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This paper deals with a dynamical shape control problem. The state equations are the non-cylindrical
Navier-Stokes equations with a non-homogenous Dirichlet condition. The goal is to compute a necessary
optimality condition for the considered functional (kinetic energy). Our work is based on the “transfor-
mation” of the domain functional on a field functional and the consideration of transverse fields in the
application of the velocity method. The originality of this approach is the introduction of an extra adjoint
equation in relation with the initial transverse field to obtain the final form of the necessary condition.

1. Introduction

We consider the evolution of an incompressible viscous flow in a moving domain. The
displacement of the fluid is due to a force f and a non-autonomous velocity V' acting
through a non homogeneous Dirichlet boundary condition at the lateral boundary of the

domain. Let
Q= |J (& x) and = J ({t} xTv)

to<t<T to<t<T

be the tube described by the flow during the time-interval (¢y, 7); §; (resp. I';) being the
domain (resp. the boundary of the domain) occupied by the fluid at time ¢. The domain
O, t € [to, 7], is assumed to be contained in a fixed smooth and bounded three dimensional
hold-all D. Its volume [€;| is constant with the time ¢ since we deal with incompressible
fluids. The lateral boundary ¥ being smooth enough, let v be its unitary normal field
(out-going to Q). It can be written in a unique way as v = {y/1 + v2}~!(—v,,n;) € RxR3
where n; is the usual normal on Ty and —{4/1 + v2} !, (¢, x) is the time-component of
v.

Notice that for any smooth tube ) there exists a vector field W that “builds” () as follows:
Q = T;(W) (), where T3 (W) is the flow mapping of W. To match that property it is
sufficient for W to verify, at each time ¢, the condition (W (¢,.),n:(.)) = v,(¢)(.) on Iy,
where v, is the term in the time-component of the normal field v (see [13] and [4]).

Any divergence free field verifying that condition builds the same tube () so that the
tangential component W (t)r, := W (t)|r, — (W (t)|r,, n¢) n¢ is a non geometrical data.
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We assume that V' builds the tube @, that is (V(¢,.),n:(.)) = v, (¢)(.).

The vector field V also satisfies divV = 0 in D, V.np = 0 on D and is given in H'((0, 7);
H™(D,R?)), (m > 5/2). The flow verifies the so-called non-cylindrical Navier-Stokes
equations

Owu —nAu+ Duu+Vp=f in Q(V)
divu =0 in Q(V)
u=V onX(V),

at t = t(), Q() = and U(to) = Ug in Q, (14)

where 7 is the coefficient of kinematic viscosity of the fluid and

QV)= U {8 xT(V)() and (V)= |J (&} x L)),

to<t<T to<t<T

the domain €2 and the function wug are given.
We shall give existence and uniqueness result for the non-cylindrical problem (1.1)—(1.4).

If the fluid was not sticking at the boundary, the Dirichlet boundary condition (1.3)
would take the form u(t).n, = v(t) on the moving boundary I';. Now as the fluid is
viscous the sticking condition implies that at a point z(t) of the boundary I'; the “two
particles” of boundary and of fluid located at z(t) have the same velocity. Then the
solution u = u(ty, ug, 2, V') of the flow problem (1.1)—(1.4) is the sticking one.

The dynamical shape control problem is then, given (%o, 2, 1), to move the boundary T
in order to decrease a functional J governed by u(to, ug, 2, V). As first example we take
here the functional J as the total kinetic energy

J(to,uo,Q,V):/ / W dedt + a|[VIE o> 0.
to Qt(V)

The optimal control problem is then to solve the optimization problem
V(tQ,UQ,Q) = min{J(to,Uo,Q, V), Ve Ad(D)} (P)

where Ad(D) is the set of admissible fields. In the present paper we study the optimization
problem (P). That is for a given time ¢, (we take t, = 0), given uo and  we shall
derive necessary conditions for the optimality in V' and present the first results concerning
Lyapunov trajectory, which in the present choice of the functional J will be an optimal
choice of the velocity V' in order to bring the fluid to rest. According to [14], the sensitivity
analysis of J (with respect to the field V') approach is based on the concept of Transverse
field Z associated with the field Z? such that

UV 4+ oW) =T,(Z")(%(V)).

The term 2 J(V + 0 W)|,—o only depends on Z'(0,.). The field Z(¢,.) = Z%(0,.) is
solution of a linear evolution problem governed by the Lie brackets [V, Z]. By introduction
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of a new adjoint problem derived by transposition of that problem, we derive the gradient
of J.

The properties of the Value function V in connection with the real time control problem
will be considered in a further work in which the control variable will be in fact the
acceleration field ((t,.) =V = dV(¢t,.)/dt € L?(0,7; H™(D,R®)) which is the obvious
extension of the “speed flow” setting of the framework of [3]. Throughout this paper the
control variable V is lying in H'([0, 7], H™(D,R?)).

If the functional J was taken as the total energy (which would imply some extra technical-
ities), following [8], we would derive existence results and algorithms for the corresponding
dynamical free boundary problem.

2. The Non Cylindrical Navier-Stokes Flow

The incompressibility of the fluid (u is a divergence free field) implies the compatibility
condition on the field V:

/80 (V(t,x),ny(z)) dTy(z) = 0.

That condition is fulfilled as we take div V'(¢,.) = 0 throughout the universe D.

By making the change of variable U = u — V' | the system of equations (1.1)-(1.4) is
transformed in a system of equations on (U, p) with a homogeneous Dirichlet boundary
condition.

U —nAU + DU.U + DUV +DV.U+Vp=f—0,V —DV.V+n9AV in Q@ (2.1)
divU =0 in Q
U=0 on .

The initial condition (1.4) should be replaced by
At t=0, U(0)=wuo—V(0) in Q. (2.4)

For simplicity we take V(0) = 0. Since the domain occupied by the fluid is time-
dependent, It would not be possible, as it is generally done in cylindrical problems,
to treat separately, the spatial and temporal aspects of the problem. So, a priori, the
Faedo-Galerkin method should be applied with a time-dependent “basis”.

Then to solve such problem, one can consider either a family (P.) of penalized problems
formulated in the cylindrical hold-all (0,7) x D or else a domain transformation 7;(17)
to come-back to a cylindrical problem in (0,7) x €, where 2 is the initial domain.

Whatever the view-point considered in the investigation of weak solutions for the system
of equations (2.1)—(2.4), the following two results are needed.

Lemma 2.1. Let E be a reflexive Banach space and F' a Hilbert space, E' being the dual
of E, such that
E—F < FE

with continuous and dense injections. Assume that

d 1 1
u€ LP(a,b; E), v = d—rl; € LY(a,b; E"); 5-1—;:1, 1<p,q<oo.
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Then for each n € F,

d

%(u, n) =<u',n > in D'(a,b).
Moreover u is a.e. equal to a continuous function u € C(a,b; F).

