2004].
Furthermore, such geometrical modeling requires only a
fraction of the computer time necessary for the FEM
simulations. There is, however, no concrete and objective
means to select between two possible geometrical models of
folding in the absence of any account of material properties,
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mechanical equilibrium, or tectonic force. We propose to
apply a classical approach used in soil mechanics and
geotechnics to alleviate this deficiency.
[3] In geotechnics, the critical load that will permanently

damage a structure or a foundation is the prime objective. It
can be determined by solving the full mechanical problem
using the FEM, if the details of the constitutive rules of the
materials are known. Alternatively, limit analysis provides
bounds on the values of the critical load with few assump-
tions on the rheology [Salençon, 1974]. It proceeds in two
parts: in the kinematics approach, an upper bound to the
critical load is determined by finding possible failure
geometries. In the statics approach, a lower bound is derived
by constructing possible stress fields which balance the load
without exceeding the material strength. In both cases, an
optimization is carried out to obtain bounds as close as
possible to each other. Since we deal here with upper crustal
structures, the Coulomb criterion is well adapted to detect
the onset of rock failure. It produces conveniently a convex
strength domain in the appropriate stress space, a property
required by the upper and lower bound theorems. Our
interpretation of these theorems is different from the classical
limit analysis, as applied by Odé [1960], in that a complete
theory for perfectly plastic solids is not considered. In
particular, the concept of flow rule, essential to define the
plastic strain rate is not necessary in this contribution. The
Coulomb criterion is the only element of rheology which is
assumed.
[4] This work is part of a research effort to account for

rock strength and mechanical equilibrium in geometrical
models of fault-related folds by extension of the classical
limit analysis. Among previous work, Maillot and Leroy
[2006] proposed to extend the kinematics approach of
classical limit analysis to the development of folds. The
idea was further developed by Cubas et al. [2008], who
studied a forward sequence of thrusting in an accretionary
wedge. Note that the kinematics approach requires no
rheology other than strength criteria (Coulomb again). It
is based on velocity fields but the symmetric parts of their
gradients are not related to any stress fields since no
constitutive relations are postulated.
[5] Here we present a numerical implementation of the

statics approach of limit analysis: the Equilibrium Element
Method (EEM). The idea of the statics approach is to search
within the set of statically admissible (SA) stress fields, (i.e.,
stress fields satisfying local mechanical equilibrium includ-
ing potential discontinuities and balancing forces applied at
the boundaries of the domain), the optimum field which
respects the rock strength limit at every point of the domain
[Salençon, 2002]. By optimum, we mean the stress field that
balances the largest applied forces, which is a lower bound
to the exact applied force at failure. Note that only stress is
discussed with the statics approach and there is no attempt
to deduce a velocity field, nor a displacement field, nor a
displacement gradient or jump. The main difficulty of the
statics approach is that analytical solutions for SA stress
fields even in two dimensions are not easily constructed.
One could consider polynomial expressions for an Airy
stress function, as done typically for elasticity problems
[Hafner, 1951], but the extension to complex geometries
quickly becomes cumbersome. It is thus preferable to

discretize the domain of interest, typically with triangular
elements in a 2-D setting. In contrast to the displacement-
based finite element method, the stress components are the
nodal unknowns. The resulting equilibrium element method
(EEM) provides a set of equalities and inequalities for the
nodal unknowns which correspond to the equilibrium con-
ditions and the necessity to satisfy the rock strength limits,
respectively.
[6] Among the merits of the EEM, first, discontinuities are

built in the mesh along the side of every triangle providing
new results on the stress distribution of the studied struc-
tures. Second, the EEM requires only the knowledge of
the material strength. For the Coulomb criterion the only
parameters required to produce the stress field are the
distribution of friction angle and cohesion over the struc-
ture. These two parameters are certainly more in line with
the way of thinking of a field geologist then the complete set
of parameters necessary to define an elastic-plastic material
required for an FEM simulation. Third, the search for the
optimum stress field is not computer-intensive and is
realized with a small fraction of the time necessary to
produce an increment of deformation with a FEM code
[Souloumiac and Modaressi, 2008]. A clear limitation of the
EEM is that it cannot predict substantial elastic or viscous
deformations prior to failure since no elastic or viscous
behavior is assumed.
[7] The paper contents are as follows. Section 2 contains a

technical presentation of the EEM with the particular exam-
ple of the sliding of a rectangular sheet over a flat horizontal
décollement. Section 3 is devoted to the application of the
EEM to two fault-bend folds. The first fold is permanently
eroded and the second fold builds up relief. In both cases, it
is shown that the transition from the flat region to the ramp
hanging wall occurs with a failure mechanism having
the shape of a narrow fan, referred to as the back thrust.
The stress concentration due to the rooting of the ramp on the
décollement and the presence of this back thrust determines
the main characteristics of the stress field over the structure.
A comparison of the EEM predictions to the finite difference
results of Gonzáles et al. [2008] is also proposed. Text S1
in the auxiliary material gives additional details on our
predictions and proposes an application to Nankai accre-
tionary wedge, southeast coast of Japan.1 It is shown that
minute variations in the friction angle of the décollement
and details of the topography largely control the position of
the failure mechanism which could be composed of a single
ramp with two parallel back thrusts or of two subparallel
ramps.

