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Abstract : 

A node-nested Galerkin multigrid method is developed to solve systems provided by mixed 

formulations of 3D metal forming problems. An algebraic approach is used where operators 

are built on node-nested coarse meshes obtained by an automatic coarsening algorithm. This 

blackbox multigrid preconditioner is developed within the PETSc library. It is plugged to the 

FORGE3® finite element software. The linear rate of convergence and the very high 

efficiency of the resulting multigrid solver are evaluated for large scale problems with non-

linear behaviour. 
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1. Introduction 

 

This work is motivated by the success of the finite element methods for solving three 

dimensional metal forming problems at industrial scale. However, the constant need for more 

accuracy and reliability of the computations result in smarter spatial discretization that cannot 

be only made available by more powerful computers. In fact, reducing the mesh size by a 

factor of 2 in each space direction in 3D, which is not much, results into an increase of the 

number of nodes by a factor 8. As at least 75% of the computational time of a finite element 

simulation is spent for the resolution of linear systems, using an iterative solver which 

computational cost is proportional to N
3/2

 (N being the number of degrees of freedom), this 

reduction will result into an increase of computational time by about a factor of 20. This 

shows the need to reduce the computational cost of systems resolution and more particularly 

its dependency to the number of degrees of freedom, independently on the increase of the 

computers power. Therefore, solver with a linear rate of convergence is quite an attractive 

solution. Multigrid method is known to be efficient for solving systems derived from finite 

element problems [1]. As discussed in [2], multi-scale strategies have the unique potential of 

solving most of the mathematical problems with N unknowns in O(N) works. This paper 

discusses the implementation of a multigrid solver into the Forge3® F.E. software that is 

dedicated to 3D thermo-mechanical forging simulation.  

 

2. Forging simulation problem 

 

More details on Forge3® model are available in [3]. For simplicity, the problem 

equations are presented under hot forging conditions when the elastic deformations can be 

neglected and the material assumed to be homogenous, isotropic and incompressible. The 

mechanical problem consists in the equilibrium equation, where inertia and gravity 

contributions can be neglected, and the incompressibility equation: 
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where Ω  is a time dependant domain, σ  the stress tensor and v  the velocity. This couple of 

equations has to be completed with boundary conditions where the boundary of domain Ω  is 

decomposed into: FC Ω∂∪Ω∂=Ω∂ ; CΩ∂  is the contact surface with forming tools and FΩ∂  

is the free surface : 
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The friction power law gives the tangent shear stress τ  at the workpiece/tool interface as a 

function of the relative tangent velocity sv∆  defined by: 

 ( )[ ]nnvvvvv diedies .−−−=∆ (3)

fα  is a friction coefficient, K  the material consistency, and q  a sensitivity coefficient. diev  

denotes the velocity of the die and n  the outside normal to the workpiece. 

The second equality of (2) is the free surface condition. The last three equations of (2) are the 

Signorini conditions, which denote the unilateral contact condition and the non-penetration 

condition of the workpiece into the tools. The contact pressure nσ  is defined by: 

 nnn .σσ =  (4)

The constitutive law of the material is regarded as viscoplastic. The Norton-Hoff law is 

considered here: 

 ( ) εεσ && 1

3K2p
−=+ m

I  (5)

where p  is the hydrostatic pressure, I  the identity tensor, ε&  the equivalent strain rate, m  the 

viscoplasticity coefficient and ε&  the strain rate tensor.  

Invoking the virtual work principle, a weak formulation of the mechanical problem 

formulated in terms of velocity and pressure is obtained. Tetrahedra and a P1+/P1 mini 

element mixed interpolation are selected to discretize the problem. First introduced in [4] this 

interpolation ensures the stability condition (Brezzi Babuska condition) by enriching the 

linear velocity field with a bubble function at the center of the element. 

The unilateral contact condition is enforced to finite element nodes by a penalty method, so 

the additional penalty terms that appear in the system matrix are located on its block diagonal. 

The resulting nonlinear set of equations is solved by a Newton-Raphson algorithm. In the 

linear case ( 1== qm ), the mini-element interpolation provides a discrete linear system to 

solve that has the following matrix form: 
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where V∆  and P∆  respectively are the nodal vector corrections to the initial values of the 

velocities and pressure, and bV∆  is the velocity bubble contribution at the center of the 

elements.  

The internal velocity bubble terms are eliminated from the equations by static condensation, 

which provides the arrival of a new diagonal block matrix C  defined by:  
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The remaining linear parts of the correction of the velocity and pressure are then solution of 

the following system: 
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where H  and C  are both symmetric positive definite, so that the global matrix of the system 

is not definite. 