Lemma 2.2. Let Ey, E, Eq be three Banach spaces such that

(i)  Ey and E; are reflexive.
(ii)  The injections Ey — E < Ey are continuous.
(iii) Ep < FE is compact.

The space

d
V= {v e L*0,7; B),v = d—: € L (0,7 B}, e > 1,i = 0,1,

endowed with the norm
[vllv = l[vllzeo(o,r;50) + 1Vl o1 (0,m:1)
1s a Banach space and

VY — L*(0,7; E), the injection is continuous and compact.

For proofs, see for example [12] or [9].
The following functional spaces will be used throughout this paper:
H = {v € L*(D)? divv = 0in D, v.np = 0 on 8D},
H(Q) = {ve L*Q)?3 divye=0in Q, v.ng =0 on 90},
H}(div,0) = {v € Hy(0)?,dive =0 in O}
where O is an open subset of D.

We also define the space LP(0,7; L?(£);)) as the set of restrictions to @ of elements of
LP(0,7; L*(D)) (1 < p < o0). Then LP(0,7; H'(S)) = {¢ € LP(0,7; L2(S4))|Vap €
LP(0,7; L? (%))}

As ¥ is smooth enough, it is also the set of restrictions to @ of elements of L?(0, 7; H*(D)).

We finally introduce the operators

A: Hy(div, D) — H,(div, D), (Av,w) :/Dv..Dwdx
D
B : Hy(div, D) — H;(div, D), (B(v),w) = / (Dv.v,w)dz.
D

2.1. Penalty Method
The force f is assumed to be in L?(0,7; H~'(D)3). Let F € L?*(0,7; H~'(D)?) defined by:
Vi € L2(0,7; Hy(D)?),

<F7 ¢>L2(H—1),L2(Hg) =

(fs 0 po—1y,0omp) — / V.o +nDV..Dy + (DV.V,4p)dzdt. (2.5)

(0,7)xD
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Theorem 2.3. Let n > 0, F € L*(0,7; Hy(div, D)) and ug € H. For all € > 0, there
exists at least a function U¢ such that

U* € L*(0,7; H)(div, D)) N L®(0,7: H), 8,U° € L% (0, 7; H (div, D))

and

1

U —nAU* + DU“.U® +DU€.V+DVU6+;XQ§U€+VPE (2.6)
=F in L3(Hl(div, D)

divU =0 in (0,7)x D

U(0) =ug in D.
Before proving Theorem 2.3, we recall the existence of a family of eigenfunctions ¢; in
H}(div, D) and scalars \; > 0, 7 > 1, \; = 0o as 7 — oo such that

((¢5,v)) = Xi(i,v), Yo € Hy(div, D), (2.9)
where ((, )) denotes the inner product in Hj (D)3, and
(@i i) = 6
(i p5)) = Nidyj, Vi, j > 1.

The eigenfunctions, ¢;, 7 > 1, form an Hilbertian basis of H;(div, D).

Proof. The constant of Poincaré being denoted Cp, in a first step we assume that
' =n— Cpl||V| ey > 0. (2.10)

We apply the Faedo-Galerkin method (see for example [12] or [9]) with the Hilbertian basis
{@i,i € N*} of Hg(div, D) defined above. Let Uy, in Hg,(div, D) = span{p1,... ,om}
such that Uy, — ug strongly in H. We look for

U, (t) = Zalm’e(t) ¢; such that U (0) = Uy, m € N*,

=1

such that for all ¢ € Hj,,(div, D), we have

/Gthn.godx—i-n/ DUfn..Dgpdac—i-/(DUT;.U;,@daB—i-/(DU;.V, pydx +
D D D D
1
/D(DV.Ufn,go)dx-l—;/DXQgUfn.godx: (F,¢) in D'(0,7). (2.11)
For ¢ = Uf, and t € (0, 7], we have
1 2 ! 2 ! 2
3VaOltsy +1 | DU oy ds = 1V lmosmy [ U5(0) o

1 ! € ! € 1 €
1 [ Uiy ds < [ (RURs + 5V O o
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1 2 ! 2 L[ 2
!/
3VaOlsy+ 7 [ 1DV oy ds+ 1 [ sl ()l ds

t
1
< [ (PUs(6ds + VRO oy

€ i € 2 ! €
Uiy 1 [ 1DV oy s+ [ xosUin(s) oy ds
1 €
< ;||F||%2(H*1(D)3) + [Us (0)]Z2¢y-

Since Uy, (0)|z2(p) < [U(0)|z2(py, we deduce the uniform boundedness, on m and e, of

US, in  L*™(0,7; L*(D)*) N L*(0,7; Hy(D)?) (2.12)
1
—(xa:US) in  L2*(0,7; L*(D)). (2.13)
\/E t
Let us introduce the projection operator P, : H — span{py,- - - , ¢, } such that
for ve H, P,(v)= Z(v,gpi)p ©;.- (2.14)
i=1

(, )p is the inner product of L?(D).
We denote by * P, the adjoint operator of Py, seen as an element of £(Hj(div, D)). Then,

€ 1 € * € * € *
oU;, = _EPM(XﬂfUm) — *Pno(AU;,) — "Pn(B(U5)) + "Pu(F).
It implies that
8,U, is bounded, uniformly on m, in L3 (0, 7; Hl(div, D)'). (2.15)
Indeed, let v be any function in L*(0, 7; Hy (div, D)%) N L*°(0, 75 L*(D)?), then
1 1
lo@)lzsoy < 0@ 2oy v ()72

A mam;wﬂﬁsnm@ﬂpwnﬂ lo(8)|[2o it

which implies that v € L*(0,7; L3(D)3).

Moreover
|1B) (@) 53 aiv,py < cllv@Irem)llv@) | s(n)-
Then

T 4 T 4 4
A|wwxmmwmpwﬁs¢énwwmmnmam&wwt

1 [ 2 [T
< (5 [ WO+ 3 [ T aar).
3.Jo 3 Jo
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Thus B(v) € L3(H}(div,D)"). On the other-hand note that 1Pl c¢r3 aiv,0yy) < o
(co > 0is a constant) and take v = Uf,, we deduce that B(UY,) is bounded, independently
of m and ¢, in L3 (H}(div, D)").