2. EEM and Its Validation With Hafner’s
Problem

[8] The objective of this section is to introduce the EEM
and to validate our implementation with the example of a
rectangular sheet sliding over a flat décollement, a problem
suggested by Hafner [1951] in a seminal contribution on
overthrusting. The geometry of the domain W and the
loading are presented in Figure 1. The loading over the left

1Auxiliary materials are available in the HTML. doi:10.1029/
2008JB005986.
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boundary AD has a normal and tangential component defined
by

Td
x ¼ rg H�yð Þ þ aL; Td

y ¼ �a H�yð Þ; x ¼ 0; 8y 2 0;H½ 	;
ð1Þ

in which r, g are the material density, the gravity
acceleration, acting in the y direction and in the negative
sense, respectively, and a a positive scalar (unit Pa/m). The
total horizontal force acting on the left boundary is

F að Þ 

Z D

A

Td
x yð Þdy ¼ 1

2
rgH2 þ aLH : ð2Þ

Along the right boundary BC, the two components of the
distributed applied force are

Td
x ¼ �rg H � yð Þ; Td

y ¼ a H � yð Þ; x ¼ L; 8y 2 0;H½ 	;
ð3Þ

resulting in the total horizontal force on the right boundary
equal to 1

2
rgH2. The upper surface CD is stress free

Td
x ¼ Td

y ¼ 0; 8x 2 0;L½ 	; y ¼ H : ð4Þ

The domain boundary @WTwhere forces are prescribed, and
identified by the superscript d (data), is thus composed of the
top free surface and the two lateral boundaries only. The
décollement, having specific properties, is described as a
material discontinuity in the following. Hafner’s problem
consists in determining the exact tectonic force (equation (2))
which triggers slip on the décollement or bulk failure. In
this respect, a is the unknown of the problem.

2.1. Equilibrium Element Method

[9] The statics approach does not provide the exact
solution to Hafner’s problem. Instead, it seeks to establish
a lower bound to the exact applied force. It proceeds in
several steps: first, a stress field is constructed, by any
means (analytical or numerical), that must be in equilibrium,
and respect everywhere the maximum strength of the rock.
Second, compute by quadrature as in (2), the applied load
balanced by this field. It is a lower bound to the exact
solution. The third step consists in optimizing the stress

field to balance the largest possible applied load. In other
words, the method provides the largest lower bound
to the exact, unknown applied force at failure, and the
corresponding optimum stress field over the domain. The
equilibrium element method (EEM) follows this strategy,
using a spatial discretization with elements to construct
numerically the stress field, and dedicated algorithms to
optimize it.
[10] The optimum stress field is searched among the set

of statically admissible (SA) stress fields. Each element of
this set satisfies mechanical equilibrium, requiring three
conditions to be met. First, at every point within the bulk

div sð Þ ¼ �rg; 8x 2 W; ð5Þ

in which s is the stress tensor. Bold letters identify tensorial
or vectorial quantities. Second, across any potential dis-
continuity L of normal n within the domain W, the stress
vector, defined by T = s � n, must be continuous

s½ 	½ 	 � n ¼ 0; 8x 2 L; ð6Þ

in which the double brackets denote the difference
between the stress on the two sides of the discontinuity
([[s]] = s+ � s�, the normal pointing to the + region).
Third, the boundary conditions over @WT must be satisfied,
requiring

s � n ¼ Td ; 8x 2 @WT ; ð7Þ

where n is the normal to the boundary at point x. These
boundary conditions are defined in (1), (3), and (4) for
Hafner’s problem.
[11] The SA stress field must also be such as not to

overcome the strength of the material. For any discontinuity
or fault of known orientation, the specific strength domain
(linear in stress) is based on the Coulomb criterion. More
specifically, for the décollement (line AB, Figure 1, with
normal n(0, 1)), the strength domain reads

GD sð Þ ¼ sj  t þ sn tanfD � cD � 0f g
with sn ¼ n � s � nð Þ; t ¼ m � s � nð Þ;

ð8Þ

in the space spanned by the normal stress sn and the
resolved shear stress t. The vector m(�1, 0) is of unit norm

Figure 1. The geometry and the loading of the problem studied by Hafner [1951]. A 2-D rectangular
block W (ABCD) of length L and thickness H, set along AB, the horizontal décollement, is subject to
applied loads Td at its vertical ends.
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and tangential to the décollement. The parameters fD and
cD introduced in (8) are the friction angle and the cohesion
of the décollement, respectively. In the bulk, the orientation
of the failure plane is not specified and the strength domain
(nonlinear in stress) is generalized to

GB sð Þ ¼ sjse þ 2P sinfB � 2cB cosfB � 0f g

with se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxx � syy

� �2þ4s2
xy

q
; P ¼ sxx þ syy

� �
=2;

ð9Þ

in which fB and cB are the friction angle and the cohesion of
the bulk material, respectively. The stresses P and se in (9)
are referred to as the in-plane mean stress and the equivalent
shear stress, respectively.
[12] It will be important in what follows to estimate the

distance of the stress state to the boundary of the strength
domain, i.e., the distance to failure. This concept is illus-
trated in Figure 2a where the distance to failure is denoted
aD at a given point on the décollement. Normal and
tangential stresses at that point are marked by the solid
dot. The distance, with unit of stress, is defined by

aD ¼ cD � tj j � sn tanfDð Þ 1þ tan2 fD

� ��1=2
; ð10Þ

for the décollement and by

aB ¼ 2cB cosfB � se � 2P sinfBð Þ 1þ 4 sin2 fB

� ��1=2
; ð11Þ

for any point in the bulk material according to the two
definitions (8) and (9), respectively. It will be convenient to
scale that parameter to concentrate our attention to very
small distances to failure. For that purpose, the scaled
distance to the criterion (Figure 2b) is proposed

pb ¼ min 1;
ab

0:03 cb

� �
; b ¼ B;Dð Þ; ð12Þ

the value of 3% being chosen arbitrary.
[13] In summary, according to the statics approach, any