The system unknowns are the three velocity components and the pressure for each node 

of the finite element mesh: the number of degrees of freedom (dof) of the system equals four 

times the number of nodes. This linear system is usually solved by a preconditioned conjugate 

residual method (PCR), where preconditioning is performed by an incomplete Cholesky 

factorization. This reference preconditioner is replaced by the multigrid method in the present 

work and more precisely by a single iteration of a multigrid V-cycle, as in [5]. 

 

3. Multigrid 

 

3.1. Notations 

 

The algebraic multigrid approach [6] is used to compute the coarse matrix, so it is defined 

by the Galerkin strategy: 

 PRAA finecoarse =  (9)

The Ritz-Galerkin strategy is also selected: 

 TRP =  (10)

The coarsest grid correction is compute by a direct solver that uses LU factorization. 

Figure 1 shows the utilised n-grids V-cycle with a smoother ( )bAS , , a restriction 

operator iR  from the fine grid 1−i  to the coarser grid i , and a prolongation operator T

iR  

from the coarse grid i  to the finer grid 1−i . ( )bAD ,  is a direct solver used on the coarsest 

level. The system to solve is so denoted 000 bXA =  where 0X  is the unknown.  

---------------------------------------------------------------------------------------------------------------------------------------- 

function ( )ii rAMG ,  

if ni < then 

 ( )iii bASX ,←    // pre-smoothing step 

iiii XAbr −=    // residual computation 

iii rRr =+1     // residual restriction 

),( 111 +++ = iii rAMGXδ    // correction computation 

1+= i

T

ii XRX δδ    // correction prolongation 

iii XXX δ+←    // correction ( )iii bASX ,←    // post-smoothing step 

else 

 ( )iii bADX ,←    // coarsest grid direct resolution 

return iX  

end 

----------------------------------------------------------------------------------------------------------------------------------------

fig. 1: Multigrid V-cycle algorithm 
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3.2. Automatic coarse grid creation 

 

According to equation (10), only the restriction operators need to be evaluated. It is done 

following a geometrical approach by constructing different levels of meshes of smaller 

number of element. Therefore the main issue is to build coarse meshes. 

The use of an element-nested method as in [7] is prohibited because the remeshing issue 

requires a fully automatic procedure to generate the different levels of meshes. The use of a 

non-nested meshes as in [8] is also leave behind because the R  and P  operators are more 

complex to build and more expensive to use than in a node-nested method. Therefore this 

node-nested method is preferred here. 

For a 2D geometry, Guillard [9] and independently Chan and Smith [10] proposed a 

Maximal Independent Subset (MIS) algorithm to compute coarse meshes from fine ones.  

Adams [11] proposed a 3D extension of these algorithms but another technique [12] is 

prefered here to compute coarse meshes. It is based on an iterative node removal algorithm 

combined to a local remeshing algorithm, with almost constant coarsening ratio. This 

automatic coarsening technique is part of the MTC® mesh generator toolbox [13]. 

hM  is defined by its set of nodes hI  and its set of tetrahedra hT . For any node hIi∈ , the 

average length ( )ilh  of the edges connected to i  is computed. Ideally, in the coarse mesh 

extracted from hM , for any HIi∈  the length ( )ilH  of the edges will be 
( )
C

ilh , where C  is the 

targeted average length ratio which is usually chosen equal to 2 for an isotropic mesh. The 

aim of the algorithm is to build a coarse mesh where the average length ( )ilH  of any node i  

has the targeted value. Let CR  be the coarsening ratio that is equal to the number of nodes of 

the initial mesh divided by the number of nodes of the coarse one.  

 Let ( )iT  be the set of tetrahedra that contains the node i , ( )iε  be the set of nodes of ( )iT  

(not including i ) and ( )iF  be the set of exterior faces of ( )iT  (that do not contain i ). The 

removal of nodes is carried out by the algorithm described in figure 2. 

-----------------------------------------------------------------------------------------------------------------

1. for any node i , compute ( )ilH  

2. do hcurrent MM = : hcurrent TT =  and hcurrent II =  

3. for any node i  in currentI , compute ( )ilcurrent  the average length of edges connected to i  

4. if ( ) ( )ilil Hcurrent ≥  then 

1+← ii  and go to 3 

    else 

• remesh the volume defined by ( )iFcurrent  using only nodes of ( )icurrentε , let ( )iTnew  be the set of 

tetrahedra of this new triangulation 

• if ( )iTnew  is acceptable then 

o {}iII currentcurrent −=  

o ( ) ( )iTiTTT newcurrentcurrent +−=  

o 1+← ii  and go to 3 

    else  

o 1+← ii  and go to 3 

5. currentH MM = : currentH TT =  and currentH II =  

----------------------------------------------------------------------------------------------------------------------------------------

fig. 2: coarsening algorithm 
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The remeshing of the cavity in step 4 of figure 2 produced by removing node i , described 

in figure 3, is carried out by successively exploring all possible triangulations made by 

connecting a node of ( )iε  to all faces of ( )iF . Among all these triangulations, only the ones 

which volume almost equals the volume of ( )iF  are kept and the one with the best element 

quality is selected. 