Hence, there exists a subsequence (still denoted U,) and a function U¢ € L*(0,7; H) N
L*(0,7; Hy(div, D)) such that, when m — oo,

U:, — U®in L*(0,7; L*(D)?) strong, (2.16)
Us, = USin L™®(0,7; L*(D)?) weak-star, (2.17)
U:, — U¢in L*(0,7; Hy(D)?) weak. (2.18)

So by passing to the limit in (2.11) we obtain

U¢ e L>(0,7; H) N L*(0,7; Hy(div, D)),

1
QU —nAU+ DUU* + DUV + DV.U  + —xq:U® = F in (0,7) x D
€
divU* = 0 in (0,7) x D
and that o,U° € L%(O,T; Hj(div, D)"). In a second step the extra-hypothesis on the vis-

cosity can be avoided by making the change of variable: U = eMU, where ) is suitably
chosen. Then its approximation U,, solves the problem, in (0,7) x D,

N N N - N 1 -

U + X\ U, — nAUE, + Mt DU; .U, + DU, . V+DV.U;, + —ngUfn (2.19)
€ .
— ef/\tF

divUs, =0 (2.20)
U (0) =ug in D. (2.21)
As | D(Df]fnf];, Uc)dr = 0 we get the previous estimates for the sequence U¢, where
(n — Cpl||V]|) is replaced by n, if A > ||[V||. Then, given n and V', we choose A such that
(A—=1V]) > 0. O

Now, we are interested in the behavior of {U¢} in the tube ) when € goes to 0. We shall

prove the existence of a subsequence of {U¢} converging to a solution of the non-cylindrical
problem (2.1)—(2.4).

Theorem 2.4. The open set Q is assumed to be piecewise Ct. Let F € L*0,T;
Hj(div,D)') and uo € H such that uoo € H(Q). There exists at least a function

U € L2(0,7; H}(div, D)) NL>®(0,7; H) satisfying (2.1) in L3(0,7; H(div,)) and also
(2.2)—(2.4).
According to (2.12), we have the boundedness, independently of €, of

U¢in L*°(0,7; L*(D)*) N L?(0,7; Hy(D)?). (2.22)
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This implies the existence of U € L*(0,7; L*(D)®) N L?*(0,7; H}(D)3) and of a subse-
quence, still denoted U*¢, such that
U —=U in L*(0,7; Hy(D)?) weak (2.23)
U¢ S U in L®(0,7; L*(D)?) weak-star. (2.24)

Moreover (2.13) implies that
XasU® = XxaeU =0 in L*(0,7; L*(D)*) weak, € \, 0. (2.25)

Then U(t) € Hj(Q)? for almost every t € (0, 7).
On the other-hand, since 0,U°+ %XQSUe =nAU*— DU .U*—- DUV — DV.U*+ F belongs
to L3 (0, 7; HE (div, D)') estimation (2.22) gives the boundedness of

1
OU  + —xa:U® in Lz(0,7 H;(div, D)) independently of e. (2.26)
€

The fact that the limit U(t) shall be in Hj(div, ;) a.e. allows us to restrict the space of
spatial test functions to Hy (div, €2;). This has the advantage to eliminate the contribution
of the term % XaeU® and makes the search for uniform boundedness for the derivative oUe
easier.

To be able to express estimations in fixed spaces, we need to introduce some domain
transformations.

Lemma 2.5. Let W € C°([0,7],C%(D)) such that W.np = 0 on 0D, np unit normal
vector field on 0D, outward to D. Then, the mapping Ty(W) defined as follows

X +—T,(W)(X)=2z(t:;W): D — D,
where x(.; W) is the solution of

dz

—(t) =W(ta(t), te[0,7],2(0) =X €D,

1s an homeomorphism. Moreover, if

(W(t,x),ne(x)) = v,(t,x), V(t,z) € [0,7] x 0 (v, is the time-component of v).
(2.27)

Then T,(W) builds the tube Q) i.e. Vt € [0, 7], T,(W)(Q2) = Q4.
Proof. Cf. [11], [13]. O

We have the following properties (see [6]).

Lemma 2.6. Let T,(W) be the transformation defined in Lemma 2.5. We have

(i) D(TW)™) o Ty(W) = (DTL(W))™,

(i) (Dv)o Ty(W) = D(wo T(W)).(DT:(W)) !, v € HY()",

(iii) (Ow) o Ty (W) = 84(v o Ty(W)) — (Dv) o T,(W).W o Ty(W), v € C(0,7; Hy(D)?).
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Let W be a vector field satisfying hypotheses of Lemma 2.5 notably property (2.27), then

Lemma 2.7. The mapping Hi(div,Q) — H(div,Q); ¢ — (DT,(W)e) o Ty(W)™! is
an isomorphism.

Now, we can state

Lemma 2.8. 9,[* DT,(W)(U¢ o T,(W))] is bounded in L3 (0,r; H}(div, Q)’).
Proof. Indeed, set
1
w® =0 U* + ZngU6

and let v € H{(div, ), (DTw) o T, * € H}(div, ). Then,
1
(e, (DTw) o T; 1y = (8,U¢, (DTw) o T; ') + Z/ XasUS.(DTw) o T, 'dx.
D

It is clear that
/ XQgUe.(DTtU) o Tt_ld:r = 0.
D
Then, we deduce that \
w® = QUC in L3(Hy(div, )").
Hence, the boundedness of 8,U¢ in L3 (0, 7; H; (div, §2;)") follows from the boundedness of

w® in L3(0,7; HE(div, D). Moreover since

(U, (DTw) o ) = (U, (DT w) o T;)

(U, (DTw) o T;™') = 2

d, . . )
= %(U ,(DTw) o T; ') — (U, [D(W o Ty)v] o T+ — [D(DTw)W]o T ) 295
= %(*DE(UE o) Tt): ’U) — (U€ o Crt, D(W o ’I’t)v) + (Ue ° E; D(DT}/U)W)

= (8,(* DT, (U o T}))),v) — (U o Ty, D(W o T))v) + (U o Ty, D(DTw)W).
Thus,
(0, DT,(UT,)),v) = (QU*, (DTw)oT, ')+ (U oT,, D(WoTy)v) — (U0 Ty, D(DT,v)W).
It follows that 8,(* DT,(U* o T})) is bounded in L3 (0, 7; H}(div, 2)"). O

By the compactness result stated in Lemma 2.2 applied for Fy = H}(div,Q), E; =
H;(div,Q), E = L*(Q)3, we obtain, when € — 0,

*DTy(U¢ o Ty) — *DT,(U o Ty) strongly in L*(0,7; L*(Q2)?) (2.29)
which is equivalent to

U¢ — U strongly in L*(0,7; L*(%)?). (2.30)
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To show that the limit U satisfies (2.1)—(2.4), we need to compute, first, the weak limit
of (2.6) as e = 0.