SA stress field which satisfies pointwise the constraint of
the convex strength domain (8) and/or (9) provides a lower
bound to the exact tectonic force (2). However, the search
within the set of SA stress fields for the optimum solution is
difficult and the benefit of the EEM is to propose a
systematic construction of SA stress fields by discretizing
the domain. It is done in the spirit of the classical displace-
ment-based finite element method (FEM) and we choose

linear, three-noded triangular elements. The main differ-
ence, however, with the FEM is that within any element Wh,
it is the stress which is interpolated linearly from the nodal
values si

s xð Þ ¼
X3
i¼1

Ni xð Þsi; 8x 2 Wh; ð13Þ

in which the superscript i is the local node number (1 to 3).
The functions Ni(x) are linear and take the value of one at
node i and of zero at the other two nodes. Note that
discontinuities, which equilibrium is presented by (6), are
assumed to occur along the three sides of each triangle. The
corresponding linear equilibrium equations, after discretiza-
tion, are constructed elegantly by collapsing two triangular
elements (zero surface) along each of theses three segments.
The EEM construction is presented in more technical details
than by Krabbenhøft et al. [2007] as well as in section 4 of
Text S1. It suffices to know that the final set of equations is
of the type

Max fð Þ sf g;
Subject to A½ 	 sf g ¼ bf g;

and si 2 Gb;

ð14Þ

where {s}, ( f ) are the column vector containing all the
nodal stress unknowns and the line vector associated to the
loading to be optimized, respectively. Thus, the product
( f ){s} is a scalar defining the magnitude of the applied
load, for example it is F(a) in (2). [A] is the matrix resulting
from the three equilibrium conditions (5), (6), and (7) with
the discretization (13), constructed so that [A]{s} corre-
sponds to the left-hand sides of (5), (6), and (7) and {b}, to
the right-hand sides of (5), (6), and (7). The last equation in
(14) stipulates that each nodal stress must satisfy the
relevant strength condition (equation (8) or (9)). It is this
optimization problem which is set up with the standard finite
element code SARPP (Structural Analysis and Rock Physics
Program, Ecole Normale Supérieure, Paris, 2007) and solved
with the commercial packageMosek (version 5, optimization
software, http://www.mosek.com, 2008) throughout the rest
of this contribution.

2.2. Hafner’s Solution

[14] The solution of Hafner’s problem which is now
presented is the exact, analytical solution and it is used to
validate the numerical implementation of the system (14) in
section 2.3.
[15] Equilibrium of external forces provides the two

components of the total reaction force from the foundation
along AB, Figure 1. The vertical component Ry is rgHL and
corresponds to the weight of the block W while the hori-
zontal reaction Rx is �aHL and results from the difference
between the two horizontal forces on BC and AD, as can
also be seen in Figure 1. The exact distribution of these two
components of the reaction force over AB is not known but,
if the décollement is fully activated, the resolved shear
stress (assumed of same sign over the whole décollement)
and the normal stress must satisfy pointwise the Coulomb
criterion (8). Consequently, the two force components must

Figure 2. The definition of (a) the distance to the criterion
and (b) of the scaled distance to the criterion are illustrated
for the case of the décollement strength domain.
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satisfy �Rx � Ry tanfD = cDL, providing the expression for
the maximum value of the basic unknown a:

aD ¼ cD

H
þ rg tanfD; ð15Þ

the subscript D marking the fact that the whole décollement
is activated. This result is valid if the loading generated for
that specific value of aD does not lead to rupture within the
pristine material. To check that possibility, it is necessary to
construct the stress state within the block W. Following
Hafner [1951], the simplest SA stress state is

sxx ¼ �rg H � yð Þ � a L� xð Þ;
syy ¼ �rg H � yð Þ;
sxy ¼ a H � yð Þ:

ð16Þ

This field satisfies equilibrium (5), there is no discontinuity
relevant for (6) and the stress vectors T = s � n for the
outward normal n to the left, right and top boundaries of the
domain are indeed equal to the applied force density defined
in (1), (3) and (4), respectively. One shows further that the
strength domain boundary is first reached in the bulk at
the corner D. There, sxx is the only nonzero stress and the
maximum value of the loading unknown a is then

aB ¼ 2cB

L

ffiffiffi
k

p
P; where kP ¼ 1þ sinfB

1� sinfB

ð17Þ

is the passive Rankine’s coefficient. The subscript B attached
to the scalar a in (17) is to emphasize that failure occurs in
the bulk.
[16] To capture the transition between the two modes of

failure (décollement or bulk), it is proposed to define the
critical bulk cohesion c*B for which aD = aB. This equality
provides

cB* ¼ 1

2
ffiffiffi
k

p
P

cD
L

H
þ rgL tanfD

� �
: ð18Þ

It is expected that the EEM will select aB in (17) or aD
in (15) for ratios cB/c*B smaller and greater than one,
respectively.

2.3. Optimized Solution

[17] The implementation of the EEM is now validated by
comparing our predictions with the analytical solution. The

values selected for the geometrical and material parameters
are summarized in Table 1 (length and stress are scaled by L
and rgH, respectively, in all numerical simulations). The
mesh is composed of 30 � 20 regular rectangles, each
composed of four crossed triangles.
[18] The force predicted by the EEM is presented in

Table 2 and compared to the analytical expression (2) with
a set to aD (15) if cB > c*B, and to aB (17) otherwise (here,
c*B = 0.8895 MPa). The conclusion is that the force is
computed with an accuracy of six significant digits, vali-
dating partly our development. Figure 3 presents the dis-
tance to the criterion aD, defined in (10), distributed over
the décollement, for various values of the ratio cB/c*B. The
distance is zero and the whole décollement is indeed fully
activated for cB/c*B = 1.12. The transition to a partly
activated décollement occurs for a ratio of one with an
accuracy of five significant digits. For ratios smaller than
one, the whole décollement is then deactivated. The patch
closest to activation is at the coordinate x = 0.3L, inset of
Figure 3.
[19] The predicted stress distributions are presented in

Figures 4a and 4b for bulk failure and décollement activa-
tion, respectively. Although not visible in Figures 4a and 4b,
bulk failure occurs at a single point, which is the top left
corner of the domain, as predicted by Hafner. The sxx stress
(Figure 4, top) has a vertical gradient which is linear at the
right boundary because of the imposed condition sxx =
�rg(H � y). The vertical gradient is also positive along any
vertical axis crossing the section. This gradient varies with
the x coordinate nearly linearly, as can be seen by following

Table 1. Definition, Dimension and Value Selected for the

Parameters of Hafner’s Problem

Definition Dimension Value

Length L km 0.5
Height H km 0.2
Mass density r kg/m3 2300.
Gravity acceleration g m/s2 10.
Friction angle in the bulk fB deg 30.
Cohesion in the bulk cB Pa variable
Friction angle of the décollement fD deg 15.
Cohesion of the décollement cD Pa 0

Figure 3. Distance to the criterion aD over the décolle-
ment for different values of the ratio cB/c*B according to the
EEM for Hafner’s problem. Note that the décollement is
nowhere activated for ratios less than one.