 

fig. 3: cavity remeshing 

 

This way the coarse meshes are node-nested with the initial one. Figure 4 show examples of 

coarse meshes obtained with this algorithm in the cases of a connecting rod and a ring at a 

certain stage of the forming process. 

 
40,897 nodes 

 
4,857 nodes 

Fig. 4: fine and coarse meshes of a connecting rod (coarsening ratio: 8.4) 

 

In fact, the construction of coarse mesh is not as straight forward as it may seem from 

these examples, because the coarse mesh has to satisfy the geometrical constraint of properly 

representing the shape of the domain. Therefore, in order to obtain a satisfactory fully connex 

mesh with no significant volume or shape alteration, it is necessary to reduce the expectation 

in terms of coarsening ratio. For more complex geometries, as encountered at the end of 

forging, it is then difficult to obtain a coarse mesh with sufficiently small number of nodes, 

which can penalize the multigrid efficiency because of the computational cost of the direct 

system resolution on the coarsest level. 

 

3.3. Operators computation 

 

The restriction operator, is obtained by a linear interpolation of fine nodes values onto 

coarse nodes. Figure 5 describes the linear dependencies in a 2D case. For any node i , the 

coarse element ( )321 ,, jjj  that contains i  is found and its barycentric coordinates are 

calculated. If the fine node is also a coarse one, there is only one non-zero value its row. 

Otherwise, there are only four non-zero values its row.  



 - 6 -

 

fig. 5: interpolation of fine nodes values onto the nodes of a coarse element 

 

With the used of Lagrangian formulation, the mesh endures large deformations during 

simulation. This deformation is not linear, so the barycentric coordinates of fine nodes with 

respect to the coarse mesh change. However, for simplicity these changes are not taken into 

account and operators are assumed to be constant. In [7], it has been observed that this 

approximation does not reduce the efficiency of the multigrid method with the material 

deformation. 

 

3.4. Other multigrid components 

 

The multigrid method is used as a preconditioner for the conjugate residual solver. This 

new preconditioned solver is developed within the PETSc library, which still need to be 

provided by coarse meshes, restriction operators and adequate numerical parameters. 

In this frame, several smoothers available in PETSc have been tested. Block Jacobi has 

been selected because it offers the best compromise between high frequency smoothing and 

low computational cost.  

The coarsest grid correction is calculated by direct resolution. Experience shows that the 

direct solver is regarded as the quickest when the number of dof is less than 6,000, i.e. when 

the coarsest mesh contains less than 1,500 nodes. Habitual meshes used for standard forging 

simulations contain between 10,000 and 80,000 nodes so three different levels with a 

coarsening ratio of 8 approximately each, are necessary and sufficient to obtain an efficient 

method where the coarsest mesh resolution can be direct. This is why all our numerical results 

have been obtained with a three levels method. 

The number of pre and post smoothing steps are fit by a parametric study on a typical 

forging problem. Best results are obtained with one smoothing and one post smoothing 

iteration. It both minimizes the total number of smoothing steps and the computational time of 

the resolution. 

 

4. Numerical results 

 

This section investigates the performances of the developed three levels multigrid method 

(MG3). First of all the linear rate of convergence of the solver is verified. Then the 

performances are compared to the reference preconditioned conjugate residual solver 

(CR/ILU), the same convergence criterion being used for both methods. 

 

4.1. Linear rate of convergence 

 

The evolution of the computational time resolution is observed for various systems 

provided by the connecting rod forming at the end of the simulation (non linear material 

behaviour and friction coefficient equals 0.14). The different used meshes have 11,245 nodes, 

31,200 nodes, 47,083 nodes, 61,987 nodes and 91,127 nodes. The left curve of figure 6 shows 

the evolution of the resolution time with CR/ILU (plain line) and MG3 (dotted line) solvers. 
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Comparing the resolution time of the two methods for the same system, the larger the number 

of dof is, the more the speed-up provided by MG3 is relevant. The gain is effective when the 

mesh contains more than 10,000 nodes. 