Let @ € D(0,7) and v € Hy(div, ),

/T<6tU€, (DTw) o T, 1) 0(t) dt = /T %(UG, (DTw) o T, 1) O(t) dt

_ / (U IDOW 0 T)o] o T 0(1) dt + / (U, D(DTw)(W o T 1Y) 6(1) d.

Then, the limit

T

lim [ (Q,U¢, (DTw) o T, 1) 0(t) dt = — /T(U, (DTw) o T, 1) 0'(t) dt

e—0 0

— /T(U, [D(W o Ty)v] o T, 1) 0(t) dt + /T(U, D(DTw)(W o T, 1)) 0(t) dt.

The same calculus as in (2.28) gives

/ T<atU, (DTw) o T, 1) 0(t) dt = — / T(U, (DTyw) o T, ) 0/ (t) dt
— /T(U, [D(W o Ty)v] o T, 1) 0(t) dt + /T(U, D(DTw)(W o T; 1)) 0(t) dt.

It means that

T

lim [ (00, (DTw) o T,") 0(2) dt = / (DU, (DTyw) o T, 0(t) dt. (2.31)
€—> 0 0
Concerning the nonlinear term, note that

/ (DUSU*, (DTy) o T, ) 01(¢) dadt = — / (D[(DTyw) o T, .U, US) 6(t) dadt
Q Q

and using(2.30), it is obvious to see that

lim [ (DU.U, (DTw) o T ') O(t) dadt =

e—0 Q

- / (D[(DTw) o T;Y.U,U) 0(t) dzdt = / (DU.U, (DTw) o T 1) 0(t) dzdt. (2.32)
Q Q

The other terms of the weak form of (2.6) do not present any special difficulties in the
limit process. Then, we obtain, for all w = (DTw) o T;' (€ H{(div,$%)), v (resp. 6)
describing Hg (div, Q) (resp. D(0,7)),

/OT<6tU,w> 6(t) dt-l—n/QDU..Dw 0(t) dxdt—i—/@(DU.U,w) 0(t) dzdt

+ /Q (DUV + DV.U, w) (1) dzdt = /O (Fw)0(t) dt (2.33)
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This implies equation (2.1) in D'(0, 7; H} (div,)"). By density and continuity, we obtain
it in L3 (0, 7; HE(div,Q)"). Now, let 6 € C'([0,7]) such that 6(7) = 0. We obtain from
(2.1)

- /0 (U w) (1) dt — /0 (U, Bw) 0(8) dt — (U(0),v) 6(0) + 1 /Q DU..Dw 0(t) dudt
+ / (DU.U + DUV + DV.U, ) 0(¢) ddt = / C(F,w) 0(1) dt.
Q 0

Doing the same with equation (2.6) and passing to the limit (e — 0), we get

_ /0 (U w) (1) di — /0 (U, ) 6(t) dt — (g — V(0), v) 6(0) + 1 /Q DU..Dw 8(t) dadt
+/<DU.U+DU.V+DV.U,w>0(t) ddt = /T<F, w) 0(¢) dt.
Q 0

By comparison, we deduce that, Vv € H;(div, ),

(U(0),v)0(0) = (up — V(0),v) 8(0) and thus U(0) = ug — V(0) = uy.
Then, u = U + V is a solution of the initial problem (1.1)—(1.4).
Remark 2.9. The uniqueness of U is obtained if we assume

uy € H*(D,R*) N Hy(div, D) (2.34)
f e L>®0,r;L*(D)), f € L*((0,7) x D) (2.35)

and if n is large enough or when f and uy are “small enough”:

”f“%OO(LZ(D)) + pM (1 + dg) (pfuo?
4

T p
o) e [ 176)Pds) <25 230

where do = |f(0)| 4 pcol|uol|m2 + c1lluol|32, and ¢, o, ¢1 are constants.

Under the previous assumptions
oU € L*(0,7;%) N L>®(0,7; H(SY)).

Moreover, if Q2 is assumed to be of class C2, U € L*®(0, T; H(2;, R®)). For more details see
D. N. Bock [1], R. Temam [12] or J. L. Lions [9]. The previous conditions give uniqueness
for the penalized problem too.

From now on we assume (2.34)—(2.36) satisfied. The well-posedness of the considered non-
cylindrical motion being established, we can now turn our attention to the main point
of this work which is the minimization of the kinetic energy with respect to the “shape”
of the non-cylindrical domain followed by the fluid. Practically the minimization process
will work with a family of admissible vector fields V satisfying conditions of Lemma 2.5
and such that u =V on X(V).
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3. Optimization on the speed field V

Let HiY(D) = {v € H™(D,R%),divo = 0in D,v.n = 0 on dD}. Assume m > (5/2) so
that HY*(D) < C?(D). This section is devoted to the study of the minimization problem:

Find V' solution of

. 1 / 9 ) }
min = uw(V)|" drdt + ||V || 510 ram 3.1
VeH!(0,r;H (D)) 2 { QW) [u(V)] IVII% (0,7 HF (D)) (3.1)

where Q(V) = Ujeie, {t} x T:(V)(Q), u(V) is the solution of (1.1)-(1.4), @ > 0 is a
constant. o

The existence for that problem shall be obtained via the cylindrical penalized problem
and its shape continuity properties.

3.1. Continuity Properties
Let {V,}, and V in H(0,7; HIY(D)).

Lemma 3.1. Assume that V,, = V, as n — oo, weakly in H'(0,7;HJ*(D)). Then
Vi, = V strongly in C([0,7]; HFY (D)), m' = m — p, u > 0 arbitrarily small.

Proof. By hypothesis, the sequence {0;V,,} is bounded in L?(0,7; HJ*(D)) and
V.. is bounded in L>(0, 7; Hi'(D)). (3.2)

Using the compactness result stated in Lemma 2.2 and the compact injection H™ (D) —
H™(D), we obtain

V,, = V strongly in C([0, 7]; HIY (D)). (3.3)
U
As m > 5/2, we obtain
Corollary 3.2. Assume that V,, =V as n — oo weakly in H'(0,7; H(D)). Then,
Vo, — V strongly in C([0, 7]; W5 (D))
for all k such that 1 < k <m — (3/2).

Proof. It suffices to see that under the above condition on k, the embedding H™ (D) —
Wk(D) holds and is compact. O

From now on, we will assume that m > 5/2 and 1 < k <m — (3/2).

Proposition 3.3. Assume that V,, — V strongly in C([0,7]; W**(D)) asn — oo. Then,
T(V,) (=T") — T (V) (=T) strongly in C*([0, 7]; WE=1°(D)).