Table 2. Analytical and EEM Values of the Tectonic Forcea

cB/cB*

Tectonic Force

Theory (GN) EEM (GN)

0.562 0.806410 0.806410
0.787 0.944974 0.944974
0.999 1.075917 1.075917
1.124 1.076288 1.076288

aFor different values of the bulk cohesion cB normalized with c*B =
0.8895 MPa. The two values agree up to six significant digits.

B09404 SOULOUMIAC ET AL.: PREDICTING STRESS DISTRIBUTIONS BY OPTIMIZATION

5 of 15

B09404



the yellow series, especially for case in Figure 4b. It
corresponds then, approximately, to the elasticity solution
presented in (16). The distribution of the blue contours
(�5 MPa and smaller) shows, however, that the EEM
selects a solution more complex than Hafner’s for both bulk
and décollement failure. The vertical stress distribution
(Figure 4, middle) is driven by the gravity gradient, found
analytically in (16), in the central part of the sheet for the
two cases considered. However, this gradient is modified
close to the left boundary. The shear stress (Figure 4,
bottom) shows also a mainly vertical gradient in the central
region but is affected with a horizontal gradient, especially
along the left boundary if the décollement is activated. The
intensity of the shear stress is very different in Figure 4a
(bulk failure) from the one in Figure 4b (décollement
activated). Note that the shear stress is nearly uniform on
the décollement if activated. This is due to the uniform
vertical stress and the requirement to satisfy Coulomb
criterion in (8) over the whole décollement.
[20] A few comments concerning the method are now in

order. Discontinuities in shear stress are observed at plus
and minus 31�, corresponding to the sides of the triangles in
every cell. Some of those are artifacts of the method which
are worth to be presented to remind the reader that the
stress interpolation is simply linear over each element.
There are also a few horizontal jumps in sxx (left top corner
of Figure 4a, top) and some vertical jumps in syy (close to
middepth of the left boundary of Figure 4a, middle, and 4b,
middle).

[21] All those discontinuities are triggered by the EEM
because the strong gradients are not resolved properly by
the discretization. These results are a consequence of the
discretization but not all discontinuities can be eliminated by
refining the mesh and could be due to a discontinuity in the
geometry or the loading, as in linear elasticity [Timoshenko
and Goodier, 1934].
[22] To conclude this section, the implementation of the

EEM has been validated by comparing the predicted forces
and stress distribution with an analytical solution. The
method captures exactly the tectonic force required to slide
the block over the décollement or to initiate failure in the
bulk. In the former case, the stress distribution is very close
to the solution proposed by Hafner [1951] although no
assumptions concerning the elasticity of the bulk material
are necessary for the EEM. The elasticity solution and the
EEM solution are both statically admissible and lead to the
same best lower bound. The existence of two solutions in
stress for the same best lower bound is not surprising since
there is no proof of uniqueness. Consequently, despite the
plausible interpretation of the results presented in Figure 4,
it cannot be claimed that there exists no other SA stress field
leading to the same bound on the tectonic force. This lack of
uniqueness is classical in limit analysis [Hill, 1950].
[23] As a final remark, it should be noted that failure in

the bulk and activation of the décollement are not two
concomitant failure modes, except for cB = c*B. Hafner
[1951] assumed that the décollement was activated (a = aD)
and then used the stress field (16) to deduce the orientation

Figure 4. The three stress components (sxx, syy, sxy) predicted with the EEM for Hafner’s problem, for
two values of the bulk cohesion. (a) Failure occurs in the bulk at the top left corner. (b) The whole
décollement is activated. Only for cB = c*B = 0.8895 do the two mechanisms get activated concurrently.
Parameters are given in Table 1.
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of potential fractures in the bulk. This seems inconsistent
since (1) cB = c*B is a restrictive case and (2) onset of bulk
failure is localized at the top left corner of the domain.

3. Stress in Fault-Bend Folds

[24] The objective is now to apply the EEM at different
stages of the development of a fault-bend fold with or
without erosion (Figure 5). The geometrical construction
resulting in Figure 5b is based on the ideas presented by
Suppe [1983] and the exact method is commented at length
by Cubas et al. [2008]. It is not discussed here any further.
We determine the optimum stress state at any stage of
shortening d, regardless of the history of the structure,
considering the geometry as given. In particular, the upper
flat, the décollement and the ramp are predefined and
assumed to have specific properties. They are usually
considered weaker than the bulk material. To the contrary,
the back thrust is not introduced as a specific surface in the
EEM simulations. One of our objective is to analyze the
transition between the hanging wall and the flat and to let
the EEM define the nature of the back thrust. Note that the
tectonic force is defined for the EEM by the distributed
horizontal force Tx

d (Figure 5). The vertical linear gradient
of Tx

d is the only unknown of the problem. The vertical
component of the distributed force Ty

d is set to zero.
[25] Material and geometrical parameters considered for

those two examples are summarized in Table 3. Note that
dimensionless length and stress are scaled by D and rgD,
respectively (all simulations are based on dimensionless
quantities identified with a superposed tilde, e.g., ~H = H/D).
We first consider the footwall as external to the studied

domain. A comparison with the finite difference results of
Gonzáles et al. [2008] is also proposed. In section 3.4, the
stress history in the footwall and the stress trajectories in the
flat and the hanging wall are presented.