The multigrid solver is close to its optimal linear rate of convergence ( )nO , where n  is 

the number of unknowns: see figure 6 right, where the black line corresponds to a perfect 

linear behavior and the dotted line to the MG3 rate of convergence. 
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Fig. 6: computational cost of the multigrid and CR/ILU solver as a function of dof 

 

4.2. Application to the simulation of the ring rolling process 

 

The efficiency of the multigrid solver is now evaluated for a complex forging simulation, 

the forming of an external ring of a ball bearing system. Figure 7-1 shows the process with the 

outer die, the workpiece and the inner die, which has an excentric circular movement. Figure 

7-2 shows the workpiece at the beginning and figure 7-3 at the end of the process. The 

viscoplasticity coefficient is 0.1529, the material has a consistency of 2707 MPa and a 

temperature of 700°C. Contact between workpiece and tools is supposed to be perfectly 

sliding. 

  

Fig. 7-1: ring rolling forging process Fig. 7-2: ring at the beginning Fig. 7-3: ring at the end 

 

During the whole simulation, 44 remeshing steps are necessary. Every time a remeshing is 

done, new coarse meshes are automatically created for the three levels method. The 

simulation has been entirely carried out with the multigrid solver, without any external 

intervention. For discussion, only the calculation time of the first three time increments is 

studied. It includes the two coarse meshes construction using the coarsening algorithm, the 

calculation of the restriction operators and of the coarse matrices. 

The three studied simulations regard meshes with respectively 11,245 nodes, 31,200 

nodes and 61,987 nodes. Table 1 summarizes the data of the computational and different 

coarse meshes used by the multigrid method. 
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Number of dof of the 

simulation 
44,980 124,800 247,948 

Number of nodes of the 

computation mesh 
11,245 31,200 61,987 

Number of nodes of the 

intermediate mesh 
1,452 3,233 6,061 

Number of nodes of the 

coarse mesh 
189 509 790 

Tab. 1: number of nodes of the different meshes 

 

Figure 8 shows the different meshes used for the 31,200 nodes simulation. The computational 

mesh is on the left hand side. In the centre, the intermediate mesh is showed, and on the right 

hand side the coarse mesh. 

 
31,200 nodes 3,233 nodes 509 nodes 

Fig. 8: computational, intermediate and coarse meshes for the 124,800 dof simulation 

 

Table 2 summarizes the obtained calculation times. The speed up observed with the 

multigrid solver directly depends on the mesh size. For 44,980 dof the calculation time is 

reduced by 2.1. On a more substantial example, with 247,958 dof, the recorded speed up is 

7.6 and the time saving is about 12h. These performances are really interesting and provide a 

considerable minimisation of calculation time for numerical simulations. 

Number of nodes 11,245 31,200 61,987 

Number of dof 44,980 124,800 247,948 

IC – CR 6min 53sec 3h 39min 51sec 14h 23min 2sec 

MG3 3min 15sec 43min 49sec 1h 53min 20sec 

Speed up 2.1 5.0 7.6 

Table 2: CPU time and speed up of the first three time increment of simulation 

 

5. Conclusion 

 

A node-nested Galerkin multigrid method has been developed for solving linear system 

derived from 3D forging simulations with a mixed finite element formulation. This method is 

plugged to Forge3® software and remains see-through for the user. Moreover, it is compatible 

with frequent remeshings and with the mixed velocity-pressure formulation. A standard 

algebraic method might encounter difficulties with the contact penalty terms of the system 

matrix, while the used mixed algebraic / geometric approach avoids it. An automatic 



 - 9 -

coarsening technique allows computing the various coarse meshes required by the 

construction of the transfer operators. The node-nested characteristic provides sparse and 

simple interpolation and restriction passing matrices. The construction of a coarse system by 

the Galerkin relation is not time consuming. Operators are considered to be constant between 

two remeshing steps, and even if these steps do not occur frequently, no decrease of 

performances is observed because of this approximation. When the domain is too complex it 

is not always possible to build coarse meshes with a coarsening ratio close to 8, but the 

method has showed to be quite robust when applied to an entire ring rolling simulation with 

44 remeshing steps. 

This multigrid solver shows a promising global reduction of the computational time. It is 

also more robust that the previously used solver. Some more forging simulations have been 

carried out to extend these conclusions to other problems. The speed-up and the robustness of 

the multigrid solver were not denied. The linear asymptotic convergence rate has been noticed 

in the particular studied frame of a mixed velocity - pressure formulation. 

These first results are really encouraging and confirm that the use of the multigrid is 

advised for large scale simulations. First improvements are currently "taking place". An 

iterative resolution method is currently tested to solve the coarsest system when the coarsest 

mesh contains too many nodes. Therefore, if the coarsening technique does not allow 

obtaining a sufficiently coarse mesh, an iterative solver will provide a less expensive solution 

than a direct solving. Future works will deal with the study of larger problems with several 

bodies, where the number of dof will grow up, so the use of the multigrid method will be even 

more justified. The solver will also have to be adapted to parallel computation using a SPMP 

strategy with dynamic mesh partionning. 
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