Before proving this convergence result, recall

Lemma 3.4. Let F € Wm’“(Dl, m > 1, be a homeomorphic transformation such that
F~! is Lipschitz-continuous in D. Then, for any V € W™>® Vo F € W™*®(D) and
there exists a constant ¢ > 0 such that ||V o F||wm.e(p) < ||V ||wmoo(n)-
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Proof. See [10]. O

Proof of Proposition 3.3. Note that
T2(@) = Ta) = [ Vil T2@) = V(5. Tu(a)) ds
= /0 Va(s, TN (z)) — V (s, T3 (x)) ds —1—/0 Vs, T} (x)) — V (s, Ts(x)) ds.

Set 7, (t) = | T} — Tt |lwr-1.00(py and Ry (t) = fot r.(s) ds. Since V (s) belongs to W*>(D),
k> 1, Vi(s, T3 (x)) — Vils, Ts(2)) = DVi(s, Ts(z) + 0:(T5 (2) — Ts(2))) (T3 (2) — Ti(x)),
0; =0(n,s,z),i=1,2,3. Then

t
ra(t) < cV/ Va(5) = V(8) lwre-ro0 ds + Ky Rn(£),
0
Ky = ||DV||C([0,T];W’“—1’°°(D))'
Rln(t) — Ky R, (t) < cv 7|V = Vle(o,mwe 1000y
(exp(—KVt)Rn(t))l S CvTeXp(—Kvt)”Vn — V”C([O’T];Wk—l,oo(D)).

By integration, we get

t
exp(—Ky 1) Ry (t) < cy||Vs, — V”C([O,T];Wkl'f”(D))/ exp(—Kvys) ds
0

EXp(Kvt) -1

Rn(t) S Cy 7'||Vn - V”C([O,T];Wk—l,oo(D)) KV

Then,

rn(t) < TIIVa = Vlleqo,iwr-teo(py) + IV = Vle(o,rwr-100(py) (exp(Kyt) — 1)
Tn(t) < TV — Vleqo,rgwr—1.00(py) €xp(KvT).

This last estimation gives the convergence of T™, strongly in C([0, 7]; W*~1=(D)), to T.
Moreover, T™ and T are in C1([0, 7]; W*~1%°(D)) and

d
%T” =V,oT".
Therefore
T" — T, n — oo, strongly in C*([0,7]; W*~5°(D)). (3.4)
O
Proposition 3.5. The mapping
V—TV)!

is continuous from C([0, 7], W**(D)) in C([0,7] x D).
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Proof. Let
Q' (t,2) =T (V+W)(2) =T, (V)(2) =

:/0 (VA W)t = p, TNV + W) (@) + V(= 5, T (V) (@) dps

I n
t
Q" (t,r)| < C/ | DV || oo (1x0) | Q7 (14, @) | dpt + T||W || Loo (1 D) -
0

The generalized Gronwall inequality gives
1Q*(t, %) || L (1x ) < b7 exp(Ta). (3.5)
So that we obtain the desired result. O

Proposition 3.6. Assume V,, — V in C([0,7],C*~1(D,R3)),k > 1, and let By and Xy,
be the lateral boundaries of the tubes built respectively by V and V,,. Then Xy, converges
to Yy in the Hausdorff distance:

max min | X — Y|+max min |[X —-Y| — 0.
XeXy, YeSy €Xy X€eXy,

Proof. From propositions 3.3 and 3.5 we deduce that T;(V,,)oTy(V)) " and Ty (V) oTy(V,) !
converges to the identity in C( x D). Let (¢,z) € Xy then

min |(s,y) — (t,2)| < |(t, x) = (£, T(V,) o Ty(V) " ()|

(Say)EEVn

goes to zero uniformly with n then also max)es, mingges,. [(s,y) — (t,2)|. Similarly
we consider the mapping T3(V) o T;(V,,)~* for the second term. O

Corollary 3.7. The tube Q(V') has the compactivorous property: For any compact K,
K c Q(V), In(K) s.t. n > n(K) implies K C Q(V,).

Now, we shall study the continuity of the solution of the penalized Navier-Stokes equations
with respect to the field V. Let Uf, n € N*, be the unique solution of

1
BUS — nAUS + DUSUS + DV, Ut +DUEVy, + =xa5. US
6 ]

= F, in L3 (0, 7; H} (div, D)')
divU; =01in (0,7) x D

where F,, = f — 0,V,, + nAV,, — DV,,.V,, and

THQ) = Qun, TH(T) =Tyn; t € (0,7)
Q) = Q

Lemma 3.8. Assume that V,, — V  strongly in C([0,7]; HI' (D)) as n — co. Then,
US — U weakly in L*(0,7; Hy (D)%), (3.6)

where U¢ is the unique solution of (2.6)—(2.8).
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Proof. It is easy to see that F, — F weak in L3 (0, ; H}(div, D)'). Moreover, we have
the boundedness uniformly on n of (see proof of Theorem 2.3):

° Ut in L*(0,7; Hy(D)®) N L= (0,7; H)
e  QUS in L3(0,7; Hl(div, D)")
o Ixop, (US)in L3(0,7; Hy(div, D)).

Then, there exists a function U¢ and a subsequence, still denoted Uj, such that

U — U€in L*(0,7; Hy(D)?) — weak
U = Ufin L™®(0,7; L?(D)?) — weak star
U — U®in L*(0,7; L*(D)?) — strong. (3.7)

To get the continuity result, we should have
xog, Uy = xasUS, n— oo, in L*((0,7) x D). (3.8)

Let ¢ € L2((0,7) x D),

//ch Uy Ydxdt = //U20ﬂ"¢07}”dxdt.
0 C

At the limit (n — o0) and thanks to (3.7), we have

/ /ch U, wdxdt—>/ /chUfwdxdt

Indeed U5 oI —U o Ty = (U o IP — U o TI") + (U o T} — U o T3). The first term of
the right hand side goes to zero as n — 0o. For the second term, it suffices to prove that

Yo Tl —oT,in L*((0,7) x D).
Let ¢ € D((0,7) x D), then

Y(T?(@) = Y(Ti(x)) ¥(6,0) € (0,7) x D and [¢oT7| < max [yl

The Lebesgue convergence theorem gives the strong convergence in L?((0,7) x D) of the
considered sequence. Thus (3.8) holds. Finally, we deduce easily that U¢ is solution of

1
QU — AU + DUSU* + DV.U + DUV + “xo:U¢ = F  in L3(0,; H (div, D))
€

divU* =0 1in (0,7) x D
Ue(O) = Uy in D.

O

In order to derive an existence result for the functional J we also need a continuity result
when (V;,, €,) — (V,0) as n — oc.
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Lemma 3.9. Assume that V, — V  strongly in C([0,7]; HF¥ (D)) and ¢, — 0 as
n — 00. Then, there exists a function U such that

Ut = U weakly in L*((0,7) x D), (3.9)

and Uqv) is the unique solution of (2.1)~(2.4).