3.1. Folding Without Relief Buildup

[26] The length of the flat is set to D in this example,
corresponding to zero shortening (d = 0). The mesh is
presented in Figure S1 of the auxiliary material and is
composed of 7530 nodes and 9920 elements.
[27] Maps of the distance to failure for different values of

the friction angle fR over the ramp are presented in Figure 6.
Regions of dark blue are exactly at failure. Two regions of
failure in the bulk are found for fR = 5�, 15� and 20�, for
which the whole décollement and the ramp are activated

Figure 5. Geometry and terminology of the fault-bend fold. The compression along the back wall
results in slip of the flat on the décollement, by d toward the left. Material points crossing the back thrust
(dip q) are transported parallel to the ramp (dip g). When crossing the initial surface (EF), they are
(a) eroded or (b) build up relief. The tip of the hanging wall (E00E0E) is projected on the upper flat (EE00)
assuming conservation of mass (i.e., area) and slips along it.

Table 3. Definition, Dimension and Value Selected for the

Parameters of Fault-Bend Fold

Definition Dimension Value

Length D km 4.25
Height H km 1.
Mass density r kg/m3 2200.
Gravity acceleration g m/s2 9.81
Dip of the ramp g deg 30.
Friction angle in the bulk fB deg 30.
Cohesion in the bulk cB MPa 1.
Friction angle of the décollement fD deg 5.
Cohesion of the décollement cD MPa 0
Friction angle of the ramp fR deg variable
Cohesion of the ramp cR MPa 0
Friction angle of upper flat fU = fR deg variable
Cohesion of upper flat cU = cR MPa 0
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(see blue segments). The first region is the transition
between the hanging wall and the flat, the back thrust. We
observe that it is not a sharp discontinuity but a narrow fan.
This shape is of course mesh sensitive but persists as the
mesh is refined so that several elements are present within
the blue region. The second main region of failure for fR =
5�, 15� and 20� is in the hanging wall. It is of smaller extent
for larger fR. This region is, as it will be seen next, where
the sxx stress component is close to zero. It thus corresponds
to a region where failure is by normal faulting. Such failure
mode was predicted by Yin [1993] using Hafner stress type
of construction. For fR = 22� this region of extension does
no exist. Furthermore, the ramp and the décollement are not
activated and a new failure region occurs at the back,
dipping at approximately 30�. This orientation is consistent
with the p/4 � fB/2 angle expected for failure under
compression with fB = 30�. It is thus predicted that a new
ramp is formed at the back of the flat, at the contact to the
back wall. This transition, between fR = 20� and 22�, is of
course sensitive to the décollement friction angle set to 5�.
The transition occurs for fR less than 15� if fD is set to 10�,
as can be seen in Figure S2 in the auxiliary material.
[28] The dips of the fans for fR = 5�, 15� and 20�,

decrease with the ramp friction. This was predicted by
Maillot and Leroy [2003] and by Cubas et al. [2008]. A
quantitative comparison is proposed in Figure 7b where it is
seen that the difference between the EEM predictions and
those of the kinematics approach are at most of 3�. The
EEM solution is presented there with an error bar since

defining the central line through the fan is not accurate. This
variation of the back thrust dip with the ramp friction angle
was validated in the laboratory with sand box experiments
[Maillot and Koyi, 2006] and the relevance of the predic-
tions to interpret field observations further discussed by
Koyi and Maillot [2007]. The comparison of our results
with the predictions of the kinematics approach of Cubas et
al. [2008], central to the validation of our implementation of
the EEM, is completed by presenting the predicted tectonic
forces, normalized by rgD2, as a function of the friction
angle over the ramp in Figure 7a. The upper bound of the
kinematics approach differs from the lower bound of the
EEM by less than 1%. Therefore, the exact tectonic force is
determined by the limit analysis to within one per cent.
[29] The stress distribution over the fault-bend fold with-

out relief build up is presented in Figure 8. The largest stress
values in highly localized regions are cutoff from the ranges
of the color bars. The sxx stress gradient with depth is linear
at the back wall, consistent with the applied boundary
conditions. It is approximately three times the lithostatic
gradient (21.6 MPa/km). In the hanging wall, the horizontal
stress is much larger close to the base of the ramp. There are
two regions of stress concentration. Region 1 has the shape
of a thin lobe emanating from the ramp base and oriented at,
approximately, 5� from the ramp. Region 2 is wider and
terminates at the boundary of the back thrust. Another
interesting feature of the horizontal stress in the hanging
wall is that it is close to zero in a large triangular region
(dark red) to the left of the root of the ramp and reaching the

Figure 6. Failure modes for the fault-bend fold without relief buildup, for values of the friction angle
over the ramp fR, as revealed by the scaled distance to Coulomb’s criterion pB, defined in Figure 2 and
equation (12) of (a) 5�, (b) 15�, (c) 20�, and (d) 22�. The blue lines along the ramp and décollement mark
their activation.
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top surface. This is the region close to failure in extension
discussed above. The vertical stress (Figure 8, middle) has
the expected lithostatic gradient over most of the flat. In the
hanging wall, the maximum vertical stress is nearly twice as
large as the lithostatic stress. The larger values are found
again in the same two regions of concentration. The shear
stress (Figure 8, bottom) is basically zero in most of the back
stop in view of the low friction angle over the décollement.
The stress state is thus approximately Andersonian in that
region (horizontal and vertical directions are principal stress
directions). The shear stress has strong gradients in the
hanging wall which are positioned again within the two
regions of concentration defined for sxx. The sign of the
stress in those regions are consistent with the direction of

shear expected in the back thrust and along the ramp. The
lobe of stress concentration dipping at 5� from the ramp
indicate a potential secondary ramp, conjugate to the back
thrust. This interpretation is confirmed by setting the ramp
dip at 35�, exactly in the direction of this lobe. The failure
mode (Figure S3 in the auxiliary material) is then composed
solely of the narrow fan defining the back thrust. The lobe
oriented off the original ramp is not present. This remark is
part of the wider problem on the activation of existing
ramps versus creation of new thrusts, discussed by Maillot
et al. [2007] analytically and experimentally. Here, the lobes
are another expression of the capacity of the EEM to detect
new potential thrusting.

Figure 7. Comparison of (a) the tectonic force and (b) the dip of the back thrust (fan or discontinuity)
between the EEM (crosses) and the kinematics approach (continuous curves). The estimates of the
average fan dip obtained with the EEM are indicated with error bars.

Figure 8. Stress distribution over the hanging wall and the flat for the fully eroded fault-bend fold (unit
of MPa). The ramp friction angle is fR = 15�. The dashed line shows the central direction of the back
thrust defined by the failure fan in Figure 6.
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[30] As a final remark, it should be mentioned that the
stress analysis above points to a large mean stress P
(defined as (sxx + syy)/2 and interpreted from Figure 8 (top
and middle)) close to the ramp and in the back thrust, and to
low values in the hanging wall above the back thrust.
Consequently, one should observe fluid flows from the flat
toward the back thrust and within the hanging wall away
from the two regions of stress concentrations. These flows,
not accounted for in our modeling, could have consequences
on the material rheology.

3.2. Comparison With Finite Difference Predictions

[31] This first example of folding gives us the opportunity
to compare the merits of the EEM with respect to the finite
difference method. This comparison is based on the study of
Gonzáles et al. [2008] of the tensile discontinuities ob-
served in the hanging wall of the Chuculay Fault System,
northern Chile. Their numerical simulations are based on a
prototype which is rather close to the one considered for this
first fold example. The ramp is predefined as a weak zone of
finite thickness (500 m) dipping at 50� and ours is discrete
with a dip of 30�. The constitutive relations are similar in
the two contributions since Coulomb materials are assumed
although the zero dilatancy and the elasticity considered by
Gonzáles et al. [2008] are not necessary for the EEM. We
have kept our flat thickness of 1 km, whereas Gonzáles et
al. [2008] considered 3 and 6 km. We checked that the
scaling from 1 to 3 km leads to the scaling of the extent of
the zone of tensile failure in the same ratio. No relief is
considered here and its consequence will be, however,
discussed as well in section 3.3. Four comparisons are

now considered with simulations M1, M5, M3, and M4 of
Gonzáles et al. [2008], referred to as the comparison paper.
[32] The results of their M1 simulation is comparable to

the results in Figure 6 for fR = 5� and fR = 15� since their
fR is set to 10�. The shape of the zone of low equivalent
shear stress [Gonzáles et al., 2008, Figure 12c] does
compare to the our distribution of the stress in the hanging
wall. The strain localization of their back thrust is not
sufficiently resolved to be compared to the fan predicted
here. There is, however, a major difference between these
two sets of results: our ramp dips at 30� and their at 50�. It
was shown above that increasing the ramp dip from 30� to
35� leads to more compression in the hanging wall and was
sufficient to suppress the tensile zone of fracture. A dip of
50� produces the same results. Consequently, only the main
difference between our prototype and simulation M1, the
presence of a relief in the latter case, can explain the
absence of tensile failure zone. It appears from Figure 12e
of Gonzáles et al. [2008] that the depth of the extension
zone is approximately equal to the maximum topography
(277 m). This zone is exactly next to the shear zone. In the
absence of relief, it is believed that no extension would have
been predicted by Gonzáles et al. [2008]. The second
comparison is with their M5 simulation in which cB is set
to 10 MPa [Gonzáles et al., 2008, Figure 16b]. The same
conditions have been considered to produce Figures 9a
and 9b for a flat thickness of 1 km and a ramp dip of 30�.
We still have a reasonable zone of normal faulting in view
of the scaled distance to the criterion and of the distribu-
tion of sxx. Note that the sxx is much more compressive
then in Figure 8 in the hanging wall close to the back thrust

Figure 9. (a) The distribution of the scaled distance to the criterion and (b) the distribution of sxx for a
bulk cohesion cB of 10 MPa. (c) The distribution of the failure region is less localized and the fan
boundary with the flat is also curvy in the presence of a curved ramp, for a bulk cohesion cB of 1 MPa.
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fan and across this fan, close to the surface. Furthermore, a
new region of shear failure is clearly seen in Figure 9a next
to the back thrust fan. These results are different from those
of Gonzáles et al. [2008], who noticed a reduction in the
extent of the normal failure zone, certainly due to the relief
again. The third comparison is with their M3 simulation
[Gonzáles et al., 2008, Figure 15b] which introduces a
curvature in the ramp. The distribution of the distance to
the criterion presented in Figure 9c identifies a small region
of normal faulting also present in the comparison paper.
Moreover, the back thrust fan is much wider in the presence
of the curved ramp suggesting that the strain does not
localize in that instance. Note that the boundary of the fan
with the flat is also curvy. The same conclusions are reached
by Gonzáles et al. [2008]. The fourth comparison is with the
M4 simulation for which fR is set to 25�. They observe no
normal faulting within the hanging wall, and we claim that
their results correspond to the case presented in Figure 6 for
fR = 22�. The décollement and the predefined ramp are not
activated, and the deformation should take place close to the
back wall.