Proof. It is easy to see that F, — F weak in L5 (0,; H}(div, D)'). Moreover, we have
the boundedness uniformly on n of (see proof of Theorem 2.3).

o Ut in L2?(0,7; H}(D)?) N L*(0,7; H)

o Lxo, (Uy)+0Ug in Li(0,7; Hy(div, D))

° \/%ng)n(Ufl") in L2((0,7’) X D)

Then, there exists a function U and a subsequence, still denoted U, such that

Us — Uin L*(Hy(D)?) — weak
Ut 5 Uin L*(0,7; L*(D)?) — weak star. (3.10)

From the equation satisfied by US", we deduce that
Xas U — 0, n— oo, in L*((0,7) x D). (3.11)

Using the same technic as for the proof of (3.8), we get Va» € L?((0,7) x D) ,

o Jo 7 0 JD

since ¢ o T (resp. Ut o T[') converges strongly (resp. weakly) in L*((0,7) x D). All
this implies that U(t) = 0 in D \ (V) for a.e. ¢t € (0,7).To establish that Ujgy) is
solution of (2.1)—(2.4) we proceed as following. Let ¢ € D(Q(V)). The tube Q(V) has
the compactivorous property. So there exists n, € N such that the compact support of v
is in Q(V,,), Vn > ny. Hence

/ QU™ pdudt+n | DU™. D dzdt + / (DU U, o) dadt +
Q)

Q(V) (V)

1
+/ (DU;“.Vn,Q/))dasdt-l—/ (DVn.U;“,¢>dxdt+—/ Xag Uy dzdt
Q(V) (V) € JQv)

= / (Fn, V) (@), p(Q(v)) -
0

But the penalizing term vanishes so we can pass to the limit on n without any difficulty.
O

3.2. Existence of an optimal tube

The initial domain €2 CC D being fixed, we have the following existence result.
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Proposition 3.10. There exists a vector field denoted V € H'(0,7; HY(D)) solution of
(3.1).

Proof. From the previous continuity result on the penalized problem we get that for each
positive € the following problem has a solution.
Find V' solution of

min J (V)=

VeH(0,rH (D))

DN | =

{ /Q 00+ VR dadr s a||V||%p(0,T;ng(D»} (3.12)

where U¢(V) is the solution of (2.6)—(2.8).

Let €, be a sequence which converges to zero and V,, the corresponding minimizing fields.

So
VYV e HY(0,7, H*D)), J.,(V,) < J. (V). (3.13)

It is easy to see that {V,} is bounded in H'(0, 7; Hf*(D)). So there exists a subsequence
still denoted {V,} converging weakly to a vector field V. To each V,, we associate the

vector field U (V) solution of (2.6)—(2.8) which from Lemma 3.9 converges weakly in
L*((0,7) x D) to U such that U, is the solution of (2.1)-(2.4). We conclude by going
to the limit on n in inequality (3.13). As the right hand-side is continuous

Je, (V) = J(V).
For the left hand-side we notice that
Xowm) U™ (V,,), weakly converges in L*((0,7) x D) to Xo) U(v)

since U (V,,) o T(V,), weakly converges in L2((0,7) x D) to U(V) o T(V,,). O

4. Sensitivity Analysis with respect to the Field V

Let W} (D) be the space W5*(D) N H}(D) and V € H'(0,7; H*(D)). According to
[5], we can define a family of transformations by

(t, X) — T, X) Y 2(t,X):[0,7] x D — R, (4.1)
where z(., X) is the solution of
fl—f(t) —V(ta(t), telo,7], =(0) =X (4.2)

with the following properties

VX € D,T(,,X) € C*([0,7]; R®)

Je > 0,VX,Y € D,||T(., X) = T(., Y)|lerqomzs) < c|X — V],
Vvt €[0,7], X — Ty(X) ¥ T(t,X) : D — D is bijective,

VX € D, T (., X) € C°0,7); R®)

de > O,V.??, y e Ea ||T_1(.,.T) - T_l('ay)||co([0,'r];R3) < C|.T - y|

The transformation 7 involved by the previous ordinary differential equation (4.2) is
generally denoted T'(V').
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Remark 4.1. Notice that by induction, one can prove that
T,(V) € W**(D) < C*1(D), Vt € [0, 7).
4.1. The Transverse Field Z
At each fixed time ¢ € [0, 7] and any o sufficiently small, we consider the moving domain
Q(V+oW)=T,(V+cW)(), QCC D is given.

At fixed ¢ € [0, 7], we should consider a map 7, which maps €;(V') onto €;(V + oW )(and
D onto D). A quite natural choice is

TE=T,(V +oW)o T, (V)"

Under some assumptions, see for instance [5], that transformation can be considered as
the flow of the vector field

20, ) = (%ﬁ) o TH ). (4.3)

Proposition 4.2. The mapping 0 — T(V + oW), Iy — C°([0, 7]; Wk-L°(D)), 1is
continuously derivable and 0,(Ty(V + oW)) satisfies

t
0TV +oW)] = | DV + W) TV +0W)S*(0) du
0
t
+ / Wi, T,(V +oW))dpu,Vt € [0, 7].
0
Proof. For any given ¢t € [0,7] and x € D, the mapping
o —T,(V+oW)(x) is C°I,,R?)

since 0 — V + oW is affine in 0. We know that 0[T;(V + oW )(x)]/0c is the solution of

Sto,z) = DV + W) (t, T,(V + oW)(2))S' (0, ) + W (t, T,(V + o W)(z))
S%0,2) =0

or equivalently that
¢ 0 '
S'(o,z) = %[Tt(v +oW)(x)] = /0 DV +oW)(u, T,(V 4+ oW)(x))S* (o, x) dp
+ /0 W, T,(V +oW)(x)) dp.

We introduce the functions Q! (o,z) = e (Ty(V + (0 + &)W)(x) — To(V + cW)(z)) and
Ri(o,z) = Ql(o,z) — S'(o, z).
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More explicitly, we have
t
Re(0,z) = / W, Tu(V + (o + W) () = W(p, Tu(V + oW)(x)) du
0
t
+/ DV + oW (u, T,(V + ocW)(z))RE(o, z)dp
0

+ /t[D(V +oW) (1, T,(V + W)z + 0 Q¥ (0, z)) —
DV +oW)(u, T,(V + 0€)x)| Q¢ (0, x) dp.