3.3. Folding With Relief Buildup

[33] In this second example, relief builds up (Figure 5b).
The shape of the relief was constructed for shortenings d of
400 and 750 m, with the kinematics approach [Cubas et al.,
2008] using the parameters in Table 3, with fR = 10�. We
will determine the stress distribution within the fold, first for
d = 750 m and fR = 5�, then for d = 400 m and fR = 7�. In
the second case, we will also determine the stress distribu-
tion in the footwall of the fold. The reason for choosing
different values of the ramp friction angle will be
explained at the end of the section. The mesh is composed
to 8586 nodes and 11322 elements, as shown in Figure S5
of the auxiliary material.
[34] The failure mode is presented in Figure 10 for d =

750 m. The two major regions of failure found in the
absence of relief are still present. The first is the back thrust
which has the shape of a fan wider than in the first example.
Failure occurs approximately uniformly in the lower part of
the fan close to the root to the ramp. In the upper part,
failure is localized into a series of oblique rays that could
indicate distributed faulting. Furthermore, the fan rotates
from the lower to the upper part toward lesser dips. It is
approximately 55� in the lower part, consistent with the 53�
found in Figures 6 and 7b. It means that close to the root of
the ramp, the influence of the relief is minor. To the
contrary, in the upper part of the structure, failure is
influenced by the relief. The second main region of failure

is in the hanging wall. It corresponds to the zone of extension
described for the first example and it now extends to the
relief. Failure in extension occurs over more than 50% of
the hanging wall thickness measured from the free top
surface to the root of the ramp. This distribution of failure
has to be complemented, for larger fR (7� is considered in
Figure S6 of the auxiliary material). In that case, near half of
the flat, next to the back thrust, is also close to failure.
[35] These results differ from those of Gonzáles et al.

[2008] in at least two ways. First, the depth of the tensile
fracture zone is deeper here because of the low dip of our
ramp. Second, the bending of the topographic surface in the
comparison paper is due essentially to the absence of
thrusting over the upper flat because of the continuity
assumption implied by the numerical scheme. The simpli-
fied geometrical construction of Cubas et al. [2008] has
been helpful in relaxing this constraint and provides a
partial collapse of the hanging wall over of the upper flat.
The region of normal faulting is then found further away
from the ramp closer to the point on the topography which
is on top on the root of the ramp.
[36] The last example is for a shortening d = 400 m and

accounting for the footwall. The stress distribution within
the flat (Figure 11) is similar to the one obtained in the
absence of relief, Figure 8. Note that the maxima are larger
from those discussed earlier although the friction on the
ramp is less, because of the highly localized stress within
the lobe pending at a few degrees from the ramp. Four
comments are in order regarding the footwall. First, there is
no failure there. Second, the horizontal stress has a smaller
gradient with depth than in the flat region. This decrease of
the horizontal forces is explained by the overall equilibrium
of the structure and the presence of the resisting shear over the
whole décollement. Third, the vertical stress gradient in the
footwall is controlled by gravity and thus not affected by
the ramp. The shear stress is in general small compared to the
magnitude of the two other stresses so that Andersonian
conditions prevail, approximately. Fourth, important stress
concentrations are observed close to the root of the ramp
despite the absence of any failure.
[37] The EEM also predicts the maximum relief attainable

prior to the transfer of activity from the predefined ramp to
the back wall where the emergence of a new ramp takes
place. This transfer is easily explained using the analogy
with the influence of the ramp friction angle in the absence
of relief: there is a maximum friction of 21� at which the
proposed ramp is abandoned in favor of the new ramp
(Figure 6d). Similarly, with gradual relief build up, after a

Figure 10. Failure mode in the fault-bend fold with relief buildup, revealed by the distribution of the
scaled distance to the Coulomb’s criterion pB (equation (12)). The friction angle over the ramp is fR = 5�
and the shortening d = 750 m. The color code is the same as in Figure 6: dark blue regions tend to reach
failure. The blue segments mark the activation of the interfaces.
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shortening of less than 750 m for fR = 10�, for example,
the proposed ramp is abandoned and the new thrust
initiates in the flat, at the back wall boundary. Since we
were interested by the stress distribution around the fold, we
set low enough fR.

3.4. Stress Histories and Trajectories

[38] The computations reported so far are history-inde-
pendent. A chronology is only implicit through the amount
of shortening imposed at the back wall. This succession of
independent results is now used to study stress histories,
thus shedding light on the evolution of the stress state
during the kinematic sequence of thrusting determined by
Cubas et al. [2008].
[39] We first examine stress histories at fixed positions in

the foot wall. The dimensionless equivalent shear and mean
stresses (9), are presented as functions of the shortening at
five locations indicated by solid dots (Figure 12). Point 5 is
approximately at 100 m from the ramp and this distance
decreases linearly with depth to be only of 10 m for point 1.
The depth of points 1 to 5 are approximately 850, 650, 450,
250, and 50 m. The gradient in the equivalent shear stress is
strong close to the root of the ramp with a ratio of four,

approximately between the stress at points 1 and 2. The
relief build up does not change significantly this ratio and
the important parameter is thus the distance to the root of
the ramp. The mean stress is also strongly dependent on this
distance but its magnitude increases linearly with the
shortening because of the added weight of the relief acting
on the ramp. Note that point 5 exhibits a larger increase in
se with shortening probably resulting from the sliding of the
growing forelimb above it. One could now imagine the
evolution of the stress during a sequence of normal thrusting
where the dashed line is the abandoned ramp and the new
ramp the parallel is the solid line (Figure 12a). Point 50would
first undergo the stresses just described for point 5, followed
by the extensional regime in the back wall (Figure 10).
[40] Next, we examine the stress along material trajecto-

ries (x axis in Figure 13a). In view of the minor influence of
the relief, we concentrate on the fold with erosion. The
trajectories provide the stress histories of a convected
material point. The point initially at the back wall (x = 0)
is translated parallel to the décollement and changes direc-
tion at the crossing of the back thrust, idealized as a sharp
discontinuity, to move up parallel to the ramp. It reaches the
surface between x = 4.7 and 5.7 km, depending on the depth

Figure 11. Stress distribution over the whole fold including the foot wall (unit: MPa), for fR = 7� and a
shortening d = 400 m.
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h of the trajectory, and is eroded away. The equivalent shear
and mean stresses along those trajectories are presented in
Figure 13b. The trajectory passes through various elements
of the mesh and the stress at the node closest to the x axis
has been used to construct Figures 13a and 13b, explaining
the oscillations. Three depths are considered corresponding
to 0.5, 0.75 and 0.85 times the height H. In most of the flat,
the magnitude of the equivalent shear and mean stress
decreases before arriving within the vicinity of the back
thrust. Within the back thrust (x � 4 km), the equivalent
shear stress first increases to a value close to the one found
at the back wall before sustaining a sharp drop. The rest of
the decrease during the uplift in the hanging wall is then
marginal compared to that drop. The mean stress displays

the same tendencies: the decrease in magnitude registered
over the flat accelerates when arriving close to the back
thrust. Sharp, opposite gradients of the magnitude are found
inside the back thrust zone, followed by a linear decrease to
zero toward the surface.

4. Conclusion

[41] The objective of this paper was to demonstrate that
the equilibrium element method (EEM) provides estimates
of the stress distribution, the tectonic force, the shape and
the position of the failure mechanisms at any given stage
in the development of a geological structure. It requires only
the spatial distribution of the rock strength, defined in this

Figure 12. (a) Definition of the five different locations in the footwall. (b) The history of the
dimensionless, equivalent shear stress ~se, and mean stress ~P at five different locations in the footwall.

Figure 13. (a) Definition of the trajectory x and the depth h in the back stop. (b) The mean stress P and
the equivalent shear stress se (unit of MPa), along the trajectory x (unit of km) at depth h in the back stop
for fR = 15�.
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paper by the Coulomb criterion, without any further
assumptions on the rheology.
[42] The EEM implementation is first validated with

Hafner’s problem. The tectonic force predicted with the
EEM meets the analytical solution up to machine precision.
Failure occurs by décollement slip or bulk failure, those two
modes being concomitant only exceptionally. Consequently,
we question the derivation of the local fracture orientation
in the bulk from the stress state necessary to activate the
décollement, as proposed by Hafner [1951]. Indeed, the
EEM predicts rather different stress states for bulk failure
versus basal slip.
[43] The EEM is then applied to two fault-bend folds, the

first without relief build up and the second accounting for
the formation of a relief. It predicts the formation of a back
thrust in the form of a narrow fan rooted at the base of the
ramp. The fan dip is controlled by the ramp and bulk
frictions as predicted by Cubas et al. [2008] and varies
with depth in the presence of a relief and the curvature of
the ramp. For certain ramp friction and dip, a zone of
normal faulting appears at the surface in the hanging wall.
These results are partly in agreement with and provide a
new interpretation of some of the finite difference predic-
tions of Gonzáles et al. [2008], who considered a complete
elastic-plastic constitutive relation. No failure is detected in
the footwall for the two folds and for the range of param-
eters selected.
[44] The optimum stress state for the two folds is mostly

controlled by the concentration originating from the root of
the ramp on the décollement and the presence of the back
thrust. The in-plane mean stress and the equivalent shear
stress sustain sharp variations prior to the entrance and at
the exit of the back thrust, as one moves from the flat to the
hanging wall.
[45] Applied to Nankai accretionary wedge (in the

auxiliary material), the EEM reveals the complexity of
the potential failure mechanism, composed of two parallel
back thrusts or two subparallel ramps. Its high sensitivity to
variations in the décollement friction angle and to the details
of the surface topography are consistent with a wedge close
to criticality, as defined by Dahlen [1984] and Lehner
[1986]. It is also shown that the position of the currently
active ramp cannot be selected as a failure mechanism with
the assumption of uniform properties suggesting, as by
Cubas et al. [2008], that the active ramp is weaker than
the bulk material.
[46] The EEM is complementary to the kinematics ap-

proach of limit analysis, central to Cubas et al.’s [2008]
study, since the two methods provide the largest lower
bound and the least upper bound, respectively, to the exact
unknown tectonic force. The EEM, because of the system-
atic spatial discretization, leads to a large number of degrees
of freedom whereas the kinematics approach is often
restrained to a small number of degrees of freedom. This
application of the EEM thus provides an error estimate on
the tectonic force and validates the selection of the failure
mechanisms done with the kinematics approach. The ex-
tension of limit analysis to evolving geological structures
could be conducted asymmetrically: the kinematics ap-
proach applied to thrusting sequences [Cubas et al., 2008]
is central to control the evolution problem whereas the
statics approach, at the basis of the EEM, is only used to

define the stress field at any stage of the fold development
and to check the error in tectonic force. Also, since no
rheology is used apart from the Coulomb criterion, the EEM
cannot predict the geometry at failure for materials exhibit-
ing large elastic or viscous deformation prior to failure.
[47] The results of the EEM have merits on their own and

two potential directions of future developments are now
discussed. First, the computations presented in this contri-
bution show clearly that there is a gradient in the mean
stress in the presence of a ramp close to the back thrust. This
gradient may be the driving force for fluid flow. Such fluid
flows could be studied in the laboratory with appropriately
scaled analogue materials [Mourgues and Cobbold, 2003]
or could also be predicted by numerical means. In both
instances, the fluid pressure distribution could be accounted
for in the EEM by recourse to strength limit criteria based
on effective stress measures. The combined approach, fluid
flow and EEM, should be applied to accretionary wedges
where the influence of the fluids on the deformation has
been recognized [Le Pichon et al., 1993] to understand fault
orientations and failure mechanisms. The second direction
of developments concerns the study of the interseismic
period. The EEM could provide the stress distribution
during the restrengthening of the ruptured faults. In partic-
ular, it could provide the stress distribution between en
echelon rupture surfaces, as in Landers area, California
[Peltzer et al., 1996; Olsen et al., 1997], avoiding the stress
singularities typically predicted with the assumption of
linear elasticity. Similarly, in fold-and-thrust belts with
multiple fault systems, it is hoped that the EEM could
predict the most likely fault to be active.
[48] In summary, the EEM should provide new means

to study stress distributions under static conditions, with a
limited number of assumptions on the material properties,
with a vast domain of applications, ranging from folding
development in fold-and-thrust belts, accretionary wedges,
sedimentary basins, to the interseismic fault recovery.
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Grande Voie des Vignes, F-92295 Châtenay Malabry CEDEX, France.
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