So,

t
IRE(0)[lwr-100 < / 1DV + oW (1) ||is=1.00 || R (0) | yyrie=1,00 dps
0
t
+ /0 W (s, Tu(V + (0 + W)(2)) = W (i, Tu(V + o W) (@) lwr-1.0dpt

+ /Ot DV + W) (1, T,(V + W)z + 0 eQF(0,2)) —

DV + W) (11, Tu(V + oW)z)][|ye-1,00-
Q% (o) [ wr-1.dpa.

For simplicity, we set

(o) = / W TV + (0 + W) = Wt Tu(V + W) st +

+ DV + W) (1, Tu(V + W) + 0 € Q“(0)) = D(V + W) (1, T (V + oW))|[wi- 0.
1Q¢ (@) lws-1.00 dps

and a'(o) = |D(V + oW)(t, T;(V + cW))||wr-1... The Generalized Gronwall inequality
gives

IR: @) roe < 00) + | (o) (o) (o0 / t Fo)in)du (40

Thus,

max ||RL(0)||wr-1.00 — 0, € — 0.
t€[0,7]

O

Remark 4.3. The above result remains true when C°([0, 7]; W*~1°°(D)) is replaced by
([0, 7];¢*(D)).

The derivability results, we are interested in, shall use only the vector field Z(t,z) =
Z'(0,z) which can be characterized by the following result.
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Proposition 4.4. The vector field Z belongs to C([0,7], W*=Y(D)) and is the unique so-
lution of

OZ+[Z,V] = W in(0,7) x D (4.5)

7(0,) = 0 inD (4.6)

where [, | denotes the Lie Brackets.

First, let us give the next uniqueness result.
Lemma 4.5. The function S, S(t,.) = 8%0,.), is the unique function in C°([0,7];
Wk=1o°(D)) satisfying
t t
SO = [ W T du+ [ DV T,07)S () de (47)
0 0

Proof. Assume that S;,i = 1,2, are two solutions of (4.7). Then, S = S; — S5 satisfies

() = [ DV T(V)S0) d

t
[SOllwr-10 < C/O DV (1) | w100 1S (1) [ w100 dpa (4.8)
t
< cmax [ DV ()| iin / O — (4.9)
t€[0,7] 0

Set .
7 (%) :/ IS (1) |lwr-1.00dpe and K = ¢ max || DV (t)||x-1,00-
0

t€[0,7]

The previous inequality can be written as follows

Lot) < Kr(t)

or equivalently

d
a(exp(—Kt)r(t)) <0.
It implies that 7(.) and ||S(.)||y*-1,.- vanish in [0, 7]. O

Proof of Proposition 4.4. We know that S(¢,.) = §%(0, .) satisfies

S.9) = [ W T dut [ DV TOV)SGa) e (w10)

Equivalently

9,8 = DV(t, To(V)) S = W(t,Ty(V))
S(0,) = 0
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in a classical sense since S is C! in the variable . We compute, in a distribution sense,
the partial derivative 0;Z using the fact that Z(¢,.) = S(¢,.) o Ty(V) 7!

Let ¢ € D((0,7) x D), we have

//Z(t,x).@t(pdxdt
/ / 1) o Ty(V)™" . dyp dadt = / / (Byp) o Ty(V') dadt

= [ [ s-1000 TV)) = (Dp(0) o TuV).V o TV dac
= —(0S(t), p o Ty(V D’D_/ / ) o Ty(V).V o To(V))dadt
—// W(t,Ty(V)). oo Ty(V)+ DV (t, T,(V))S(t) . ¢ o Ty(V) dzdt —

/ / )o T,)(DT,) "'V o T,)dwdt

_ _/0 /DW(t,:r)go—}-(DV(t,x)Z(t,m),go)dmdt—/OT/D<Z,D<p(t).V>dxdt.

&Z + DZ.V — DV.Z =W in (0,7) x D.

Thus,

Now, assume that Z;,7 = 1,2, are two solutions of problem (4.5)-(4.6) and let S;(¢t) =
Z;(t) o T,(V). We will show that S;,7 = 1,2, are two solutions, in C°([0, 7]; Wk=1%(D)),
of problem (4.7). According to the uniqueness result (4.5), we deduce that necessary
Z1 == ZQ. D

5. Necessary Optimality Condition
5.1. Derivative with respect to V

Here we are interested in the derivability of the mapping

Iy = [0,00] — L*(0,7; Hy (div, (V)

o — (DTH ™. (U, o T}), oo is sufficiently small ,

where U, = U(V + oW) is the solution of (2.1)-(2.4) when V is replaced by (V + cW).
Let Vo = {v € L*0,7; Hy(div,%(V))), 0w € L*(0,7; Hy(div,%(V))}, Vo = {v €
L2(0,7; Hy (div, Q4(V))),0v € L*(0,7; Hy (div, Q:(V))) N L*®(0,; H(div,Q(V)))} and
= {F € L*>(0,7; Hi(div,%(V))),0.F € L'0,7; H(%(V))}. Assume conditions
(2.34)—(2.36). So the Weak Implicit Function Theorem (see [13]) works. Indeed let

® = (@, Dy) : Iy x Vy — L*(0,7; Hy (div, 2:(V))") x Hy(div, Q)
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defined in a weak form by: for all w € L*(0, 7; Hy (div, 2,(V)))

(@1(0, ), w)

= /Q " (0:(DTtv), DT w) dwdt — / (D(DT!v).(DTH 1.0, T}, (DT} w) dzdt

Q)

+7n D(DT!).(DTH™..D(DT}w).(DT}) ™" dwdt + / (D(DT}v).v, DT w)dzdt
V) QV)

+ / (D(DT0)(DTE) . (V + oW) o T + D((V + oW) o TE) v, DT w) dudt
Q(V)

- / (Fyow o T, DT w) dadt (5.1)
Q(V)

Q5 (0,v) = v(0) — ug (5.2)
where 0,7; = —=D7;.V + (V +0W)oT; and [, (Fyiew o T}, w) dzdt =

/ (foTt = (0(V + W) + D(V + oW).(V + aW) = gA(V + oW)) o T2, w) dadt.
o)
Lemma 5.1. We have

i For any v,w € L?(0,7; H} (div, Q:(V))), the mapping
0
o — (®(o,v),w) is C'(1) (5.3)

and its deriwative is given by

(0, ®1(0,v), w) =/ ((B(D(2"(0) 0 T5), DTy w) +(0(DT; v), D(2'(0) o T}) w)

Q)
+(D(D(2'0) o T2)v).V, DT w) + (D(DTv).V, D(2(0) o TH)w) dzdt
+1 o D(D(2%0) o T;).w)(DT;)™" = D(DT;w)(DT;) ™' D(24(0) o T;).(DT;) ™" ..
D(D(2'(0) o T7)-w)(DT;)"" — D(DT;.w)(DT;) ' D(2%(0) 0 T;)(DT;) " dudt

+ / (D(D(2"(0) o T2).0)v, DT w) + (D(DT.v)v, D(Z!(0) 0 TH)w) dadt
Q(V)

+/ (D(V+oW)o T2 o) o T} + D(W o T}))w, DT w) dadt
Q(V)

_ / (0, (Fy o TY), DT w) + (Fy o TY, D(Z4(0) o TH)w) dudt
Q(V)

(ii) The map Iy x L*(0,7; Hy(div, (V) — L*(0,7; H}(div,Q(V))"), (o,v) —>
0y P (0, v) is weakly continuous.

Proof. As shown in proposition 4.2 the mapping 0 — 7 is continuously differentiable
for the strong topology and we have

0, Tt =ZLo T
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On the other-hand since f € L?(0,7, H), the mapping 0 — f o T} is only weakly

differentiable. Thus 0 — ®; (0, v) is weakly differentiable. We denote by 9,®;(o,v) its
weak derivative.

The continuity of (o,v) — 0,®1 (0, v) is easy to check. O
Lemma 5.2. The mapping

v — ®1(0,v), L*(0,7; Hy (div, (V) — L*(0,7; Hy (div, 2 (V))") (5.4)
1s differentiable and
(0,v) — 0,®1(0,v) is continuous. (5.5)
Moreover,
0,®(0,U) is an isomorphism (5.6)

from Vi onto F.

Property (5.6) and the following Lemma are direct consequences of the uniqueness of the
solution of the considered Navier-Stokes system.

Lemma 5.3. The mapping o — U, o T, is Lipschitz-continuous.

Proposition 5.4. Under hypotheses of Lemmas 5.1-5.3, the weak derivative U =
(DT Uy 0 Ty )j9—o exists and is the solution of

9,0(0,U).U = —8,9(0,U).

From now on we assume ) of class C2. Note that since the field V is smooth, Q,(V)
has the same regularity than € for any ¢ € (0,7). Referring to regularity results for
Navier-Stokes equations (see for instance [12]) U(t) € H%(Q(V), R®) for a.e. t € (0, 7).
Then

Proposition 5.5. The field U'(t) = U(t) — DU(t).Z(t), t € (0,7), satisfies

o,U' —nAU'+DU'.U + DU.U' + DU'.V + DV.U'
— _O,W +nAW — DW.U — DUW — DV.W — DW.V in Q(V)
divU' =0 i Q(V)
U'(t) = —(Z(t),m)DU(t).ny on (V)
U'0)=0 in Q.

We set u' =U' + W (asu:U—H/) then
Corollary 5.6. The field u'(t) = U(t) — DU(t).Z(t) + W, t € (0,7), satisfies

o' —nAu' + Du'.u+ Duu' =0 in Q(V)
dive' =0 in Q(V)
u'(t) = (Z(t), i) (DV(t) = Du(t)).ne + W(t) on E(V)

d(0)=0 in Q.
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5.2. Adjoint States associated to U’ and Z
Let 2.J1(V) = [[u(V)|l5y, u(V) =U(V) + V. We have

dJ,(V; W) = lim H(V +oW) = L(V)

O g

1
=/ U+V).U + (U+V).dedt+—/ V[2Z., dTydt
Q) 2 Jew)

since U = 0 on X. That is

4T (Vi W) = /

1
wu' drdt + = / \V|?Z.n; dTdt
QV) 2

(V)
5.2.1. The adjoint problem associated to U’
In view of the elimination of U’ the adjoint is the following one.
—0,U—-nAU - DU.U + "DUU+ *DVU-DUV =U+V inQ(V)
U=0 onX(V)
U(r) =0 in Q, (V).

That is
—0,U —nAU — DU.u+ *Du.U=wu in Q(V)
U=0 onX(V)
U(r) =0 in Q.(V).
Then,

/ w.u' dzdt = / (=0, U,u') —n AU — (DU.u, ') + (*DuU, u') dzdt
Q) QW)

- / (ne(U)ny — (VoYU /'y dTdt
(V)

dJ; can be expressed as follows
dJy(V,W) =
/ (ne(U)ny — (V,ny)U, (Z(t),n)(DV (t) — Du(t)).ng + W(t)) dl'wdt
x(V)

1
+—/ \V|*Z.n, dTdt.
2 Jaw)

But U =0 on X then the expression simplifies in the following one:

ATy (VW) = /E o ne(U) e (0, (DV ()~ D)y W (1)

1
+ _/ |V|2Znt drtdt
2 Jsw)
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Lemma 5.7. As U =0 on the boundary 3 then DU = DU.n.n*
(e(U).ny, DUMy) = €(U)..DU on Ty
Proof. O

Also as Z is a free divergence field we have

VH, / HZ.n,dlydt = / (V(H),Z) dz.
(V) Qv)

So that
/Z(V) n{e(U).ne, (Z(t), ne)(DV () — Du(t)).ne)
_ /E o, 1DV = Du(t) (2(6), m)a
_ /0 ' /Q oy (V) (DVE) ~ Do) 200 ) dec
_ /0 /mm(" V( ¢(U)..(DV(t) - Du(t))) Z(t) dudt
and we get

J(V;W) = / ' / (K V(1 (U)-(DV () = Du() + V(VI*) 24t) dach
€(U).ng, WHdX
n / IRICCENT

We set
L = xow)V( n€e(U)..(DV (t) — Du(t)) + [V[*).

Concerning the term independent on Z we have, as divW (t) = 0,

/ n{e(U).ny, W (t))dl,dt —/ / ndiv(e(U).W) dxdt
(V) (V)
U) VXQV7 W>

5.2.2. The adjoint problem associated to Z
Lemma 5.8. There exists a unique solution A € C°(0,7; L?(D,R?)) to the following prob-
lem

—A—DAV — *DVA=L in (0,7)x D
A(r)=0 in D.
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Proof. For simplicity we proceed as it was done for the existence result for Z. It means
that we study the following ordinary differential equation in C*(0,7; L2(D,R3)).
- P — "DV(t) o Ty(V).P =L(t) o T;(V) in (0,7) x D
P(r)=0 in D.
and take A =P o T, (V). O

Using that adjoint state A associated to Z, d.J; can be expressed as follows
AT (V: W) = / / (=0 €e(U).Vxau) + A). W dad. (5.7)
o Jp

Proposition 5.9. Let G(V) be the gradient of J.
G(V)(¢,.) = (=ne(U).Vxa,v) + A)) + V.
Let V be an optimal solution of (3.1). Then there exists a scalar function g such that

(—ne(U).Vxg,@ + A) +aV =Vg in [0,7] x D.
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